
Page i

Page i

 I’ve added the Color WG agreements on their TBDs with the phrase: “Color WG Done” – TNH, October 6, 2003.
Some of the things to be done are flagged with “Color WG TBD”.

This file is the same as JDF_1.2.TBD.030926.doc that was posted, except I’ve made it possible for WGs to read in
order to find their respective TBDs. People said that the posted version hung their machine.

What I did: I edited JDF_1.2.TBD.030926.doc with MS-WORD 9, since maybe WORD10 has problems.
I added page numbers back to each bottom page Trailers (including the Roman numerals for the first 30 pages or so)
so that the MS-comments page references generated at the end of the corresponding PDF file will refer to the correct
page numbers and not be off by 30 pages (and as hot links).
I also added page numbers to each page Header so that when using Acrobat, it will be easier to see what page you
are on as you scroll up and down with page numbers at the top and bottom.
Also the Table of Contents has been cleaned up by simply turning off tracked changes and updating all fields and
the Table of Contents (select all, right mouse button click, update fields, and replace TOC).
And finally I saved in Normal mode, so that it comes up immediately. Automatic hyphenation had already been
turned off.
Then I generated a corresponding PDF file.
Tom Hastings, October 5, 2003
 See Comments for status (View/Comments in MS-WORD version 9.0). [RP1]

Release 1.2

JJDDFF SSppeecciiff iiccaattiioonn

Page ii

Page ii

Comment conventions:
“tbd” means more work is needed by a WG or Rainer.
“tbd” with “Done” means the TBD is ready for WG or TSC review.

“AMC Done” - Done by Ann McCarthy
“DP WG Done” - Digital Printing WG

“added”, “accept”, or “modified” (without “tbd”) means agreed by a WG or Rainer and is ready for TSC
review

“+” means the TSC has approved the addition or change.
“rejected” means the TSC did not approve for JDF/1.2.

Page i

Page i

Copyright Notice

Copyright © 2000-2003, International Cooperation for Integration of Processes in Prepress, Press and
Postpress, hereinafter referred to as CIP4. All Rights Reserved

Permission is hereby granted, free of charge, to any person obtaining a copy of the Specification and
associated documentation files (the “Specification”) to deal in the Specification, including without
limitation the rights to use, copy, publish, distribute, and/or sublicense copies of the Specification, and to
permit persons to whom the Specification is furnished to do so, subject to the following conditions. The
above copyright notice and this permission notice must be included in all copies or substantial portions of
the Specification.

THE SPECIFICATION IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED, OR OTHERWISE, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT WILL CIP4 BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SPECIFICATION OR
THE USE OR OTHER DEALINGS IN THE SPECIFICATION.

Except as contained in this notice or as allowed by membership in CIP4, the name of CIP4 must not be
used in advertising or otherwise to promote the use or other dealings in this Specification without prior
written authorization from CIP4.

Licenses and Trademarks

International Cooperation for Integration of Processes in Prepress, Press and Postpress, CIP4, Job
Description Format, JDF and the CIP4 logo are trademarks of CIP4.

Rather than put a trademark symbol in every occurrence of other trademarked names, we state that we are
using the names only in an editorial fashion, and to the benefit of the trademark owner, with no intention
of infringement of the trademark.

Page ii

Page ii

Page Intentionally Left Blank.

Page iii

Page iii

JJDDFF PPrreeffaaccee aanndd UUsseerr OOvveerrvviieeww
This specification is immense … there little doubt about that … but it is also a keystone standard
for the future of graphic communications. The members of CIP4 believe that users and developers
alike should have a clear understanding of what the objectives of the Job Definition Format (JDF)
are as well as an understanding of its value and purpose. To that end we thought you would find a
“non-standard” preface and user overview helpful.

Before we get into the overview, we remind you that JDF is a living specification. We would
value your comments and input. There are several ways to contact the International Cooperation
for the Integration of Processes in Prepress, Press and Postpress (CIP4) association and to
receive ongoing information about CIP4 activities. To get a list of contacts, join the JDF
developers form, or sign up for email updates, visit the contact page at http://www.cip4.org/. (Of
course, we’d love to have you as a CIP4 member too! Be sure to review the membership page
when you visit the CIP4 Website.)

You will also find callouts throughout this document that are identified by three different
icons. These callouts, provided for your convenience, are not normative parts of the standard
(i.e., they’re not technically a part of the standard). They provide references to external sources,
executive summaries of complex technical concepts, and some thoughts or strategies you may
want to consider as you formulate your JDF implementation plan. Look for these callout icons:

Icon Callout Type

External references to online resources, related
standards, tutorials, and helpful information.

Executive-style summaries of technical concepts in
easy to understand language.

Thoughts to ponder and strategy ideas for
formulating JDF implementation programs.

Value. This revision of JDF is significant because it builds upon the second version of JDF
(v.1.1a)[RP2] to deliver a fully functional and mature standard. As such, this revision includes
elements from which executives, shop managers, and technicians will all benefit equally, though
in different ways. In the next few years it is our belief that this specification will positively effect
everyone involved in the creation and production of printing; regardless of form (offset, digital,
flexographic, and so on) or function (direct mail, periodical publication, packaging, and so on).
Furthermore, JDF will be of value to companies both large and small. Some of the benefits that JDF
may provide include:

• A common language for describing a print job across enterprises, departments, and
software and systems;

• A tool for verifying the accuracy and completeness of job tools;
• A systems interface language that can be used to benchmark the performance of new

equipment (hardware and software) and that can reduce the cost of expensive custom
integration for printers, prepress services, and others;

Page iv

Page iv

• A basis for total workflow automation that incorporates
all aspects of production: human, machine, and
computer;

• A standard that can be applied to eliminate wasteful
rekeying and redundancy of information; and

• A common computer language for printing and related
industries as well as a platform for more effective
communication.

Most importantly, JDF provides an opportunity for users of
graphic arts equipment to get a better return on their technology
investment and an opportunity to create a print production and
distribution workflow that is more competitive with broadcast
media in terms of time-to-market.

XML and Schema: Why? The Extensible Markup Language (XML) is the standard language
that is employed by JDF. JDF is also constructed to the World Wide Web Consortium’s (W3C)
recommendation for the construction of schema. Why is this important and, in layman’s terms,
what does it do for you?

First of all, it is helpful to understand how MIS professionals around the world use XML
today. Although there are some systems that manage and process XML directly, it is primarily
used as an exchange language or “middleware” element to create the “glue” that ties integrated
systems together.

 For instance, complex systems such as enterprise resource planning (ERP), data warehousing,
or E-commerce systems often tap into numerous legacy databases and application environments. A
manager may wish to have a
“view” of corporate information
that is actually an aggregate of
information that may come from
various sources such as billing
and invoicing, sales management,
inventory, and other systems.
Rather than merge these systems
into a single, monstrous and
centralized system, an operator
queries the legacy systems and
the results are wrapped in XML.
This allows programmers to deal
with one exchange language or
data format instead of a multitude
of proprietary data formats.

XML is not a functional computer language like JAVA, C++ or FORTRAN — it is incapable
of manipulating data in anyway; rather, it is a descriptive computer language that can be used to
describe your information including its structure, interrelationships, and to some extent, its
intended usage. For this reason, modern program languages such as JAVA provide intrinsic
support for XML processing. Most modern database applications also provide methods for
receiving and delivering XML.

As you read this standard,
consider how to make JDF a
part of your equipment
evaluation and purchasing
procedures. Should you add
JDF enabled systems slowly
with equipment replacement
and upgrades, or aggressively
as part of a plant
reengineering process? What’s
your desired competitive
position?

Implementation
S t r a t e g y

Page v

Page v

Early XML, based solely upon the XML 1.0 specification, had a
few limitations that prevented it from being used widely as a
transactional data format across enterprises, as opposed to within
enterprises (where it found its niche as described above.) For
example, there is probably a database behind each of your major
systems and applications. If your database has reserved a fixed
space a data particular field and a supplier provides a transaction
with a data element larger than that field, you have a problem.
The data limitations of XML 1.0 cannot effectively deal with
this. The XML Schema specification solved this problem and
others.

The Pluses of Parsing. Schemas also provide one other feature that is perhaps the greatest
benefit. Tagged documents or transactions (called “instances” in XML parlance) are parsible.
Schemas, such as JDF, establish rules for structuring your information. A parser is a software
application that reads those rules, checks documents and transactions, and then validates that
they conform to the rules as established in your schema … sort of like preflighting but for XML
instances rather than your layout pages.

Parsers can play many roles. Like preflighting software,
parsers can be run as standalone applications, but they can also
be found embedded into other applications. Some of the roles
parsers may play in your JDF-enabled workflow include:

1. Acceptance checking of client job tickets.
2. Validation of JDF prior to or following transformation of

data into and out of databases.
3. Ensuring that source job information is collected as a

document is created. (Embedded in document layout
software.)

4. Determining if equipment reads and writes Job
Messaging Format (JMF) commands, a subset of JDF, as part of equipment benchmarking
and testing software.

5. Controlling the movement of workflow information and controls within workflow
software, from process to process and as a specific JDF job ticket requires.

6. Working as a middleware component to communicate between JDF-enabled software and
systems and your legacy Management Information System (MIS) and corporate
applications environments.

It is worth mentioning that parsing can be time consuming and computer intensive. But parsers
don’t have to be the gatekeepers everywhere in a JDF-enabled workflow. Equipment that is JDF-
enabled and part of a company’s internal production operations need not parse every
communication. It can be limited to equipment evaluation and problem solving applications.
The role of JDF parser-enabled software in a printing plant that uses tightly coupled JDF-enabled
print production equipment might look like this:

To learn more about XML
Schema, including tools, usage,
tutorials, and other resources visit
http://www.w3.org/XML/Schema

X M L
S c h e m a

F r e e

P a r s e r s

The JDF schema was validated
with the Xerces parser. This
parser, as well as other XML
tools, is available for free from
The Apache Software Foundation
open source software community
at http://xml.apache.org/

Page vi

Page vi

The JDF Concept. The JDF schema is quite complex and detailed — something best left to
programmers, MIS personnel, and XML experts. But the language and concepts behind JDF are
quite simple and straightforward. The schema itself can be downloaded from the CIP4 Website, but
is not part of this specification. Instead, this is your “cookbook.” It provides an explanation of each
of the components of JDF, its meaning, and intended usage. You will want to use the components of
JDF that fit best with your workflow and the needs of your customers. To start, a basic understanding
of the concepts behind JDF is in order. There are three primary components to JDF:

1. JDF itself,
2. The Job Messaging Format (JMF), and
3. The MIS system.

JDF is simply an exchange format for instructions and job parameters. You can use PDF, or its
standard variant (PDF/X), to relay production files from one platform to another. You can do the
same with JDF to relay job parameters and instructions. JDF can be used to describe a printing
job logically, as you would in exchanging a job description with a client within an estimate. It
can also be used to describe a job in terms of individual production processes and the materials
or other process inputs required to complete a job.

There is no such thing as a standard print workflow. In fact, printing is the ultimate form of
flexible manufacturing. This makes process automation quite a challenge for our industry. What
you’ll find in this standard are XML element definitions that describe all the production
processes and material types you’re likely to encounter, regardless of your workflow. These are
the building blocks that you can use to emulate your workflow with JDF. As a matter of
convention, processes such as preflighting, scanning, printing, cutting, and so on are referred to

Page vii

Page vii

as process nodes. Every process in the print production workflow requires input resources
starting with the client’s files or artwork and ending with the final bound, packaged, and labeled
print product. For example, before you can print, you need paper, ink, and plates, and before you
can send a document to a bindery line, you need printed and cut signatures.

Process nodes and resources
are the basic elements within
JDF. They can be strung
together to meet the
requirements of each job. The
output of one process becomes
the input of the following
process, and a process doesn’t
begin until its input resources are
available:

This specification provides details on how to use these
building blocks to describe concurrent processes, spawned
processes, dynamic processes, and so on. To realize the
capabilities of JDF, there are two other things you will need: a
way of controlling the flow of process and a way of
communicating commands to equipment on the shop floor.

JMF is a subset of JDF that handles communication with
equipment on the shop floor. This may include major equipment,
such as platesetters, or subsystems, such as in-line color
measurement devices. JMF can be used to establish a queue,
discover the capabilities of a JDF-enabled device, determine the
status of a device (e.g., “RIP’ing,” “Idle”), and so on.

 Although, theoretically, you can string together equipment
that supports JMF directly to one another, in almost all cases you
will want your production equipment to communicate with your
MIS system. This way it is the MIS system that controls the scheduling, execution, and control of
work in progress. The role of the MIS system is described within this standard, but it isn’t highly
defined. In fact, the JDF standard does not dictate how a JDF system should be built. Many
printers, prepress services, and other graphic arts shops will already have MIS systems in place.
JDF enabled workflow and MIS systems, custom-tailored to print production requirements, will
soon be available on the market. However, many printers already have MIS and workflow systems
that have been customized or developed for their own environments. In most cases these legacy

systems can be modified to
work with the new JDF
workflows and JDF enabled
equipment. There are a
variety of XML support tools
available on the market to
address the databases
underlying all MIS systems.

The Job Messaging Format
(JMF) functions as a standard
interface between your
equipment and your
information systems, or other
equipment already on the
shop floor. By buying only
equipment that supports JMF
you will reduce the cost and
complexity of integrating new
equipment into your
production operations, and
you will improve the flexibility
and adaptability of your shop.

JMF

To learn more about how XML and database work together, check
out the white papers and tutorials available from XML.org at
http://www.xml.org/xml/resources_focus_rdbms.shtml.

X M L & D a t a b a s e s

Page ix

Page ix

Table of Contents
Copyright Notice .. i
Licenses and Trademarks... i

JJDDFF PPrreeffaaccee aanndd UUsseerr OOvveerrvviieeww... iii

Table of Contents... ix

Table of Figures ...xxiv

Chapter 1 Introduction..1
1.1 Background on JDF ...1
1.2 Document References ...1
1.3 Conventions Used in This Specification..2
1.3.1 Text Styles...2
1.3.2 Specification of Cardinality...3
1.4 Glossary of Terminology...3
1.4.1 Conformance Terminology ...5
1.4.2 Conformance Requirements for JDF Entities..6

1.4.2.1 Conformance Requirements for Support of Attributes and Attribute Values ..6
1.4.2.2 Conformance Requirements for Support of Resources..6
1.4.2.3 Conformance Requirements for Support of Processes...6
1.4.2.4 Conformance Requirements for Support of Combined Processes ...6

1.5 Data Structures...7
1.6 Units ..9

Chapter 2 Overview of JDF ..11
2.1 System Components..11
2.1.1 Job Components ..11

2.1.1.1 Jobs and Nodes ..11
2.1.1.2 Elements ..11
2.1.1.3 Attributes ...11
2.1.1.4 Relationships..11
2.1.1.5 Links ..12

2.1.2 Workflow Component Roles...12
2.1.2.1 Machines..12
2.1.2.2 Devices ..12
2.1.2.3 Agents..12
2.1.2.4 Controllers ...13
2.1.2.5 Management Information Systems—MIS ...13
2.1.2.6 System Interaction ...13

2.2 JDF Workflow ...14
2.2.1 Job Structure..15
2.3 Hierarchical Tree Structure and Networks in JDF ..17
2.4 Role of Messaging in JDF ...18
2.5 Coordinate Systems in JDF ..19
2.5.1 Introduction ...19
2.5.2 How and Where Coordinates and Transformations Are Used/Defined in JDF...20
2.5.3 Coordinate Systems of Resources and Processes ..20

2.5.3.1 Resource Coordinate Systems..20
2.5.3.1.1 Layout Coordinate System..20
2.5.3.1.2 Component Coordinate System...20

Page x

Page x

2.5.3.1.3 ExposedMedia Coordinate System ...21
2.5.3.1.4 Media Coordinate System...21

2.5.3.2 Process Coordinate Systems ..21
2.5.3.3 Coordinate Systems in Combined processes ...21
2.5.3.4 Coordinate System Transformations..22

2.5.4 Product Example: Simple Brochure ..24
2.5.5 General Rules ..28
2.5.6 Homogeneous Coordinates..29

Chapter 3 Structure of JDF Nodes and Jobs ...31
3.1 JDF Nodes...33
3.1.1 Generic Contents of JDF Elements ...33
3.1.2 Fundamental JDF Attributes and Elements ...35
3.2 Common Node Types ..40
3.2.1 Product Intent Nodes...41
3.2.2 Process Group Nodes ..41

3.2.2.1 Use of the Types attribute in ProcessGroup nodes...42
3.2.2.2 ResourceLink Structure in ProcessGroup nodes..42

3.2.3 Combined Process Nodes..43
3.2.3.1 Combined Process Nodes with Multiple Processes of the Same Type ..43
3.2.3.2 Examples of Combined Process Nodes ...44

3.2.4 Process Nodes ...44
3.3 AncestorPool ..44
3.4 Customer Information..46
3.5 Node Information..47
3.6 StatusPool...49
3.7 Resources ...50
3.7.1 Resource Classes ...55

3.7.1.1 Parameter Resources..55
3.7.1.2 Intent Resources...56
3.7.1.3 Implementation Resources...56
3.7.1.4 Physical Resources (Consumable, Quantity, Handling) ..56
3.7.1.5 PlaceHolder Resources ..58
3.7.1.6 Selector Resources...58

3.7.2 Position of Resources within JDF Nodes ..58
3.7.3 Pipe Resources ..58
3.7.4 ResourceUpdate Elements...60
3.8 Resource Links...61
3.8.1 Links to Parameter Resources ...69
3.8.2 Links to Implementation Resources ..69
3.8.3 Links to Physical Resources..69
3.8.4 Links to PlaceHolder Resources..71
3.8.5 Links to Intent Resources ..71
3.8.6 Inter-Resource Linking Using ResourceRef..72

3.8.6.1 Status of Resources That Contain rRef References ...73
3.8.6.2 Alignment of ResourceLink and ResourceRef ..74

3.9 Subsets of Resources ...74
3.9.1 Resource Amount..75

3.9.1.1 Specifying Amount for a partially completed process ...75
3.9.2 Description of Partitionable Resources ...76

3.9.2.1 Amount in Partitionable resources...77
3.9.2.2 Relating PartIDKeys and Partitions ..77

3.9.2.2.1 Incomplete Partitions ..77
3.9.2.2.2 Multiple Keys per partitioned Leaf or Node ...78
3.9.2.2.3 Degenerate Partitions ..78

Page xi

Page xi

3.9.2.3 Partitioning of Resource sub-Elements..79
3.9.2.4 Additional Attributes for use with partitioned Resources..80
3.9.2.5 Options in Intent Resources ...85
3.9.2.6 Locations of Physical Resources ...85

3.9.3 Linking to Subsets of Resources ...87
3.9.3.1 Handling Amount in a ResourceLink to a Partitioned Resource ...87
3.9.3.2 Implicit and Explicit PartUsage in Partitioned Resources ...88
3.9.3.3 Referencing Partitioned Resources from Nodes That Allow Multiple ResourceLinks...........................89

3.9.4 Splitting and Combining Resources ..90
3.10 AuditPool...90
3.10.1 Audit Elements..93

3.10.1.1 ProcessRun ..93
3.10.1.2 Notification ..94

3.10.1.2.1 NotificationDetails ..95
3.10.1.3 PhaseTime..95
3.10.1.4 ResourceAudit ...97

3.10.1.4.1 Logging Machine Data by Using the ResourceAudit..98
3.10.1.4.2 Logging Changes in Product Descriptions by Using the ResourceAudit....................................99

3.10.1.5 Created...99
3.10.1.6 Deleted...99
3.10.1.7 Modified ..100
3.10.1.8 Spawned...100
3.10.1.9 Merged...100

3.11 JDF Extensibility...101
3.11.1 Namespaces in XML...101

3.11.1.1 JDF Namespace ...102
3.11.1.2 JDF Extension Namespace ..102

3.11.2 Extending Process Types...102
3.11.3 Extending Existing Resources...103
3.11.4 Extending NMTOKEN Lists...103
3.11.5 Creating New Resources ...103
3.11.6 Future JDF Extensions ..103
3.11.7 Maintaining Extensions...103
3.11.8 Processing Unknown Extensions ..104
3.11.9 Derivation of Types in XMLSchema ..104
3.12 JDF Versioning ...104
3.12.1 JDF Version Requirements ...104
3.12.2 JDF Version Definition ...104
3.12.3 JDF Version Policies ...104

3.12.3.1 JDF Specification Version Policies ...105
3.12.3.2 JDF Schema Version Policies..105
3.12.3.3 JDF Application Version Policies..105

3.12.3.3.1 JDF Agent Version Policies ..105
3.12.3.3.2 JDF Device/Controller Version Policies ...106

Chapter 4 Life Cycle of JDF ...107
4.1 Creation and Modification ...107
4.1.1 Product Intent Constructs ..107

4.1.1.1 Representation of Product Intent ...108
4.1.1.2 Representation of Product Binding..108

4.1.2 Defining Business Objects Using Intent Resources ..108
4.1.3 Specification of Delivery of End Products ..110
4.1.4 Specification of Process Specifics for Product Intent Nodes ..110
4.2 Process Routing...111
4.2.1 Determining Executable Nodes...112

Page xii

Page xii

4.2.2 Distributing Processing to Work Centers or Devices ..113
4.2.3 Device / Controller Selection ..113
4.3 Execution Model...113
4.3.1 Serial Processing ...113
4.3.2 Partial Processing of Nodes with Partitioned Resources...114
4.3.3 Overlapping Processing Using Pipes...116

4.3.3.1 Pipes of Partitionable Resources..118
4.3.3.2 Dynamic Pipes ...118
4.3.3.3 Comparison of Non-Dynamic and Dynamic Pipes..119

4.3.4 Parallel Processing ..119
4.3.5 Iterative Processing ...120

4.3.5.1 Informal Iterative Processing...120
4.3.5.2 Formal Iterative Processing ...120

Approval, QualityControl and Verification ...120
4.4 Spawning and Merging..121
4.4.1 Case 1: Standard Spawning and Merging..122
4.4.2 Case 2: Spawning and Merging with Resource Copying ..124

4.4.2.1 Spawning of Resources with Inter-Resource Links ...124
4.4.3 Case 3: Parallel Spawning and Merging of Partitioned Resources ...125
4.4.4 Case 4: Nested Spawning and Merging in Reverse Sequence...125
4.4.5 Case 5: Spawning and Merging of Independent Jobs..126
4.4.6 Case 6: Simultaneous Spawning and Merging of Multiple Nodes ..128
4.5 Node and Resource IDs...128
4.6 Error Handling ..128
4.6.1 Classification of Notifications...129
4.6.2 Event Description..129
4.6.3 Error Logging in the JDF File ...129
4.6.4 Error Handling via Messaging (JMF)..129
4.7 Test Running ..129
4.7.1 Resource Status During Testrun..130
4.8 Describing Capabilities with JDF ...131

Chapter 5 JDF Messaging with the Job Messaging Format..133
5.1 JMF Root ...133
5.2 JMF Semantics ...135
5.2.1 Message Families ..135

5.2.1.1 Query ...135
5.2.1.2 Response..136
5.2.1.3 Signal ...137
5.2.1.4 Command...139
5.2.1.5 Acknowledge ...139

5.2.2 JMF Handshaking ...140
5.2.2.1 Single Query/Command Response Communication..140
5.2.2.2 Signal ...141
5.2.2.3 Persistent Channels ..141

5.3 JMF Messaging Levels ..142
5.4 Error and Event Messages ..142
5.4.1 Pure Event Messages...143
5.5 Standard Messages..143
5.5.1 Controller Registration and Communication Messages ..144

5.5.1.1 Events ..144
5.5.1.2 KnownControllers..146
5.5.1.3 KnownDevices...146
5.5.1.4 KnownJDFServices ...148
5.5.1.5 KnownMessages ..149

Page xiii

Page xiii

5.5.1.6 RepeatMessages...150
5.5.1.7 StopPersistentChannel ...151

5.5.2 Device/Operator Status and Job Progress Messages ...152
5.5.2.1 Occupation...152
5.5.2.2 Resource ..154
5.5.2.3 Status ...158
5.5.2.4 Track..163

5.5.3 Pipe Control ..165
5.5.3.1 PipeClose ...167
5.5.3.2 PipePull..167
5.5.3.3 PipePush ..171
5.5.3.4 PipePause...173

5.6 Queue Support ...174
5.6.1 Queue Entry ID Generation...174
5.6.2 Queue Entry Handling Commands..174

5.6.2.1 AbortQueueEntry...175
5.6.2.2 HoldQueueEntry ..175
5.6.2.3 RepeatQueueEntry ...175
5.6.2.4 RequestQueueEntry ...176
5.6.2.5 RemoveQueueEntry...177
5.6.2.6 ResubmitQueueEntry...177
5.6.2.7 ResumeQueueEntry ...178
5.6.2.8 SetQueueEntryPosition..178
5.6.2.9 SetQueueEntryPriority...179
5.6.2.10 SubmitQueueEntry...179

5.6.3 Global Queue Handling...181
5.6.3.1 CloseQueue..181
5.6.3.2 FlushQueue..182
5.6.3.3 HoldQueue...182
5.6.3.4 OpenQueue ..182
5.6.3.5 QueueEntryStatus ..182
5.6.3.6 QueueStatus ...183
5.6.3.7 ResumeQueue ..183
5.6.3.8 SubmissionMethods...183

5.6.4 Queue-Handling Elements ..184
5.7 Extending Messages..188
5.7.1 IfraTrack Support ..189

Chapter 6 Processes...190
6.1 Process Template...190
6.2 General Processes...190
6.2.1 Approval..190
6.2.2 Buffer ..191
6.2.3 Combine ..191
6.2.4 Delivery...192
6.2.5 ManualLabor ...192
6.2.6 Ordering ..192
6.2.7 Packing..193
6.2.8 QualityControl...193
6.2.9 ResourceDefinition..193
6.2.10 Split ...194
6.2.11 Verification ...194
6.3 Product Intent Descriptions ..194
6.4 Prepress Processes...195
6.4.1 AssetCollection ...195

Page xiv

Page xiv

6.4.2 ColorCorrection...196
6.4.3 ColorSpaceConversion..196
6.4.4 ContactCopying...197
6.4.5 ContoneCalibration ...197
6.4.6 DBDocTemplateLayout ..198
6.4.7 DBTemplateMerging ..198
6.4.8 FilmToPlateCopying ...198
6.4.9 FormatConversion...199
6.4.10 ImageReplacement ..199
6.4.11 ImageSetting ...200
6.4.12 Imposition ...200
6.4.13 InkZoneCalculation...201
6.4.14 Interpreting..202
6.4.15 LayoutElementProduction...202
6.4.16 LayoutPreparation ...203
6.4.17 PDFToPSConversion ..203
6.4.18 Preflight...204
6.4.19 PreviewGeneration ..205
6.4.20 Proofing...207
6.4.21 PSToPDFConversion ..208
6.4.22 Rendering ..208
6.4.23 RIPping ...209
6.4.24 Scanning..209
6.4.25 Screening...210
6.4.26 Separation..210
6.4.27 SoftProofing ..210
6.4.28 Tiling ...211
6.4.29 Trapping ..212
6.5 Press Processes...212
6.5.1 ConventionalPrinting ..213
6.5.2 DigitalPrinting...214
6.5.3 IDPrinting..216
6.6 Postpress Processes...217
6.6.1 AdhesiveBinding...217
6.6.2 BlockPreparation...217
6.6.3 BoxPacking ...217
6.6.4 CaseMaking...218
6.6.5 CasingIn ..218
6.6.6 ChannelBinding...219
6.6.7 CoilBinding ...219
6.6.8 Collecting ..219
6.6.9 CoverApplication ..220
6.6.10 Creasing...220
6.6.11 Cutting...221
6.6.12 Dividing...221
6.6.13 Embossing ...221
6.6.14 EndSheetGluing ..222
6.6.15 Folding ..222
6.6.16 Gathering...223
6.6.17 Gluing..223
6.6.18 HeadBandApplication ...223
6.6.19 HoleMaking...224
6.6.20 Inserting...224
6.6.21 Jacketing..225
6.6.22 Labeling...225
6.6.23 Laminating ..225

Page xv

Page xv

6.6.24 LongitudinalRibbonOperations ...226
6.6.25 Numbering...226
6.6.26 Palletizing..226
6.6.27 PageList... Error! Bookmark not defined.
6.6.28 Perforating...228
6.6.29 PlasticCombBinding..228
6.6.30 RingBinding ..228
6.6.31 SaddleStitching..229
6.6.32 ShapeCutting ...229
6.6.33 Shrinking ...229
6.6.34 SideSewing..230
6.6.35 SpinePreparation ...230
6.6.36 SpineTaping ..230
6.6.37 Stacking...230
6.6.38 Stitching ..231
6.6.39 Strapping ...231
6.6.40 StripBinding ..231
6.6.41 ThreadSealing..232
6.6.42 ThreadSewing..232
6.6.43 Trimming...232
6.6.44 WireCombBinding ..233
6.6.45 Wrapping...233
6.6.46 Postpress Processes Structure..234

6.6.46.1 Block Production ...234
6.6.46.1.1 Block Compiling...234
6.6.46.1.2 Block Joining ..234

6.6.46.1.2.1 Single-Leaf Binding Methods ..234
6.6.46.1.2.1.1 Loose-Leaf Binding Method ...234
6.6.46.1.2.1.2 Mechanical Binding Methods ...234

6.6.46.2 HoleMaking ...235
6.6.46.3 Laminating...235
6.6.46.4 Numbering ...235
6.6.46.5 Packaging Processes ..235
6.6.46.6 Processes in Hardcover Book Production..236
6.6.46.7 Sheet Processes ..236
6.6.46.8 Tip-on/in ..236
6.6.46.9 Trimming ...236
6.6.46.10 Web Processes ...236

Chapter 7 Resources ..238
7.1 Intent Resources ..238
7.1.1 Intent Resource Span Subelements ...239

7.1.1.1 Structure of Abstract Span Subelement ...239
7.1.1.2 Structure of the DurationSpan Subelement..240
7.1.1.3 Structure of the EnumerationSpan Subelement ...240
7.1.1.4 Structure of the IntegerSpan Subelement...241
7.1.1.5 Structure of the LabColorSpan Subelement...241
7.1.1.6 Structure of the NameSpan Subelement ..241

7.1.1.6.1 Specifying New Values in a NameSpan Subelement..241
7.1.1.7 Structure of the NumberSpan Subelement...242
7.1.1.8 Structure of the OptionSpan Subelement...242
7.1.1.9 Structure of the ShapeSpan Subelement ..242
7.1.1.10 Structure of the StringSpan Subelement ..242
7.1.1.11 Structure of the TimeSpan Subelement ...242
7.1.1.12 Structure of the XYPairSpan Subelement..243

Page xvi

Page xvi

7.1.2 ArtDeliveryIntent ..243
7.1.3 BindingIntent...247
7.1.4 ColorIntent ..258
7.1.5 DeliveryIntent..260
7.1.6 EmbossingIntent..265
7.1.7 FoldingIntent ...267
7.1.8 HoleMakingIntent ...267
7.1.9 InsertingIntent ...269
7.1.10 LaminatingIntent ...270
7.1.11 LayoutIntent ..270
7.1.12 MediaIntent ...273
7.1.13 NumberingIntent ...279
7.1.14 PackingIntent...280
7.1.15 ProductionIntent ..281
7.1.16 ProofingIntent..282
7.1.17 ShapeCuttingIntent..283
7.1.18 SizeIntent...284
7.2 Process Resources..285
7.2.1 Process Resource Template...285
7.2.2 Address..286
7.2.3 AdhesiveBindingParams ...286
7.2.4 ApprovalParams ..287
7.2.5 ApprovalSuccess ...288
7.2.6 AssetCollectionParams..289
7.2.7 AutomatedOverprintParams..289
7.2.8 BlockPreparationParams ...290
7.2.9 BoxPackingParams..290
7.2.10 BufferParams...291
7.2.11 Bundle ...291
7.2.12 ByteMap..293
7.2.13 CaseMakingParams...294
7.2.14 CasingInParams...296
7.2.15 ChannelBindingParams ...297
7.2.16 CIELABMeasuringField ...298
7.2.17 CoilBindingParams ...299
7.2.18 CollectingParams ..300
7.2.19 Color..301
7.2.20 ColorantControl...305
7.2.21 ColorControlStrip..308
7.2.22 ColorCorrectionParams ...309
7.2.23 ColorMeasurementConditions...311
7.2.24 ColorPool ..313
7.2.25 ColorSpaceConversionParams ..313
7.2.26 ComChannel..323
7.2.27 Company ...324
7.2.28 Component ..325
7.2.29 Contact ..328
7.2.30 ContactCopyParams ..328
7.2.31 ConventionalPrintingParams...329
7.2.32 CostCenter...332
7.2.33 CoverApplicationParams...332
7.2.34 CreasingParams...333
7.2.35 CutBlock ...334
7.2.36 CutMark ..335
7.2.37 CuttingParams ...336
7.2.38 DBMergeParams ...338

Page xvii

Page xvii

7.2.39 DBRules ..338
7.2.40 DBSchema...338
7.2.41 DBSelection ..339
7.2.42 DeliveryParams ...339
7.2.43 DensityMeasuringField ...340
7.2.44 DevelopingParams ..341
7.2.45 Device ...342
7.2.46 DigitalPrintingParams ...344

7.2.46.1 Coordinate systems in DigitalPrinting ...344
7.2.47 Disjointing...347
7.2.48 DividingParams...348
7.2.49 ElementColorParams...348
7.2.50 EmbossingParams ...350
7.2.51 Employee...351
7.2.52 EndSheetGluingParams...351
7.2.53 ExposedMedia...352
7.2.54 FileSpec...353
7.2.55 FitPolicy ..356
7.2.56 Fold ...357
7.2.57 FoldingParams...358
7.2.58 FontParams..362
7.2.59 FontPolicy ...362
7.2.60 FormatConversionParams ...363
7.2.61 GatheringParams ...364
7.2.62 GlueApplication ..364
7.2.63 GluingParams ..365
7.2.64 GlueLine..366
7.2.65 HeadBandApplicationParams..367
7.2.66 Hole ...368
7.2.67 HoleLine..368
7.2.68 HoleMakingParams...370
7.2.69 RegisterMarkQualityControlParams ...372
7.2.70 QualityControlResult .. Error! Bookmark not defined.
1.1.1 RegisterMark... Error! Bookmark not defined.
7.2.71 IdentificationField ...374
7.2.72 IDPrintingParams ..375
7.2.73 ImageCompressionParams ..386
7.2.74 ImageReplacementParams ..388
7.2.75 ImageSetterParams..389
7.2.76 Ink ...391
7.2.77 InkZoneCalculationParams ...392
7.2.78 InkZoneProfile ..392
7.2.79 InsertingParams...393
7.2.80 InsertSheet...394
7.2.81 InterpretedPDLData ..397
7.2.82 InterpretingParams ..397
7.2.83 JacketingParams ..400
7.2.84 JobField ...401
7.2.85 LabelingParams...402
7.2.86 LaminatingParams...403
7.2.87 Layout ...404
7.2.88 LayoutElement ..405
LayoutPreparationParams..408
7.2.90 LongitudinalRibbonOperationParams...417
7.2.91 ManualLaborParams ...418
7.2.92 Media...419

Page xviii

Page xviii

7.2.93 MediaSource ...424
7.2.94 NumberingParams...424
7.2.95 ObjectResolution...425
7.2.96 OrderingParams...425
7.2.97 PackingParams ..426
7.2.98 PageList...427
7.2.99 PalletizingParams ..430
7.2.100 Pallet..430
7.2.101 PDFToPSConversionParams...431
7.2.102 PDLResourceAlias ..434
7.2.103 PerforatingParams ...434
7.2.104 Person..435
7.2.105 PlaceHolderResource ..436
7.2.106 PlasticCombBindingParams..436
7.2.107 PlateCopyParams ..437
7.2.108 PreflightAnalysis...437
7.2.109 PreflightInventory ...439
7.2.110 PreflightProfile ..440
7.2.111 Preview..441
7.2.112 PreviewGenerationParams ..442
7.2.113 ProofingParams ...443
7.2.114 PSToPDFConversionParams...445
7.2.115 QualityControlParams ...450
7.2.116 QualityControlResult ..450
7.2.117 RegisterMark...451
7.2.118 RegisterRibbon..452
7.2.119 RenderingParams ..453
7.2.120 ResourceDefinitionParams..454
7.2.121 Retention ...455
7.2.122 RingBindingParams ..456
7.2.123 RunList..457
7.2.124 SaddleStitchingParams..463
7.2.125 ScanParams ...464
7.2.126 ScavengerArea ..465
7.2.127 ScreeningParams ...466
7.2.128 SeparationControlParams..469
7.2.129 SeparationSpec ..469
7.2.130 ShapeCuttingParams ...470
7.2.131 Sheet..470
7.2.132 ShrinkingParams ...471
7.2.133 SideSewingParams ..472
7.2.134 SpinePreparationParams..473
7.2.135 SpineTapingParams...475
7.2.136 StackingParams ...476
7.2.137 StitchingParams...479
7.2.138 Strap ..482
7.2.139 StrappingParams..483
7.2.140 StripBindingParams ..483
7.2.141 Surface...484
7.2.142 ThreadSealingParams..490
7.2.143 ThreadSewingParams..491
7.2.144 Tile ..492
7.2.145 Tool ...493
7.2.146 TransferCurve..493
7.2.147 TransferCurvePool ..494
7.2.148 TransferFunctionControl ...494

Page xix

Page xix

7.2.149 TrappingDetails...495
7.2.150 TrappingParams ..496
7.2.151 TrapRegion..499
7.2.152 TrimmingParams...500
7.2.153 VerificationParams..501
7.2.154 WireCombBindingParams...501
7.2.155 WrappingParams ...502
7.3 Device Capability Definitions..503
7.3.1 Structure of the DeviceCap Subelement..503
7.3.2 Structure of the Performance Subelement ...504
7.3.3 Structure of the DevCaps Subelement...504
7.3.4 Structure of the DevCap Subelement ..505
7.3.5 Structure of the Abstract State Subelement...506

7.3.5.1 Structure of the BooleanState Subelement...506
7.3.5.2 Structure of the EnumerationState Subelement ...507
7.3.5.3 Structure of the IntegerState Subelement...507
7.3.5.4 Structure of the MatrixState Subelement ...508
7.3.5.5 Structure of the NameState Subelement ..508
7.3.5.6 Structure of the NumberState Subelement...508
7.3.5.7 Structure of the ShapeState Subelement ..509
7.3.5.8 Structure of the StringState Subelement ..509
7.3.5.9 Structure of the XYPairState Subelement..509

7.3.6 Examples of Device Capabilities...510

Chapter 8 Building a System Around JDF..513
8.1 Implementation Considerations and Guidelines ..513
8.2 JDF and JMF Interchange Protocol..513
8.2.1 File-Based Protocol (JDF + JMF) ...513

8.2.1.1 JMF transport using the File Protocol..513
8.2.2 HTTP-Based Protocol (JDF + JMF)...513

8.2.2.1 Protocol Implementation Details ...514
8.2.3 MIME Types and File Extensions...514

8.2.3.1 MIME Fields..514
8.2.3.1.1 Content Type...514
8.2.3.1.2 Content ID...514
8.2.3.1.3 Content Length..515
8.2.3.1.4 Content Transfer Encoding ...515

8.2.3.2 Example Packaging of Individual JDF/JMF files in MIME ..515
8.2.3.3 CID URL scheme ..515
8.2.3.4 Ordering of JDF/JMF in MIME Multipart/Related ...516

8.2.4 Issues with Hot Folders ...516
8.3 MIS Requirements..516

Appendix A Encoding...517
A.1 XML Schema Data Types...517
A.2 JDF Data Types ..518
A.2.1 CMYKColor..518
A.2.2 DateTimeRange...519
A.2.3 DateTimeRange List ...519
A.2.4 DurationRange ..519
A.2.5 DurationRangeList ..519
A.2.6 IntegerList ...519
A.2.7 IntegerRange ...520
A.2.8 IntegerRangeList ...520
A.2.9 LabColor ...520

Page xx

Page xx

A.2.10 Matrix..520
A.2.11 NamedColor ..521
A.2.12 NameRange ...521
A.2.13 NameRangeList...522
DoubleList ...522
DoubleRange ...522
DoubleRangeList ...522
A.2.17 PDFPath ..522
A.2.18 Rectangle...523
A.2.19 RectangleRange...523
A.2.20 RectangleRange List ...523
A.2.21 shape..523
A.2.22 ShapeRange...524
A.2.23 ShapeRangeList...524
A.2.24 sRGBColor ..524
A.1.1 TimeRange ..524
Deprecated in JDF 1.2. Renamed to DateTimeRange ..524
A.2.25 TransferFunction ...524
A.2.26 XYPair...525
A.2.27 XYPairRange ..525
A.2.28 XYPairRangeList ..525
A.2.29 xpath New in JDF 1.2..526
A.2.30 XYRelation..526
A.3 JDF Data Structures...526
A.3.1 Links..526
A.4 JDF File Formats ..526
A.4.1 MIME File Packaging ...527

A 4.1.1 MIME Basics ...527
A 4.1.2 JDF Agent and Consumer Requirements...527

A.4.2 HTTP 1.0 Field..527
A.4.3 PNG Image Format ...527

Appendix B Schema ...529
B.1 Using xsi:Type..529
B.1.1 Using xsi:type with JDF Nodes...530
B.1.2 Using xsi:type with JMF Messages...530

Appendix C Converting PJTF to JDF..531
C.1 PJTF Object Conversion ...531
C.1.1 Accounting ..531
C.1.2 Address..531
C.1.3 Analysis...531
C.1.4 AuditObject ...531
C.1.5 ColorantAlias ..531
C.1.6 ColorantControl...531
C.1.7 ColorantDetails..531
C.1.8 ColorantZoneDetails ...532
C.1.9 ColorSpaceSubstitute ..532
C.1.10 Delivery...532
C.1.11 DeviceColorant..532
C.1.12 Document ..532
C.1.13 Finishing..533
C.1.14 FontPolicy ...533
C.1.15 InsertPage..533

Page xxi

Page xxi

C.1.16 InsertSheet...533
C.1.17 Inventory ...534
C.1.18 JobTicket ...534
C.1.19 JobTicketContents ...534
C.1.20 JTFile...535
C.1.21 Layout ...535
C.1.22 Media...535
C.1.23 MediaSource ...536
C.1.24 MediaUsage...536
C.1.25 PageRange...536
C.1.26 PlacedObject..537
C.1.27 PlaneOrder...537
C.1.28 Preflight...537
C.1.29 PreflightConstraint ..537
C.1.30 PreflightDetail ...537
C.1.31 PreflightInstance..538
C.1.32 PreflightInstanceDetail..538
C.1.33 PreflightResults ...538
C.1.34 PrintLayout..538
C.1.35 Profile..538
C.1.36 Rendering ..538
C.1.37 ResourceAlias..538
C.1.38 Scheduling...538
C.1.39 Signature ...539
C.2 Sheet..539
C.2.1 SlipSheet ...539
C.2.2 Surface...539
C.2.3 Tile ..539
C.2.4 Trapping ..539
C.2.5 TrappingDetails...539
C.2.6 TrappingParameters ..539
C.2.7 TrapRegion..539
C.3 Translating Values ...539
C.4 Translating the Contents Hierarchy ...540
C.5 Representing Pages...540
C.6 Representing Preseparated Documents..540
C.7 Representing Inherited Characteristics...541
C.8 Translating Layout ...541
C.9 Translating PrintLayout...541
C.10 Translating Trapping..541

Appendix D Converting PPF to JDF..543
D.1 Converting PPF Data Types ..544
D.2 PPF Product Definitions ..544
D.2.1 Comparison of the PPF Component to the JDF Component ...545
D.2.2 Collecting ..545
D.2.3 Gathering...545
D.2.4 ThreadSewing..545
D.2.5 SaddleStitching..546
D.2.6 Stitching ..546
D.2.7 SideSewing..546
D.2.8 EndSheetGluing ..546
D.2.9 AdhesiveBinding...546
D.2.10 Trimming...547
D.2.11 GluingIn ..547

Page xxii

Page xxii

D.2.12 Folding ..548
D.3 PPF Sheet Structure...549
D.3.1 Administration Data ..550
D.3.2 Preview Images ...552
D.3.3 Transfer Curves ...552
D.3.4 Register Marks ..552
D.3.5 Color and Ink Control..553
D.3.6 Cutting Data ..554
D.3.7 Folding Data..555
D.3.8 Comments and Annotations ..555
D.3.9 Private Data and Content...555

Appendix E Modeling IfraTrack in JDF...556
E.1 IFRA Objects and JDF Nodes ...556
E.1.1 Object Identification..556
E.1.2 IFRA Object Hierarchy ...556
E.1.3 Object States..556
E.1.4 Deadlines and Scheduling ...557
E.2 JMF Messages that Translate IfraTrack Messages...557

Appendix F Mapping between JDF and IPP...558
F.1 IPP References ...558

Appendix G StatusDetails Supported Strings ...559

Appendix H ModuleType Supported Strings ...561

Appendix I Supported Error Codes in JMF...562

Appendix J NotificationDetails ...563
J.1 Predefined NotificationDetails ..563
J.1.1 Barcode ...563
J.1.2 FCNKey ..563
J.1.3 SystemTimeSet..563
J.1.4 CounterReset ...563
J.1.5 Error ..563
J.1.6 Event ...563

Appendix K Examples ..565
K.1 Brief Example ...565
K.1.1 Before Processing..565
K.1.2 After Processing ..565
K.2 Product JDF..566
K.3 Spawning and Merging..567
K.3.1 Example 2 Component JDF before Spawning ..567
K.3.2 Example 2 Component JDF Parent after spawning the cover node...568
K.3.3 Example 2 Component JDF spawned node...569
K.3.4 Example 2 Component JDF after merging ..569
K.3.5 Example of a Partitioned ImageSetting Node before Spawning ...570
K.3.6 The Spawned Cyan Partition of the ImageSetting Node ...571
K.3.7 The Root Partitioned ImageSetting Node after Spawning...571
K.3.8 The Merged ImageSetting Node ...572

Page xxiii

Page xxiii

K.4 Conversion of PJTF to JDF ...573
K.4.1 PJTF input ...573
K.4.2 JDF output...575
K.5 Conversion of PPF to JDF...576
K.6 Runlist ...581
K.7 Messages ..583
K.7.1 Simple KnownMessages ...583
K.7.2 Simple persistent channel..584

Appendix L JDF/CIP4 Hole Pattern Catalog...585

Appendix M Color Adjustment Attribute Description and Usage ..594
M.1 Adjustment using direct attributes...594
8.4 N.2 Adjustment using ICC Profile attributes ...595
8.4.1 N.2.1 Adjustment using an ICC Abstract Profile attribute ..595
8.4.2 N.2.2 Adjustment using an ICC DeviceLink Profile attribute...595

Appendix N Input Tray and output Bin Names ..596

Appendix O Media Sizes...598

Appendix P New, Deprecated, Modified, Illegal, and Removed Items ..602
P.1 New Items..602
P.2 Deprecated Items ...602
P.3 Modified Items ..607
P.4 Illegal Items...607
P.5 Removed Items...607
P.6 New/Modified Attributes and Elements..607
P.6.1 Structure of JDF Nodes and Jobs ..608
P.6.2 JDF Messaging with the Job Messaging Format...610
P.6.3 Processes ...611
P.6.4 Resources ..614
8.4.3 PageList... Error! Bookmark not defined.

Appendix Q Table of Tables...631

Appendix R Terminology Usage ...637

Appendix S Errata...640

Page xxiv

Page xxiv

Table of Figures
Figure 2.1 Example of JDF and JMF workflow interactions...14

Figure 2.2 JDF tree structure ...15

Figure 2.3 Example of a hierarchical tree structure of JDF nodes...17

Figure 2.4 Example of a process chain linked by input and output resources ...18

Figure 2.5 Standard coordinate system..19

Figure 2.6 Examples of Transformations and Coordinate Systems in JDF..28

Figure 2.7 Transforming a point (example)...30

Figure 3.1 Structure of the JDF Node ..32

Figure 3.2 Structure of JDF Generic Contents...35

Figure 3.3 Job hierarchy with process, process group, and product intent nodes41

Figure 3.4 Structure of the abstract resource types...55

Figure 3.5 Resource Links and ResourceRefs ...62

Figure 3.6 Nodes linked by a resource ...64

Figure 3.7 Structure of the abstract ResourceLink types...66

Figure 3.8 Splitting and combining physical resources..90

Figure 3.9 Structure of Audit element types derived from the abstract Audit type92

Figure 4.1 Simplified PrintTalk workflow (negotiation phase) ...110

Figure 4.2 Life Cycle of a JDF node ..113

Figure 4.3 Example of a simple process chain linked by resources..114

Figure 4.4 Example of a Pipe resource linking two processes ..117

Figure4.5 Example of status transitions in case of overlapping processing ..117

Figure 4.6 The spawning and merging mechanism and its phases ..122

Figure 4.7 JDF node structure that requires resource copying during spawning and merging124

Figure 4.8 Example for a JDF node structure with nested spawning ..126

Figure 4.9 Example of the spawning and merging of independent jobs..127

Figure 4.10 Parameter Space in device Capabilities..131

Page xxv

Page xxv

Figure 5.1 Contents of a JMF root element and the message families ...134

Figure 5.2 Interaction of Messages with a subscription...135

Figure 5.3 Interaction of Command and Acknowledge Messages ..140

Figure 5.4 Mechanism of a PipePull message...170

Figure 5.5 Mechanism of a PipePush message ..173

Figure 5.6 Effects of the global queue messages on the queue Status ...185

Figure 6.1 Worst case scenario for area coverage calculation..206

Figure 6.2 Packaging Process Coordinate System ..236

Figure 7.1 Parameters and coordinate system for glue application ..287

Figure 7.2 CaseMakingParams ..295

Figure 7.3 Parameters and Coordinate System for CasingIn ...297

Figure 7.4 Parameters used for channel binding...298

Figure 7.5 Coordinate systems used for collecting..301

Figure 7.6 Terms and definitions for components ...325

Figure 7.7 Parameters and coordinate system for cover application ..333

Figure 7.8 Cut mark types..336

Figure 7.9 Parameters and coordinate system used for end-sheet gluing ..352

Figure 7.10 Names of the reference edges of a sheet in the FoldingParams resource358

Figure 7.11 Fold Catalog part 1 ...361

Figure 7.12 Fold Catalog part 2 ...362

Figure 7.13 Coordinate system used for gathering..364

Figure 7.14 Parameters and coordinate system for glue application ..365

Figure 7.15 Parameters and Coordinate system used for Inserting ..393

Figure 7.16 Parameters and Coordinate System for Jacketing..401

Figure 7.17Parameters and Coordinate System for BlockPreparation...452

Figure 7.18 Staple shapes ...464

Figure 7.19 Parameters and coordinate system used for side sewing..472

Figure 7.20 Parameters and coordinate systems for the SpinePreparation process474

Page xxvi

Page xxvi

Figure 7.21 Parameters and coordinate system for the SpineTaping process..476

Figure 7.22 Staple shapes ...479

Figure 7.23 Parameters and coordinate system used for saddle stitching..480

Figure 7.24 Parameters and coordinate system used for stitching..480

Figure 7.25 Parameters and coordinate system used for thread sewing ..491

Figure 7.26 Parameters and coordinate system used for side sewing..491

Figure 7.27 Parameters and coordinate system used for trimming...500

Figure D.8.1 JDF node of a CIP3 product structure ..543

Figure D.8.2 JDF representation of sheets ..550

Page 1

Page 1

Chapter 1 Introduction
This document defines the technical specification for the Job Definition Format (JDF) and its counterpart, the Job
Messaging Format (JMF). We will describe the components of JDF, both internal and external, and explain how to
integrate the format components to create a viable workflow. Ancillary aspects are also introduced, such as how to
convert PJTF or PPF to JDF, and how JDF relates to IfraTrack. It is intended for use by programmers and systems
integrators for operations addressed by the International Cooperation for Integration of Processes in Prepress, Press
and Postpress (CIP4). In this first chapter, we present the concept of JDF, how to use this document and some basic
document navigational aids.

1.1 Background on JDF
JDF is an extensible, XML-based format built upon the existing technologies of CIP3’s Print Production Format (PPF)
and Adobe’s Portable Job Ticket Format (PJTF). It provides three primary benefits to the printing industry: 1.) the
ability to unify the prepress, press, and postpress aspects of any printing job, unlike any previous format; 2.) the means
to bridge the communication gap between production services and Management Information Systems (MIS); and 3.)
the ability to carry out both of these functions no matter what system architecture is already in place, and no matter
what tools are being used to complete the job. In short, JDF is extremely versatile and comprehensive.

JDF is an interchange data format to be used by a system of administrative and implementation-oriented
components, which together produce printed products. It provides the means to describe print jobs in terms of the
products eventually to be created, as well as in terms of the processes needed to create those products. The format
provides a mechanism to explicitly specify the controls needed by each process, which may be specific to the
devices that will execute the processes.

JDF works in tandem with a counterpart format known as the Job Messaging Format, or JMF. JMF provides
the means for production components of a JDF workflow to communicate with system controllers and
administrative components. It relays information about the progress of JDF jobs and gives MIS the active ability to
query devices about the status of processes being executed or getting ready to be executed. JMF will provide the
complete job tracking functionality that is defined by IfraTrack messaging standard. Depending on the system
architecture, JMF may also provide the means to control certain aspects of these processes directly.

JDF and JMF are maintained and developed by CIP4 (http://www.cip4.org). They were originally developed by
four companies prominent in the graphic arts industry—Adobe, Agfa, Heidelberg, and MAN Roland, with significant
contributions provided by CIP3, the IfraTrack working group, Fraunhofer IGD and the PrintTalk consortium.

1.2 Document References [RP3]
This specification assumes that the reader has a basic awareness of, or access to, the following documents:

Portable Job Ticket Format
Version 1.1
Date: 2-April-1999
Produced by Adobe Systems Inc.
Available at: http://partners.adobe.com/asn/developer/PDFS/TN/5620.pdf

Print Production Format
Version 3.0
Date: 2-June-1998
Produced by the International Cooperation for Integration of Prepress, Press, and Postpress
Available at: http://www.cip4.org/documents/technical_info/cip3v3_0.pdf

XML Specification
Version 1.0
Date: 10-February-1998
Produced by: World Wide Web Consortium (W3C)
Available at: http://www.w3.org/TR/REC-xml

XML Schema Part 0+1+2: Primer, Structures and Datatypes
Version (W3C Recommendation of 02 May 2001)

Page 2

Page 2

Date: 02-May-2001
Produced by: World Wide Web Consortium (W3C) XML Schema working group
Available at: http://www.w3.org/TR/xmlschema-0/, http://www.w3.org/TR/xmlschema-1/ and

http://www.w3.org/TR/xmlschema-2/

XML Path Language (XPath) Version 1.0

Version W3C Recommendation 16 November 1999
Date: 16-November-1999
Produced by: World Wide Web Consortium (W3C)
Available at: http://www.w3.org/TR/xpath.html[RP4]

IfraTrack Specification
Version 2.0
Date: June-1998
IFRA Special Report 6.21.2
Produced by IFRA
Available at: http://www.ifra.com/

Spec ICC.1:2001-12[AMC5]
File Format for Color Profiles
Version 4.0.0
Date: 2001
Produced by: International Color Consortium
Available at: http://www.color.org/newiccspec.pdf
PrintTalk Implementation
Version 1.0
Produced by: PrintTalk Consortium
Available at: http://www.printtalk.org/

[first] FIRST – Flexographic Image Reproduction Specifications & Tolerances, FIRST, second edition,
copyright November 1999, available from Flexography Technical Association, www.fta-ffta.org, (631) 737-
6020 or FIRST, 900 Marconi Avenue, Ronkonoma, NY, 11779- 7212
[snap] SNAP – Specifications for Newsprint Advertising Production, see www.naa.org. SNAP (item 70100) and
SNAPShot (item 70101) are available by calling NAA’s fulfillment center at (800) 651-4NAA. Order forms are
available online at www.naa.org/products/form.pdf
[gracol] GRACOL - General Requirements for Applications in Commercial Offset Lithography Version 6.0, see
http://www.gracol.com/[RP6]
[IEEE754] standards.ieee.org[RP7]Conventions Used in This Specification

This section contains conventions and notations used within this document.

1.3.1 Text Styles
The following text styles are used to identify the components of a JDF job:

• Elements are written in sans serif. Examples are: Comment, CustomerInfo, and ResourceLinks.
• Attributes are written in italic sans serif. Examples are: Status, ResourceID, and ID.
• Resources are written in bold sans serif. Examples are ImpositionProof, Toner, and ExposedMedia.
• Processes are written in bold-italic sans serif. Examples are ColorSpaceConversion, Rendering, and

Scanning.

Page 3

Page 3

• Enumerative and boolean values of attributes are written in italics. Examples are: true, Waiting, Completed,
and Stopped.

• Standard bold text is used for the following
purposes:
- to highlight glossary items. Examples are

device, element, and job.
- to highlight defined items inside a table. An

example is the data type NMTOKEN in the
table in Section 1.4 Data Structures.

- to highlight definitions of local terms. These
are terms that are of local importance for a
certain chapter, or some sections inside a
chapter. An example is a spawned job in
Section 4.4 Spawning and Merging.

- to designate PPF objects in Appendix D,
Converting PPF to JDF. Examples are
CIP3ProductName and
CIP3ProductComponent.

• For the benefit of those who are reading this
document in PDF or online, cross-reference
links are denoted by gray text. Examples are Chapter 6 Processes, and Section 1.2 Conventions Used in
This Specification. To follow a link, click the highlighted text. The examples provided are not actual links.

• Also for the benefit of online readers, external hyperlinks are graphically designated. An example is
http://URL.com. To follow a link, click the highlighted text. The example provided is not an actual link.

1.3.2 Specification of Cardinality
The cardinality of JDF Data Types is expressed using a simple Extended Backus-Naur Form (EBNF) notation. The
symbols in this notation may be combined to indicate both simple and complex patterns, as demonstrated in the
following table. A and B represent simple expressions.

Notation Description
(expression) Expression is treated as a unit and may be combined as described in this list.
A Matches A. A must occur exactly one time.
A ? Matches A or nothing. A is optional, or is required only in the circumstances explained in the

description field.
A + Matches one or more occurrences of A.
A * Matches zero or more occurrences of A.

1.4 Glossary of Terminology
The following terms are defined as they are used throughout this specification. For more detail on job and workflow
components, see Section 2.1 System Components.

Term Definition
Agent The component of a JDF-based workflow that writes JDF.
Attribute An XML-based syntactic construct describing an unstructured characteristic of a JDF node or

element.
Big job The combined job that independent jobs are merged into in the case of independent spawning

and merging.
Class A set of complex data types with common content in an object-oriented sense. A complex

data type may consist of elements and attributes.

The Extended Backus-Naur Form (EBNF) provides
a compact notation that is commonly used in the
specifications of programming languages. The
official EBNF standard, ISO/IEC 14977:1996(E), is
not freely available online. To order a paper copy
from ISO, contact:
International Organization for Standardization
Case postale 56
1, rue de Varembé
CH-1211 Genève 20 Switzerland
Phone: +41 22 749 01 11
Fax: +41 22 733 34 30
Email: sales@isocs.iso.ch

Extended

Backus-Naur Form

Page 4

Page 4

Term Definition
Controller The component of a JDF-based workflow that initiates devices, routes JDF, and

communicates status information.
Default Used to indicate the attribute value that a JDF Consumer must use if an Agent omits an

Optional attribute (as indicated by a "?" in this spec) from a JDF instance. See Section 1.4.2.1
Conformance Requirements for Support of Attributes and Attribute Values.

Deprecated Indicates that a JDF element is being phased out of JDF usually in favor of newer JDF
element(s). It is recommended that an Agent not include such a JDF element in a JDF
instance. Such an indicated JDF element may be removed from a future version of the JDF
specification. JDF Consumers should only support such JDF elements for backward
compatibility with previous versions of JDF. Deprecated items are flagged with Deprecated
in JDF 1.1 in this specification.

Device The component of a JDF workflow part that interprets JDF and executes the instructions. If a
Device controls a machine, it does soin a proprietary manner.[RP8]

Document set A set of instance documents presumed to be related.
Element An XML-based syntactic construct describing structured data in JDF.
Finished page A finished page is a page of a final product that normally has [RP9]no fold inside. The folds

of the finished product for packaging, e.g., folding letters into an envelope, or z-Folds of an
oversize page in a book [RP10]have no effect on the finished page definition. A sheet of paper
with no fold inside consists of two finished pages (front and back side). If there are folds
seen in a sheet in the final product, the number of finished pages of one sheet is given by
2*(X+1)*(Y+1), where X denotes the number of folds in X direction and Y denotes the
number of folds in Y direction, each seen in the completely opened sheet. Examples: One
sheet in a book has two finished pages, one front, one back; a brochure with one fold inside
has four finished pages.

Instance
document

A document that is part of the output of a job. This generally refers to personalized printing jobs.
Each of the individual documents produced from the same input template is referred to as an
instance document. For example, in a credit card statement run, each statement is an instance
document.

JDF consumer A Device, Controller, Process, Queue or Agent that consumes JDF instances.[RP11]
JMF Job Messaging Format. A communication format with multi-level capabilities. Structures

information between MIS and controllers.
Job A hierarchical tree structure comprised of nodes. Describes the output that is desired by a

customer.
Job part One or more nodes which comprise the smallest level of control of interest to MIS.
Link A pointer to information that is located elsewhere in a JDF document or that is located in

another document.
Machine The part of a device that does not know JDF and is controlled by a JDF device in a proprietary

manner.
MIS Management Information Systems. The functional part of a JDF workflow that oversees all

processes and communication between system components and system control.
Node The JDF element type detailing the resources and process specification required to produce a

final or intermediate product or resource.
Partitioned
resource

Structured resource that represents multiple physical or logical entities, such as separated plates.

PDL Page Description Language. A generic term for any language that describes pages, which
may be printed. Examples are PDF®, PostScript® or PCL®.

Process An individual step in the workflow.
Queue Entity that accepts job entries via a JMF messaging system.

Page 5

Page 5

Term Definition
Reader page A reader page is a logical page as perceived by a reader, for example one RunList entry.

One reader page may span more than one finished page, e.g,. a centerfold. One finished
page may contain contents defined by multiple reader pages, e.g., NUp imposition. Reader
pages are defined independent of finished pages.

Resource A physical or conceptual entity that is modified or used by a node. Examples include paper,
images, or process parameters.

Small job An independent job that is merged into a big job.
Support A JDF Consumer supports a JDF syntactic construct (processes, resources, elements,

attributes, and attribute values) if the JDF Consumer performs the action defined in this
specification for the JDF construct when consuming a JDF instance that includes the JDF
syntactic construct. If the Machine that a Device is representing supports a feature which is
represented by a JDF construct, then the Device should support that JDF syntactic construct.

Tag A syntactic construct that marks the start or end of an element.
Work center An organizational unit, such as a department or a subcontracting company, that can accomplish

a task.

1.4.1 Conformance Terminology
The words “must”, “must not”, “required”, “should”, “should not”, “recommended”, “may”, and “optional” are
used in this specification to define a requirement for the indicated Agent or the indicated JDF Consumer as follows:

Table 1-1 Conformance Terminology

Term Meaning
Must,
Required

Mean that the definition is an absolute requirement of the specification.

Must not Means that the definition is an absolute prohibition of the specification.
Should,
Recommended

Mean that there may exist valid reasons in particular circumstances for an implementer
to ignore a particular item, but the implementer must fully understand the implications
and carefully weigh the alternatives before choosing a different course.

Should not,
Not recommended

Mean that there may exist valid reasons in particular circumstances when the particular
behavior is acceptable or even useful, but the implementer should fully understand the
implications and then carefully weigh the alternatives before implementing any behavior
described with this label.

May,
Optional

Mean that an item is truly optional. Unless specified otherwise, the word “optional”
refers to JDF syntax, i.e., what an Agent may include in a JDF instance, and does not
refer to a JDF Consumer option, i.e., not to what a JDF Consumer may support. If a JDF
Consumer is using a JDF parser, that parser will supply the default values indicated in
this specification, if any, for optional attributes that the Agent has omitted (indicated by
“?” in this specification.) See Section 1.3.2 Specification of Cardinality.

For features that are optional for a JDF Consumer to support, one vendor may
choose to support such an item because a particular marketplace requires it or because
the vendor feels that it enhances the product while another vendor may omit support of
that item. Similarly, one vendor of an Agent may choose to supply such an item in a
JDF instance, while another vendor may omit the same item in a JDF instance. A JDF
Consumer implementation which does not include support of a particular option must be
prepared to interoperate with an Agent implementation which does supply the option,
though with reduced functionality. In the same vein, a JDF Consumer implementation
which does include support for a particular option must be prepared to interoperate with
an Agent implementation which does not supply the option in the JDF instance.

Page 6

Page 6

Note: There is no corresponding “may not” or “need not” term for something that an implementation may
optionally omit or optionally not perform. The term “may not” sounds more like a prohibition. Also, it is better
form to put the requirement into a positive statement. For example, instead of saying that an Agent need not include
an attribute that this specification indicates with a “?” character, it is better to say that a JDF produce may omit an
attribute in a JDF instance that this specification indicates with a “?” character.

1.4.2 Conformance Requirements for JDF Entities
The subsections of this section define the general conformance requirements for the JDF entities: 1.) attributes and
attribute values, 2.) resources, 3.) processes, and 4.) combined processes.

1.4.2.1 Conformance Requirements for Support of Attributes and Attribute Values
If a JDF Consumer supports an attribute, it must support all of the values that this specification indicates are
required for a JDF Consumer to support (whether or not the attribute is required for the Agent to supply in that
context). If this specification is silent on which values are required for support of an attribute, then the JDF
Consumer must support at least one value in order to claim support for the attribute.

Attributes that are optional for an Agent to include in a JDF instance are indicated by a "?" character
following the attribute name as indicated in Section 1.3.2 Specification of Cardinality. In the description of most
optional attributes there is a "Default = ..." statement that indicates the default value that a JDF Consumer must use
if the Agent omits the optional attribute from a supplied resource in a JDF instance. Such an indicated default value
must have the same semantic meaning as if an Agent includes the attribute in the JDF instance with the same value.
If the indicated default value is the special SystemSpecified value or is indicated as "system specified", then the JDF
Consumer must provide an actual value that depends on the implementation of the JDF Consumer and which may be
configurable by a system administrator. If an optional attribute does not have a default value indicated in its
description and the JDF instance does not include the attribute, then the JDF Consumer must supply a system-
specified value.

1.4.2.2 Conformance Requirements for Support of Resources
If a JDF Consumer supports a resource, it:

1. must support all of the attributes (see Section 1.4.2.1) defined for that resource that an Agent is required to
include in the resource instance (attributes with either no marks or a “+”), and – see section 1.3.2), and

2. must support the JDF:SettingsPolicy (see section 3.1.2), JDFResource:SettingsPolicy (see section 3.7),
JDF: BestEffortExceptions, JDF:MustHonorExceptions, and JDF:OperatorInterventionExceptions
(see section 3.1.1) attributes and all of their defined values. These attributes control the policy that a JDF
Consumer must follow when it encounters unsupported settings, i.e., subelements, attributes or attribute
values in the resource.

1.4.2.3 Conformance Requirements for Support of Processes
All processes are optional for a JDF Consumer to support. However, a Device must support at least one process or a
combined process. If a JDF Consumer supports a process, it:

1. must support all of the input and output resources as described in Section 1.4.2.2 that this specification
defines for that process and

2. may make its own assumptions regarding attributes and subelements of an optional input resource (resources
with either a “?” or an “*” – see section 1.3.2) that an Agent has omitted from the process in the JDF
instance. Therefore, default attribute values defined in this specification are not guaranteed when the Agent
omits the resource from the process in the JDF instance (see section 6.1 Process Template).

3. must find the processes that it supports in a JDF instance and must ignore all other processes, independent of
the SettingsPolicy attribute for those other processes.

1.4.2.4 Conformance Requirements for Support of Combined Processes
All combined processes are optional for a JDF Consumer to support. If a JDF Consumer supports a combined process,
it:[RP12]

1. must support all of the input resources as defined in Section 1.4.2.2 that this specification defines for the first
process in the combined process node, i.e., the first process listed in the Types attribute, and

Page 7

Page 7

2. must support all of the output resources as defined in Section 1.4.2.2 that this specification defines for the last
process in the combined process.

3. may support resources that are used as exchange resources between processes in the process chain of the
combined process, i.e., resources that are both produced and consumed within the combined node.

4. must support resources in intermediate process steps that are not used as exchange resources between processes
in the process chain of the combined process.

5. may make its own assumptions regarding attributes and subelements of an optional input resource that an
Agent has omitted from the combined process in the JDF instance. Therefore, default attribute values defined
in this specification are not guaranteed when the Agent omits the resource from the combined process in the
JDF instance (see section 6.1 Process Template).

6. must search a JDF instance and find the combined process nodes that exactly match what it supports, i.e., that
match the value list of the Types attribute, and must ignore all other process nodes, independent of the
SettingsPolicy attribute for those other processes.

1.5 Data Structures
Modified in JDF 1.2
The following table describes the data structures as they are used in this specification. For more details on JDF
Schema and Datatypes, see Appendix A Encoding. Data Type entries in bold are built-in datatypes described in
detail in XML Schema Part 2: Datatypes[GCM13].Table 1-2 JDF data types

Data Type Description
boolean[GCM14] Binary-valued logic: (true | false).
CMYKColor Represents a CMYK color specification.
date[GCM15] Represents a time period that starts at midnight of a specified day and lasts for 24 hours.
dateTime[GCM16] Represents a specific instant of time. It must be a UTC-time or a local time that includes the

time zone.
double Corresponds to IEEE 754 double-precision, 64-bit floating point type [IEEE754], including the

special tokens INF and -INF. This corresponds to the standard XML double with NaN
removed. For details, see [XMLSchema].[RP17]

duration[GCM18] Represents a duration of time.
DateTimeRange Two dateTimes separated by a “~” (tilde) character that defines the closed interval of the two.

TimeRange corresponds semantically to the time interval (two time instants separated by a
slash) defined in ISO 8601.

DateTimeRange
List

Whitespace-separated list of DateTimeRanges.

DurationRange DurationRange is used to describe a range of time durations. More specifically, it
describes a time span that has a relative start and end.

DurationRangeLis
t

Whitespace-separated list of DurationRanges.

element Structured data. The specific data type is defined by the element name.
enumeration Limited set of NMTOKEN (see below).
enumerations Whitespace-separated list of enumeration[GCM19] data types.
gYearMonth
[GCM20]

Represents a specific gregorian month in a specific gregorian year.

hexBinary
[GCM21]

Represents arbitrary hex encoded binary data.

ID[GCM22] Unique identifier as defined by [XML Specification 1.0] (see Section 1.2 Document
References). Must be unique within the scope of the JDF-document.

Page 8

Page 8

Data Type Description
IDREF[GCM23] Reference to an element holding the unique identifier as defined by [XML Specification 1.0].

IDREFS[GCM24] List of references (IDREFs) separated by white spaces as defined by [XML Specification 1.0].

IntegerList Whitespace-separated list of integers[RP26].
IntegerRange Two integer[GCM27]s separated by a “~” character that define a closed interval .
IntegerRangeList Whitespace-separated list of integers and IntegerRanges.
LabColor Represents a Lab color specification.
language[GCM28] Represents a language and country code (for example, en-US) for a natural language.
matrix Whitespace-separated list of 6 numbers representing a coordinate transformation matrix.
NamedColor Represents a color definition by name. A list of valid NamedColor values is provided in

Appendix A.2.11.
NameRange Two NMTOKEN separated by a “~” character that define an interval of NMTOKEN.
NameRangeList Whitespace-separated list of NMTOKEN and NameRanges.
NMTOKEN
[GCM29]

A continuous sequence of special characters as defined by the [XML Specification 1.0].

NMTOKENS
[GCM30]

Whitespace-separated list of NMTOKEN.

 [RP31]
DoubleList[RP32]
modified in
JDF1.2

Whitespace separated list of doubles. Note that this datatype was named NumberList prior to
JDF 1.2.[RP33]

DoubleRange

modified in
JDF1.2

Two doubles [GCM34]separated by a “~” (tilde) character that defines the closed interval of the
two. Note that this datatype was named NumberRange prior to JDF 1.2.[RP35]

DoubleRangeList

modified in
JDF1.2

Whitespace-separated list of double and [GCM36] DoubleRanges. Note that this datatype was
named NumberRangeList prior to JDF 1.2.[RP37][RP38]

PDFPath[RP39] Whitespace-separated list of path operators as defined in PDF.
rectangle Whitespace-separated list of 4 numbers representing a rectangle.
refelement element or a reference to an element. Used to define candidates for inter-resource linking in

resources.
regExp Regular expression as defined by http://www.w3.org/TR/xmlschema-2/#regexs.
shape Whitespace-separated list of 3 numbers representing a 3-dimensional shape consisting of a

width, height, and length. Unless specified otherwise in the attribute Description, these three
numbers are an X-dimension, a Y-dimension, and a Z-dimension, respectively.

ShapeRange Two s[GCM40]hapes separated by a “~” (tilde) character that defines a 3-dimensional box
bounded by x1 y1 z1~x2 y2 z2.

ShapeRangeList Whitespace-separated list of shapes or ShapeRanges.
sRGBColor Represents an sRGB color specification.

integer Represents numerical integer values, including the special tokens INF and -INF. This
corresponds to the standard XML integer with INF and -INF added. For details, see
[XMLSchema].[RP25]

Page 9

Page 9

string[GCM41]
modified in
JDF1.2

Character strings without tabs or line feeds. Corresponds to the standard xml normalizedString
datatype [XMLSchema].[RP42]

telem Text elements that contain larger chunks of character data and may include tabs and [RP43]line
feeds.

text Text data contained in a telem (text element).
TransferFunction Whitespace separated list of an even number of numbers representing a set of XY coordinates

of a transfer function.
URI URI-reference. Represents a Uniform Resource Identifier (URI) Reference as defined in

Section 4 of [RFC 2396].
URL URL-reference. Represents a Uniform Resource Locator (URL) Reference as defined in

Section 4 of [RFC 2396].
xpath Represents a path to an element or attribute in an XML document.[xpath][RP44]
XYPair Whitespace-separated list of 2 numbers. Unless specified otherwise in the attribute

Description, these two numbers are an X-dimension and a Y-dimension, respectively.
XYPairRange Two XYPairs separated by a “~” (tilde) character that defines a rectangle bounded by x1 y1 ~

x2 y2

XYPairRangeList Whitespace-separated list of XYPairRanges.
XYRelation Defines the relationship between two ordered numbers. One of a set of NMTOKENs, a list of

valid values is provided in Appendix A.2.1129.[GCM45]

1.6 Units
JDF specifies most values in default units. That means you can’t use alternate units instead of the defined default
units. All measurable quantities are stated in double precision. Processors should only specify a Unit if no default
exists, such as when new resources are defined. Then the units must be based on metric units. Overriding the
default units that are defined in this table is non-standard and may lead to undefined behavior. Any exceptions are
specified in the appropriate descriptive tables.

The following table lists the units used in JDF. The representation column specifies the XML representation in
the Unit attribute of resources.

Table 1-3 Units used in JDF

Measurement Unit Representation Remarks
Length point (1/72 inch) pt Used for all except microscopic lengths (see below)
 micron mu Used in :

##ref Media/@Thickness,
##ref Perforate/@Depth,
##ref ScreeningParams/ScreenSelector/@DotSize,
##ref ShapeCuttingParams/Shape/@ShapeDepth
[RP46]

Volume liter l -
Weight gram g -
Area m2 m2 -
Resolution dpi or lpi dpi or lpi -
Paper weight g/m2 g/m2 -
Speed units/hour */h Replace the “*” in the representation with the

appropriate unit
Temperature C° (Celsius) C degree centigrade

Page 10

Page 10

Measurement Unit Representation Remarks
Angle degrees° degree -
Countable Objects 1 - Countable objects, such as sheets, have no unit

specification.

Page 11

Page 11

Chapter 2 Overview of JDF
Introduction
This chapter explains the basic aspects of JDF. It outlines the terminology that is used and is recognized by the
format, and the components of a workflow necessary to execute a printing job using JDF. Also provided is a brief
discussion of JDF process structure and the role of messaging in a JDF job.

2.1 System Components
This section defines unique terminology used in this specification for the job and workflow components of JDF.
Links to additional information is included for some terms.

2.1.1 Job Components
This terminology describes how JDF is described conceptually and hierarchically.

2.1.1.1 Jobs and Nodes
A job is the entirety of a JDF project. Each job is organized in a tree structure containing all of the information
required to complete the intended project. The information is collected logically into what is called a node. Each
node in the tree structure represents an aspect of the job to be executed.

The nodes in a job are organized in a hierarchical structure that resembles a pyramid. The node at the top of the
pyramid describes the overall intention of the job. The intermediate nodes describe increasingly process-oriented aspects
of the job, until the nodes at the bottom of the pyramid each describe a single, simple process. Depending on where in the
job structure a node resides, it can represent a portion of the product to be created, one or many processing steps, or other
job parts. For more information about jobs and nodes, see Chapter 3 Structure of JDF Nodes and Jobs.

2.1.1.2 Elements
An element is an XML syntactic construct. (See also: attributes.)
Within this document, the term refers to the structured subparts of a
JDF node. Technically, JDF nodes are themselves XML elements.
However, within this specification, “node” is used to distinguish
between the independent JDF aspect and its subparts. Furthermore,
elements that are subparts of other elements are often referred to as
subelements. There is no structural distinction between nodes,
elements and subelements; rather, the different terminology is
intended to describe the hierarchical relationships.

JDF elements are represented by two kinds of data types:
element and text element. The latter is abbreviated as telem. For
more information about elements, see Section 3.1.2 Fundamental
JDF Attributes and Elements.

2.1.1.3 Attributes
An attribute is an XML syntactic construct. (See also: elements.) Within this document, the term refers to
characteristics of elements, a subpart of a node. For instance, each node has an ID attribute that contains a unique
identifier. Attributes contain parameters of different data types, such as string, enumeration, and dateTime.

For more information about attributes, see Section 3.1.2 Fundamental JDF Attributes and Elements. Note that an
attribute with an empty (zero length) value string is illegal except when the attribute value is defined as an arbitrary string.

2.1.1.4 Relationships
The hierarchical JDF structure implies relationships between nodes and elements within a JDF tree structure. The
terms used in this document to describe these relationships are defined below, and, in some cases, include a brief
representation of the encoding that would express them.

• Parent: An element that directly contains a child element.
<Parent><Child/></Parent>

• Child: An element that resides directly in the parent element.

Need a crash course in XML?
XML101.com provides online tutorials
that non-programmers can easily follow.
The site includes examples. See
http://xml101.com/

X M L

C r a s h C o u r s e

Page 12

Page 12

• Sibling: An element that resides in the same parent element as another child element.
<Any><Sibling/><Sibling/></Any>

• Descendent: An element that is a child or a child of a child, etc.
• Ancestor: An element that is a parent or a parent’s parent, etc.

<Ancestor>
 <Any>
 <Descendent/>
 <MoreAnys>
 <Descendent/>
 </MoreAnys>
 </Any>
</Ancestor>

• Root: The single element that contains all other elements as descendents.
• Leaf: Node without further children.
• Branch: An intermediate node in a hierarchy that contains at least one child node. A branch is never a leaf.

2.1.1.5 Links
There are two kinds of links in JDF: internal links and external links. Internal links are pointers to information that
is located elsewhere in a JDF document. The data that is referenced by the link is located in a target element.
External links are used to reference objects that are outside of the JDF document itself, such as content files or color
profiles. These objects are linked using standard URLs (Uniform Resource Locators).

JDF makes extensive use of links in order to reuse information that is relevant in more than one context of the
job. The same target may be referenced by multiple links. However, no link references more than one target.

2.1.2 Workflow Component Roles
The four components required to create, modify, route, interpret and execute a JDF job are known as agents,
controllers, devices and machines. Overseeing the workflow created by these components is MIS, or Management
Information Systems. These five aspects of a JDF workflow are described in the sections that follow.

By defining these terms, this specification does not intend to dictate to manufacturers how a JDF/JMF system
should be designed, built, or implemented. The intention is to name the component mechanisms required for the
interaction of actual components in a workflow during the course of a JDF job. In practice, it is very likely that
individual system components will include a mixture of the capabilities described in the following sections. For
example, many controllers are also agents.

2.1.2.1 Machines
A machine is any part of the workflow system designed to execute a process.
Most often, this term refers to a piece of physical equipment, such as a press
or a binder, but it can also refer to the software components used to run a
particular machine. Computerized workstations, whether run through
automated batch files or whether controlled by a human worker, are also
considered machines if they have no JDF interface.

2.1.2.2 Devices
The most basic function of a device is to execute the information specified
by an agent and routed by a controller. Devices must be able to execute
JDF nodes and initiate machines that can perform the physical execution.
The communication between machines and devices is not defined in this
specification. Devices may, however, support JMF messaging in order to
interact dynamically with controllers.

2.1.2.3 Agents
Agents in a JDF workflow are responsible for writing JDF. An agent has the
ability to create a job, to add nodes to an existing job, and to modify existing
nodes. Agents may be software processes, automated tools, or even text
editors. Anything that can be used in composing JDF can be considered an

“Agents,” “Controllers,” and
“Devices” are special, logical
descriptions. You probably
won’t ever buy one. An agent
(writes and reads JDF) may be
any software tool that can parse
JDF. Controllers communicate
instructions that devices act
upon. They are functions that
may be embedded into your
software, production equipment,
or MIS systems.

Agents,
Control lers &

Devices

Page 13

Page 13

agent.

Actual implementations of devices or controllers will most often be able to modify JDF. These system components
have agent properties in the terms of this specification.

2.1.2.4 Controllers
Agents create and modify JDF information; controllers route it to the appropriate devices. The minimum
requirement of a controller is that it can initiate processes on at least one device, or at least one other slave
controller that will then initiate processes on a device. In other words, a controller is not a controller if it has
nothing to control. In some cases, a pyramid-like hierarchy of controllers can be built, with controllers at the top of
the pyramid controlling a series of lower-level controllers at the bottom. The lowest-level controllers in the
pyramid, however, must have device capability. Therefore, controllers must be able to work in collaboration with
other controllers. In order to communicate with one another, and to communicate with devices, controllers must
support the JDF file-exchange protocol and may support JMF. Controllers can also determine process planning and
scheduling data, such as process times and planned production amounts.

2.1.2.5 Management Information Systems—MIS
The overseer of the relationships between all of the units in a
workflow is known as Management Information Systems, or
MIS. MIS is, in effect, a macrocosmic controller. It is
responsible for dictating and monitoring the execution of all of
the diverse aspects of the workflow. To do this, it must remain in
contact with the actual production facilities. This can be
accomplished either in real time using JMF messaging or post-
facto using the audit records within JDF.

To allow MIS to communicate effectively with the other
workflow components, JDF supplies what is essentially a
messenger service, in the form of JMF, to run between MIS and
production. This format is equipped with a variety of message
types, ranging from simple, unidirectional notification to queries
and even commands. System designers have a great deal of
flexibility in terms of how they choose to use the messaging
architecture, so that they can tailor the processes to the
capabilities of the existing workflow mechanism. Figure 2.1
depicts how various communication threads can run between
MIS and production.

JDF also provides system components the ability to collect
performance data for each node, which can then be passed on to a
job-tracking system for use by the MIS system. These data may
be derived from the messages that the controller receives or from
the audit records in the job (for more information on audits, see
Section 3.10.1 Audit Elements). Alternatively, the completed job
may be passed to the job accounting system, which examines the
audit records to determine the costs of all the processes in the job.

2.1.2.6 System Interaction
An example of the interaction and hierarchical structure of the components considered in the preceding sections is
shown in the following figure. Single arrows indicate uni-directional communication channels and double arrows
indicate bi-directional communication.

A JDF-enabled workflow may require a
tremendous amount of information. This
could seem daunting to anyone who
expects to have to enter information into
a system, but it need not be the case.
From the style information in a layout
file, to automatically generated image
file header information, to the color
profiles tagged onto images
automatically by digital cameras or
image editing systems, a great deal of
information can be captured and passed
along from one JDF-enabled application
to another. Furthermore, where, in the
specification, there are many options,
those options can be set to a default
that represents your particular plant or
workflow. For instance, JDF provides a
variety of staple folds. If your plant only
supports a crown fold, that becomes the
default in your JDF-enabled system and
is never manually specified or keyed.

AAuuttoommaatt iinngg

DDaattaa FFlloowwss

Page 14

Page 14

Figure 2.1 Example of JDF and JMF workflow interactions

2.2 JDF Workflow
JDF does not dictate that a workflow be constructed in any prespecified way for it to be usable. On the contrary, its
flexibility has allowed JDF to model existing custom solutions for the graphic arts, as well as those yet to be
imagined. JDF is equally as effective with a simple system using a single controller-agent and device as it is with a
completely automated industrial press workflow with integrated pre- and postpress operations.

Because of workflow system construction in today’s industry, the principal subsection procedures of a printing
job—prepress, press, and postpress—remain largely disconnected from one another. JDF provides a solution for
this lack of unity. With JDF, a print job becomes an interconnected workflow that runs from job submission through
trapping, RIP’ing, filmmaking, platemaking, inking, printing, cutting, binding, and sometimes even through
shipping. JDF enables an architecture that defines the process necessary to produce each intended result and
identifies the elements necessary to complete the processes. All processes are separated into nodes, and the entire
job is represented by a tree of these nodes. All of the nodes taken together represent a desired printed product.

Each individual node in JDF is defined in terms of inputs and outputs. The inputs for a node consist of the
resources it uses and the parameters that control it. For example, the inputs in a node describing the process
parameters for imaging the cover of a brochure might include requirements for trapping, RIP’ing, and imposing the
image. The output of such a node might be a raster image.

Unless they represent the absolutely final product, resources that are produced by one node are in turn modified or
consumed by subsequent nodes. Therefore, the output of the process described above—the raster image—becomes one
of the input resources for a node describing the printing process for the brochure. This input resource would be joined
in the node by other input resources such as inks, press sheets, plates, and a set of parameters that indicate how many
sheets should be produced. The output would be a set of printed press sheets that in turn would become the input
resource for postpress operations such as folding and cutting. And so on until the brochure is completed.

Page 15

Page 15

This system of interlinked nodes effectively unites the prepress, press, and postpress processes, and even extends the
notion of where a job begins. A JDF job, like any printing job, is defined by the original intent for the end product.
The difference between a JDF job and a generic printing job, however, is that JDF allows the entire job, from
prepress through postpress, to be defined up front. All of the resources and processes necessary to produce an entire
printed product can be identified and organized into nodes before the first prepress process is set in motion.
Furthermore, the product intent specification can be extremely broad or extremely detailed, or anywhere in between.
This means that a job may be so well defined before production begins that the system administrator only has to set
the wheels in motion and let the job run its course. It may also mean that the person submitting the job has only a
general idea of what the final product will look like and that modifications to the intent will be made along the way,
depending on the course of the job.

For example, the person submitting the job specification for the brochure described above may know that she
wants 400 copies, that she wants it done on a four-color press with no spot colors, that the cover will be on a
particular paper stock and the contents on another, that the binding will be stapled, and that she requires the job in
two weeks. Another person might know only that he wants the pages she’s designed to be put into some sort of
brochure form, although she doesn’t know exactly what. Either person’s request can be translated into a JDF
product intent node that will eventually branch into a tree structure describing each process required to complete the
brochure. In the first example, the prepress, press, and postpress processes will be well defined from the start. In
the second example, information will be included as it is gathered. The following sections describe the way in which
nodes can combine to form a job.

2.2.1 Job Structure
JDF jobs consist of a set of nodes that specify the production steps needed to create the desired end product. The
nodes, in addition to being connected through inputs and outputs, are arranged in a hierarchical tree structure.
Figure 2.2, below, shows a simple example of a tree of nodes.

Figure 2.2 JDF tree structure

The following table provides a hypothetical breakdown of the nodes in the tree structure shown above:

Table 2-1 Information contained in JDF nodes, arranged numerically

Node # Meaning
1 Entire book
2 Cover
3 Contents
4 Production of cover
5 Production of all color pages

Page 16

Page 16

Node # Meaning
6 Production of all black-and-white pages
7 Cover production process 1
8 Cover production process 2
9 Cover production process 3

10 Cover Finishing process
11 RIP’ing for color pages
12 Plate making for color pages
13 Printing for color pages
14 Color page finishing process
15 RIP’ing for black-and-white pages
16 Printing for black-and-white pages on a digital press
17 Binding process for entire book

The uppermost nodes (1, 2, & 3) represent the product intent in general terms. These nodes describe the desired end
product and the components of that product, which, in this case, are the cover and the content pages. As the tree
branches, the information contained within the nodes gets more specific. Each subnode defines a component of the
product that has a unique set of characteristic, such as different media, different physical size, or different color
requirements. The nodes that occur in the middle of the tree (4, 5, & 6) represent the groups of processes needed to
produce each component of the product. The nodes that occur closest to the bottom of the tree (7 – 17) each
represent individual processes.

In this example, there are two subcomponents of the job, the cover and the contents, each with distinct
requirements. Therefore, two nodes—nodes 2 and 3—are required to describe the elements of the job in broad
terms. Within the content pages there are some black-and-white pages and some color pages. Since fabricating
each requires a different set of processes, further branching is necessary. The following table arranges the nodes in
groups according to the processes they will be executing:

Table 2-2 Information contained in JDF nodes, arranged by group

Process Group Node # Meaning
 17 Assemble book
Cover 2 Cover
 4 Cover assembly processes
 7 Cover production process 1
 8 Cover production process 2
 9 Cover production process 3
 10 Finishing process for cover
Contents 3 Contents
Color Pages 5 Production of all color pages
 11 RIP’ing for color pages
 12 Plate making for color pages
 13 Printing for color pages
 14 Color page finishing
Black-and-white pages 6 Production of all black-and-white pages
 15 RIP’ing for black-and-white pages

Entire book 1 Entire book

Page 17

Page 17

 16 Printing for black-and-white pages on a digital press

This hierarchical structure is discussed in more detail in the following section.

2.3 Hierarchical Tree Structure and Networks in JDF
Output resources of JDF nodes are often the input resources for
other JDF nodes. Many nodes cannot begin executing until all
of their resources are complete and ready. This means that the
nodes execute in a well defined sequence. One process follows
the next. For example, a process for making plates will
produce, as output resources, press plates that are required by a
printing process.

In the hierarchical organization of a JDF job, nodes that
occur higher in the tree represent high level, more abstract
operations, while lower nodes represent more detailed process
operations. More specifically, nodes near the top of the tree
may represent only intent regarding the components or
assemblies that make up the product, while the leaf nodes
provide explicit instructions to a device to perform some
operation. Figure 2.3 shows an example of a hierarchical structure.

Figure 2.3 Example of a hierarchical tree structure of JDF nodes

In addition to the hierarchical structure of the node tree, sibling nodes are linked in a process chain by their
respective resources. In other words, an output resource of one node ends up representing the input resource of the
following node (as represented in Figure 2.4). This interrelationship is known as resource linking.

With resource linking, complex networks of processes can be formed. Figure 2.4 displays an alternate
representation of the process described in Figure 2.3. Whereas Figure 2.3 represents a hierarchical structure, Figure
2.4 shows an example of the linking mechanism of the same job. Note that there are many possible process
networks that map to the same node hierarchy.

In the real world, if you wanted to scan a photo,
you would probably go to the prepress
department to find a scanner. JDF uses this
same common-sense approach to organization.
Processes (nodes) are organized into a
hierarchy (tree). Consider your own operations.
If you were to group your departments,
equipment, and processes into an “org chart,”
what would it look like?

Trees & Nodes

Page 18

Page 18

Figure 2.4 Example of a process chain linked by input and output resources

In JDF, the linking of processes is not explicitly specified. In other words, nodes are not arranged in an abstract
chronology, dictating, for example, that the trapping node must come before the RIP’ing node. Rather, the links are
implicitly defined in the exchange of inputs and outputs. Resource dependencies form a network of processes, and
the sequence of process execution—that is, the routing of processes—can be derived from these dependencies. One
resource dependency might have the possibility of multiple process routing scenarios. It is up to MIS to define the
proper solution to meet local constraints.

The agent or set of agents employed by MIS to write the JDF job must be familiar with these local constraints.
They must take into account factors such as the control abilities of the applications that complete the prepress
processes, the transport distance between the prepress facility and the press itself, the load capabilities of the press,
and the time requirements for the job. All of the factors taken together build a process network representing the
workflow of production. To aid agents in defining the workflow, JDF provides the following four different and
fundamental types of process routing mechanisms, which may be combined in any way:

1. Serial processing that is subsequent production and consumption of resources as a whole, represented by a
simple process chain.

2. Overlapping processing that is simultaneous production and consumption of resources by pipes.
3. Parallel processing that involves the splitting and sharing of resources.
4. Iterative processing that is a circular or back and forward processing for developing resources by repeated activity.

These mechanisms are discussed in greater detail in Section 4.3 Execution Model.

2.4 Role of Messaging in JDF
JDF provides a container to define a job. Messaging language in JMF, defined in Chapter 5, provides a method to
generate snapshots of job status and to interactively manipulate elements of a workflow system.

JMF is specifically designed for communication between the production system controller and the work centers
or devices with which it interacts. It provides a series of queries and commands to check the status of processes and,
in some cases, to dictate the next course of action. For example, the KnownDevices query allows the controller to
determine what processes can be executed by a particular device or workcenter. These processes are likely to be
determined at system initialization time. The SubmitQueueEntry messages [RP47]provide a means for the
controller to submit a job ticket to individual work centers or devices. And the Status, Resource and Occupation
messages allow the device or work center to communicate quasi real-time1 processing status to a controller.
Depending on the system configuration, the message handler may choose to record status changes in the history
logs. The status message allows the controller to request status updates from the controller.

JDF also provides mechanisms to define recipients for individual messages on a node-by-node basis. This
enables controllers to define the aspects and the parts of jobs that they want to track. For more information about
messaging, see Chapter 5 JDF Messaging with the Job Messaging Format.

1 Real-time is the time-scale typically associated with macro-cosmic production control systems. JMF is not
intended for real-time, lower level machine control.

Page 19

Page 19

2.5 Coordinate Systems in JDF
This chapter explains how coordinate systems are defined and used in JDF. It also shows how the matrices are used
to specify a certain transformation and how these matrices can be used to transform coordinates from one coordinate
system to another coordinate system. In addition it clarifies the meaning of terms like Top or Left.

2.5.1 Introduction
During the production of a printed product it often happens that one object is placed onto another object. During
imposition, for example, single pages and marks (like cut, fold, or register marks) are placed on a sheet surface.
Later, at image setting, a bitmap containing one separation of a sheet surface is imposed on a piece of film. In a
following step, the film is copied to a printing plate, which then is mounted on a press. In postpress, the printed
sheets are gathered on a pile. The objects involved in all these operations have a certain orientation and size when
they are put together. In addition one has to know where to place one object on the other.

The position of an object, e.g., a cut mark, on a plane can be specified by a two-dimensional coordinate. Every
digital or physical resource has its own coordinate system. The origin of each coordinate system is located in the lower
left corner, i.e., the X coordinate increases from left to the right and the Y coordinate increases from bottom to top.

Origin

X

Y

P

Figure 2.5 Standard coordinate system

Each page contained in a PDL file has its own coordinate system. In the same way a piece of film or a sheet of paper
has a coordinate system. Within JDF each of these coordinate systems is called resource coordinate system.

If a process has more than one input resources with a coordinate system, it is necessary to define the relation
between these input coordinate systems. Therefore, a [RP48]process coordinate system is defined for each process.
JDF tickets are written assuming an idealized Device that is defined in the process coordinate system for each
process that the Device implements. A real Device must map the idealized process coordinate system to its own
device coordinate system. [RP49]

The coordinate systems of the input resources are mapped to the process coordinate system. Each of those
mappings is defined by a transformation matrix, which specifies how a coordinate (or position) of the input
coordinate system is transformed into a coordinate of the target coordinate system. See Section 2.5.6 Homogeneous

Coordinates for mathematical background information. In the same way the mapping from the process coordinate
system to the coordinate systems of the output resources is defined. The process coordinate system is also used to
defined the meaning of terms like Top or Left, which are used as values for parameters in some processes.

ResourceLink:Transformation

process coordinate system

resource coordinate system
of input resource 2

ResourceLink:Transformation

resource coordinate system
of input resource 1

ResourceLink:Transformation

resource coordinate system
of input resource n

...

resource coordinate system
of output resource 2

resource coordinate system
of output resource 1

resource coordinate system
of output resource n

...

identity transformation identity transformation identity transformation

Page 20

Page 20

Figure 2.6. Relation between resource and process coordinate systems

It is important that no implicit transformations, e.g. rotations, [RP50]are assumed if the dimensions of the input
resources of a process do not match each other. Instead every transformation (e.g., a rotation) must be specified
explicitly by using the Orientation or Transformation attribute of the corresponding ResourceLink. The same
applies also to other areas in JDF, e.g., the LayoutPreparation process. A ##ref FitPolicy element may define a
policy for implied transformations.[RP51]

2.5.2 How and Where Coordinates and Transformations Are Used/Defined in JDF
The following data types are used for the specification of coordinates and transformation:
• XYPair “612 792”

• Number “20.7”

• Rectangle “0 0 595 843” (Order of elements is “lower-left x, lower-left y, upper-right x, upper-right
y” or “left, bottom, right, top”.)

• Matrix “1 0 0 1 30.0 235.3” (The ordering of elements is defined in 2.5.6 Homogeneous
Coordinates)

• Named orientations “Rotate180” or “”Flip90”

Coordinates and transformations are used throughout JDF, to include:

Intent Resources, such as:
• LayoutIntent specifies size of finished product
• MediaIntent specifies size of media
• InsertingIntent specifies rotation and offset

Process Resources, such as:
• Component specifies coordinate system
• CutBlock specifies cut block coordinate system
• FoldingParams specifies folding operations

2.5.3 Coordinate Systems of Resources and Processes
Each physical input Resource, e.g., Component of a process has, by default, its own coordinate system, which is
called [RP52]resource coordinate system. The coordinate system also implies a specific orientation of that
Resource. On the other hand there is a coordinate system that is used to define various process-specific
parameters. This coordinate system is called [RP53]process coordinate system.

2.5.3.1 Resource Coordinate Systems
The resource coordinate system is defined…

2.5.3.1.1 Layout Coordinate System
Effects of mirroring, e.g. plates.
Interaction of PDL CS and Layout CS, e.g. FitPolicy, SizePolicy[RP54]

2.5.3.1.2 Component Coordinate System
The descriptions of Component-specific attributes use some terms whose meaning depends on the culture in which
they are used. For example, different cultures mean different things when they refer to the “front” side of a magazine.
Other terms, such as binding, are defined by the production process and therefore do not depend on the culture.
Whenever possible, this specification endeavors to use culture-independent terms. In cases where this is not

Page 21

Page 21

possible, Western style (left-to-right and top-to-bottom writing) is assumed. Please note that these terms may have a
different meaning in other cultures (such as those writing from right to left).

Product front edge

Product top
d

Product bottom

Binding edge
(spine)

Book-like product viewed from first page (front side)

Product front
side

Product front edge

Binding edge
(spine)

Calendar-like product viewed from first page (front side)

Product front
side

Figure 2.7 Terms and definitions for components

Components w.o. Binding Edge
Inherit from Layout
Component with Binding Edge
Spine defines left edge?
Corner Staple defines top left ?
CS of Bundles[RP55]

2.5.3.1.3 ExposedMedia Coordinate System
Plates

2.5.3.1.4 Media Coordinate System
Landscape vs. Portrait
Preprinted, prepunched- Front assume single sided preprint=front

2.5.3.2 Process Coordinate Systems
The process coordinate system is defined…
Stress IDEALIZED vs Device CS.
Rotation of 2 input resources (e.g. Media and Layout)
Linear (straight through) coordinat systems
Default rotation from short to long edge? IPP defines 90 deg counterclockwise rotation from portrait to landscape.
RefereceEdge in Folding
Folding output? -
Binding Output – “Mother Component” defines CS

2.5.3.3 Coordinate Systems in Combined processes
The default coordinate systems for Combined processes are defined to be identical to the coordinate system of a
ProcessGroup node that links each individual process with no Orientation or Transformation specified for any of the
exchange resources. Thus the process coordinate system within a combined process is identical to the idealized process
coordinate system of the individual process step.
The coordinate system transformation of exchange resources is specified with a ResourceLink to the exchange
resource that has a Usage=”Intermediate”. One important consequence of this description is that the Orientation or
Transformation of the original input ResourceLink does NOT implicitly apply to the second and further combined
process steps. If the orientation is expected to be identical in all combined process steps, the process must explicitly
specify the Orientation or Transformation of the intermediate components.

Effects of CTMs in inputs on the Reference edge.

• Add “Intermediate” resource links that define reference edge for combined process worksteps.

Page 22

Page 22

• define mapping of reference edge to orientation.

2.5.3.4 Coordinate System Transformations
It is often necessary to change the orientation of an input Resource before executing the operation. This can

be done by specifying a transformation matrix. It is stored in the Orientation or Transformation attribute of the
ResourceLink. This provides the ability to specify different matrices for the individual resources of a process.

The following table shows some matrices that can be used to change the orientation of a physical Resource.
Most of the transformations require the X- (w) and the Y-dimension (h) of the Component as specified in the
Dimension element. If these are unknown, it is still possible to define a general orientation in the Orientation
attribute of the ResourceLink. The naming of the attribute values indicates the number of degrees of rotation in
counterclockwise direction and the ‘Flip’ names indicate a subsequent flip round the X-axis. Thus Rotate90 and
Flip90 specify that the original Y axis as represented by the spine is on top. In the case of Flip90, the Component
is additionally flipped front to back around the X-axis. An additional translation is applied in some cases to insure
that both source and target coordinate systems have the origin in the lower left corner. The following table displays
the orientation examples that result in a target in upright, face up position[RP56]

Page 23

Page 23

Table 2-3 Matrices and names used to describe the orientation of a Component

Orientation Name Source
Coordinate System

Transformation Matrix
According Action

Target
Coordinate System

Rotate0

x

y

 1 0 0 1 0 0
No Action

x

y

Rotate180

x

y

 -1 0 0 -1 w h
180° Rotation

x

y

Rotate90

x

y

 0 1 -1 0 h 0
90° Counterclockwise

Rotation x

y

Rotate270

x

y

 0 -1 1 0 0 w
270° Counterlockwise

[RP57]Rotation
x

y

Flip180

x

y

 -1 0 0 1 w 0

180° Rotation +
Flip around X[RP58]

x

y

Flip0

x

y

 1 0 0 -1 0 h
Flip around X[RP59]

x

y

Flip270

x

y

 0 1 1 0 0 0
270° Counterclockwise
Rotation + Flip around

X[RP60]
x

y

Flip90 x

y

 0 -1 -1 0 h w
90° CounterClockwise
Rotation + Flip around

X[RP61] x

y

Page 24

Page 24

2.5.4 Product Example: Simple Brochure
To illustrate the use of coordinate systems in JDF, a simple saddle stitched brochure with eight pages is used as an
example. The brochure is printed on two sheets with front and back. The two sheets are then folded, collected on a
saddle, and saddle stitched. Finally the brochure is cut with a three-side trimmer. The following table lists the JDF
processes used for the production of the simple brochure.

 Input Resources Process Output Resources

Layout
RunList (Document)
RunList (Marks)

Imposition RunList

RunList Interpreting RunList(InterpretedPDLData)
RunList(InterpretedPDLData)
Media
RenderingParams

Rendering RunList (rasterized ByteMaps)

RunList (rasterized ByteMaps) Screening RunList (Bitmaps)
ImageSetterParams
Media (Film)
RunList (Bitmaps)

ImageSetting (to Film) ExposedMedia (Film)

ExposedMedia (Film) ContactCopying ExposedMedia (Plate)
ExposedMedia (Plate)
ConventionalPrintingParams

ConventionalPrinting Component [RP62]

FoldingParams
Component

Folding Component

CollectingParams
Component

Collecting Component

SaddleStitchingParams
Component

SaddleStitching Component

TrimmingParams
Component

Trimming Component

At imposition, the layout describes a signature with two sheets, each having a front and a back surface. On each
surface, two content objects, i.e., pages, are placed.

8 1

Sheet 1, Front

2 7

Sheet 1, Back

6 3

Sheet 2, Front

4 5

Sheet 2, Back

Figure 2.8 Layout of simple saddle stitched brochure (product example)

Each surface has its own coordinate system, in which a surface contents box is defined. This coordinate system is
also referred to as the Layout coordinate system because the Surface, Sheet, and Signature elements are
defined within the hierarchy of the Layout resource. The content objects are placed by specifying the CTM
attribute relative to the surface contents box. If the position of an object within a page is given in the page coordinate
system, this coordinate can be transformed into a position within the surface coordinate system:

 []0tentsBoxSurfaceContentsBoxSurfaceConCTMPP YlowerleftXlowerleftPagePageSurface +×=

Page 25

Page 25

Please note, that the width and height of the surface are not known at this point.

8Origin

X

1

Y

Surface contents box
Content object (page 1)

Content object (page 8)

Surface

Figure 2.9 Surface coordinate system

The sheet coordinate system is identical with the coordinate system of the front surface. This means that no
transformation is needed to convert a coordinate from one system to the other. Instead, the coordinates are valid (and
equal) in both coordinate systems. The relation between the coordinate system of the front and the back surfaces
depends on the value of the Sheet:LockOrigins attribute. The sheet coordinate system is also identical with the
signature coordinate system, which in turn is identical with the coordinate system of the imposition process.

The output resource of the imposition process is a run list. Each element of the run list has its own coordinate
system, which is identical with the corresponding signature coordinate system. The interpretation, rendering and
screening processes do not affect the coordinate systems. This means that the coordinate systems of all these
processes are identical.
At the image setting process, the digital data is set onto film. The process coordinate system is defined by the media
input resource. The width and height of the media are defined in the Media:Dimension attribute. The position of
the signatures (as defined by the run list input resource) on the film is defined by the
ImageSetterParams:CenterAcross attribute.

The coordinate system of the conventional and digital printing process is called press coordinate system. It is
defined by the press: the X-axis is parallel to the press cylinder, and the Y-axis is going along the paper travel. Y = 0
is at begin of print, X = 0 is at the left edge of the maximum print area. The Front side of the press sheet faces up –
towards the positive Z-axis.

The relation between the layout coordinate system and the press coordinate system is defined by the CTM
attributes of the corresponding TransferCurveSet elements located in the TransferCurvePool.

x

y
orthogonal to cylinder axis

direction of
paper travel

begin of print

maximum print area

Page 26

Page 26

Figure 2.10. Press coordinate system used for sheet-fed printing[RP63]

x

y
orthogonal to cylinder axis

direction of
web travel

reel width

cylinder circum
ference

begin of print

ribbon

maximum print area of
one single impression

Figure 2.11 Press coordinate system used for web printing

The output of the printing process, e.g., a pile of printed sheets, is described as a Component resource in JDF. The
coordinate system of the printed sheets is defined by the transformation given in the TransferCurveSet:CTM
attribute (where Name = Paper).

Each of the two sheets is folded in a separate folding process. In this example, the orientation of the sheets is
not changed before folding. This can be specified by setting the Orientation attribute of the input resource to
Rotate0 or by setting the Transformation attribute to “1 0 0 1 0 0”. The folding process changes the coordinate
system. In this example the origin of the coordinate system is moved from the lower left corner of the flat sheet
(input) to the lower left corner of the folded sheet (output), i.e., it is moved to the right by half of the sheet width.

1
X

Y

3
X

YSheet 1 Sheet 2

Figure 2.12 Coordinate systems after Folding (product example)

The two folded sheets are now collected. In this example, the orientation of the folded sheets is not changed before
collecting. This can be specified by setting the Orientation attribute of the input resource to Rotate0 or by setting
the Transformation attribute to “1 0 0 1 0 0”. The collecting process does not change the coordinate system.

1
X

Y

Page 27

Page 27

Figure 2.13 Coordinate systems after Collecting (product example)

The two collected and folded sheets are now trimmed to the final size of the simple brochure. In this example, the
orientation of the collected and folded sheets is not changed before trimming. This can be specified by setting the
Orientation attribute of the input resource to Rotate0 or by setting the Transformation attribute to “1 0 0 1 0 0”. The
trimming process changes the coordinate system: the origin is moved to the lower left corner of the trimmed product.

In looking at the whole production process, a series of coordinate systems is being involved. The relation between
the separate coordinate systems is specified by transformation matrices. This allows transformation of a coordinate
from one coordinate system to another coordinate system. As an example, note the position of the title on page 1 of the
product example in Figure 2.13. By applying the first transformation, this position can be converted into a position of
the surface (or layout) coordinate system. This position can then be converted into the paper coordinate system by
applying (in this order) the Film, Plate, Press, and Paper transformations stored in the TransferCurvePool.

From now on, every process is using components as input and output resources. The resource link of each input
and output component contains a Transformation attribute or an Orientation attribute. The Transformation
attribute may be [RP64]used if the width and the height of the component are known or a non-orthogonal rotation is
required[RP65]. Otherwise the Orientation attribute must be used to specify a change of the orientation, e.g., an
orthogonal[RP66] rotation.

Since the folding process changes the coordinate system depending on the fold type, the transformations
specified in the resource links are not sufficient to transform a position given in the paper coordinate system to a
position in the coordinate system of the folded sheets, i.e. the resource coordinate system of the output component of
the folding process. An additional transformation depending on the fold type and details of the individual folds
[RP67]has to be applied. The corresponding transformation matrix is not explicitly specified[RP68] in the JDF file.

The collecting process does not change the coordinate system. Therefore, only the transformations specified in
the resource links of the input and output resources, i.e. components, have to be applied.

The trimming process again changes the coordinate system depending on the trimming parameters. Therefore, a
transformation depending on the trimming parameters has to be applied in addition to the transformations specified
in the resource links. The matrix for the additional transformation (depending on the trimming parameters) is not
explicitly specified[RP69] in the JDF file.

After having applied all transformations mentioned above, the resulting coordinate specifies the position of the
title in the coordinate system of the final product.

Page 28

Page 28

Surface:SurfaceContentsBox and CTMPage

surface coordinate system = layout coordinate system
= process coordinate system of Imposition, Interpreting, Rendering,
Screening

TransferCurveSet:CTM (Name = Film)

film coordinate system
= process coordinate system of ImageSetting. TBD add Ignored in a CtP or
DigitalPrinting environment

TransferCurveSet:CTM (Name = Plate)

plate coordinate system
= process coordinate system of ContactCopying. TBD add Ignored in a
DigitalPrinting environment

TransferCurveSet:CTM (Name = Press)

press coordinate system
= process coordinate system of ConventionalPrinting

TransferCurveSet:CTM (Name = Paper)

paper coordinate system
= resource coordinate system of output component of ConventionalPrinting
= resource coordinate system of input component of Folding

page coordinate system
= resource coordinate system of input component

process coordinate system of Folding

ResourceLink:Transformation (or ResourceLink:Orientation)

Transformation according type of fold and
ResourceLink:Transformation (or ResourceLink:Orientation)

resource coordinate system of output component of Folding
= resource coordinate system of input component of Collecting

process coordinate system of Collecting

ResourceLink:Transformation (or ResourceLink:Orientation)

ResourceLink:Transformation (or ResourceLink:Orientation)

resource coordinate system of output component of Collecting
= resource coordinate system of input component of Trimming

process coordinate system of Trimming

ResourceLink:Transformation (or ResourceLink:Orientation)

resource coordinate system of output component of Collecting
= coordinate system of final product

Transformation according trimming parameters and
ResourceLink:Transformation (or ResourceLink:Orientation)

Figure 2.6 Examples of Transformations and Coordinate Systems in JDF.[RP70]

2.5.5 General Rules
The following rules summarize the use of coordinate systems in JDF:

• Every individual piece of material (film, plate, paper) has a resource coordinate system.

• Every process has a process coordinate system.

Page 29

Page 29

• Terms like top, left, etc., are used with respect to the process coordinate system in which they are used and are
independent of orientation, i.e., landscape or portrait, and the human reading direction.

• The coordinate system of each input component is mapped to the process coordinate system.

• The coordinate system may change during processing, e.g., in Folding.

• The description of a product in JDF is independent of particular machines used to produce this product. When
creating setup information for an individual machine, it might be necessary to compensate for certain machine
characteristics. At printing, for example, it might be necessary to rotate a landscape job, because the printing
width of the press is not large enough to run the job without rotation.

2.5.6 Homogeneous Coordinates
A convenient way to calculate coordinate transformations in a two-dimensional space is by using so-called
homogeneous coordinates. With this concept, a two-dimensional coordinate P=(x,y) is expressed in vector form as
[x y 1]. The third element “1” is added to allow the vector being multiplied with a transformation matrix describing
scaling, rotation, and translation in one shot. Although this only requires a 2*3 matrix (as it is used in PostScript for
example), in practice 3*3 matrices are much more common, because they can be concatenated very easily. Thus, the
third column is set to “0 0 1”.

=

1fe
0dc
0ba

Trf would in JDF be written as “a b c d e f”

Some often used transformation matrices are

=

100
010
001

Trf identity transformation

=

1dydx
010
001

Trf translation by dx, dy

−=

100
0cossin
0sincos

Trf ϕϕ
ϕϕ

 rotation by ϕ degrees counter-clockwise

Transforming a point
In this example, the position P given in the coordinate system A is transformed to a position of coordinate system B.
The relation between the two coordinate systems is given by the transformation matrix Trf.

Page 30

Page 30

Origin of
 coordinate

 system A

X

Y

P

X

Y

Origin of
coordinate
 system B

Figure 2.7 Transforming a point (example)

[]110030PA = PA = (30, 100)

TrfPP AB ×=

[]

×=

16040
010
001

110030PB in JDF, Trf is written as “1 0 0 1 40 60”

[]116070PB = PB = (70, 160)

Page 31

Page 31

Chapter 3 Structure of JDF Nodes and Jobs
Introduction
This chapter describes the structure of JDF nodes and how they interrelate to form a job. As described in Section
2.1.1 Job Components, a node is a construct, encoded as an XML element, that describes a particular part of a JDF
job. Each node represents an aspect of the job: 1.) in terms of a process necessary to produce the end result, such as
imposing, printing, or binding; 2.) in terms of a product that contributes to the end result, such as a brochure; or 3.)
in terms of some combination of the previous two. In short, a node describes a product or a process.

In addition to describing the structure of an individual JDF node, this chapter examines in what way those nodes
interact to form a coherent job structure. The interrelation of nodes can be divided into two categories: hierarchical
and lateral. Hierarchical interrelation is the nested structure of parent nodes that contain child nodes. The visual
correlative of this structure resembles a family tree, with a single node describing the entire job at the top, and a
number of nodes at the bottom that each describe only one specific process. JDF-supported, leaf-level processes are
described in Chapter 6 Processes.

Lateral interrelation, on the other hand, is the interrelation that occurs between nodes as a result of resource
linking. Resource linking is the result of the transformation of inputs into outputs, which in turn may become inputs
of other nodes. It also occurs when nodes share the same resource. The combination of hierarchical nesting of
nodes and lateral linking allows complex process networks to be constructed. In a very simple case, however, a JDF
file may contain only one node.

The hierarchical structure of a JDF job achieves a functional grouping of processes. For example, a job may be
split into a prepress node, a press node, and a finishing node that contain the respective process nodes. Each and
every node in turn contains attributes that represent various characteristics of that node. Nodes also contain
subelements of certain types, such as resources, process information, customer information, audits, logging
information, and other JDF nodes. Some elements, such as those that deal with customer information, generally
occur only in the root structure, while other elements, such as resources, may occur anywhere in the tree. Where the
elements can reside depends on their type and their usage scope.

This chapter describes the elements, subelements, and attributes commonly found in JDF nodes, and provides
the characteristics necessary to understand where each belongs and how it is used. Many of these characteristics are
presented in tables, and each of these tables includes the following three columns:

• Name—Identifies the element being discussed.
• Data Type—Refers to the data type, all of which are described in Section 0. Only the data types element or

telem (which is short for text element) are applied to elements. All other types are attributes.
• Description—Provides detail about the element or attribute being discussed.

The JDF workflow model is based on a resource/consumer model. JDF nodes are the consumers that are linked by
input resources and output resources. The ordering of siblings within a node, however, has no effect on the
execution of a node. All chronological and logical dependencies are specified using ResourceLinks, which are
defined in Section 3.8 Resource Links.

Figure 3.1 is a schematic structure of the JDF node type. In this figure, generic attributes and elements (see
Section 3.1.1 Generic Contents of JDF Elements) are inserted only in the JDF root node. The element types that are
displayed in this figure are described in the subsequent sections. Abstract data types are surrounded by a dashed
line. Types derived from the abstract data type Resource are shown schematically in Figure 3.4.

Page 32

Page 32

Figure 3.1 Structure of the JDF Node

Page 33

Page 33

3.1 JDF Nodes
JDF nodes are encoded as XML elements. Nodes, in turn, contain various attributes and further subelements,
including nested JDF nodes.

Many of the tables in this section contain a fourth column that provides further details about the valid range of
the attribute/element content, how the content is inherited by descendents (children, grandchildren, etc.), and where
the attribute/element may reside in the JDF tree. The heading for this column is “Scope,” which is short for “Scope
and Position.” The following abbreviations are defined:

D) Descendent: The content is valid locally within its node and in all descendent nodes, unless a descendent
contains an identical attribute that overrides the content.

L) Local: The content is only valid locally, within the node where the content is defined.
R) Root: The attribute may only be specified in the root node. An exception from the localization only in the

root node occurs if the spawning and merging mechanism for independent job tickets is applied as described
in Section 4.4 Spawning and Merging.

All attributes and elements listed in subsequent chapters should be considered local, unless otherwise noted.

3.1.1 Generic Contents of JDF Elements
JDF contains a set of generic structures that may occur in any element of a JDF or JMF document. Some of these
are provided as containers for human-readable comments and descriptions and are described below. Others define
the usage policy for attributes and subelements.

Table 3-1 Generic Contents of elements

Name Data Type Description
BestEffortException
s ?
New in JDF 1.1

NMTOKENS The names of the attributes in this element that are to have the best effort
policy applied when JDF:SettingsPolicy or JDFResource:SettingsPolicy
is not BestEffort. A JDF Consumer must support this attribute and must
support any value of this attribute, so that an Agent can specify any
exceptions to the SettingsPolicy in a JDF instance. The job will be
processed by substituting or ignoring the attributes or attribute values that are
not supported.
BestEffortExceptions is ignored if the current value of SettingsPolicy =
BestEffort.

CommentURL ? URL URL to an external, human-readable description of the element.
DescriptiveName ? string Human-readable descriptive name, e.g., a resource, process, or product.
MustHonorExceptio
ns ?
New in JDF 1.1

NMTOKENS The names of the attributes in this element that are to have the must honor
policy applied when JDF:SettingsPolicy or JDFResource:SettingsPolicy
is not MustHonor. A JDF Consumer must support this attribute and must
support any value of this attribute, so that an Agent can specify any
exceptions to the SettingsPolicy in a JDF instance. The job will be rejected
if any of these attributes or attribute values are not supported.
MustHonorExceptions is ignored if the current value of SettingsPolicy =
MustHonor.

Page 34

Page 34

Name Data Type Description
OperatorInterventio
nExceptions ?
New in JDF 1.1

NMTOKENS The names of the attributes in this element that are to have the operator
intervention policy applied when JDF:SettingsPolicy or
JDFResource:SettingsPolicy is not OperatorIntervention. A JDF
Consumer must support this attribute and must support any value of this
attribute, so that an Agent can specify any exceptions to the SettingsPolicy
in a JDF instance. The job will be paused and the operator will be queried if
any of these attributes or attribute values are not supported. If a device has no
operator intervention capabilities, OperatorIntervention is treated as
MustHonor.
OperatorInterventionExceptions is ignored if the current value of
SettingsPolicy = OperatorIntervention.

SettingsPolicy ?
New in JDF 1.2

enumeration The policy for this element indicates what happens when unsupported
settings, i.e., subelements, attributes or attribute values, are present in the
resources. A JDF Consumer must support this attribute and all of the
defined values so that an Agent can depend on the JDF Consumer following
the policy requested by the Agent in a JDF instance.
Possible values are:
BestEffort – Substitute or ignore unsupported attributes, attribute values,
default attribute values, or elements and continue processing the job.
MustHonor – Reject the job when (1) any unsupported attributes, attribute
values, or elements are present or (2) any omitted attributes have an
unsupported default value defined in this specification.
OperatorIntervention – Pause job and query the operator when (1) any
unsupported attributes, attribute values, or elements are present or (2) any
omitted attributes have an unsupported default value defined in this
specification. If a device has no operator intervention capabilities,
OperatorIntervention is treated as MustHonor.
If not specified, SettinsPolicy is inherited from the parent element.[RP71]

Comment * Telem Any human-readable text. The Comment element is different from an XML
comment <!-- XML Comment -->. The JDF comment is meant for display in
a user interface whereas the XML comment is used to add developers
comments to the underlying XML.

The comment fields may contain a language attribute to support internationalization.

Table 3-2 Contents of the Comment element

Name Data Type Description
Attribute ?
New in JDF
1.1

NMTOKEN Name of the attribute in this element that the comment refers to. The name should
include the prefix, if the attribute is in a non-JDF namespace.

Box ? rectangle The rectangle that is associated with the comment. The coordinate system of the
rectangle is the same as the coordinate system defined in the Path attribute.

Language ? language Possible values are defined in IETF RFC 1766.
If none is specified, the system specified value is assumed.

Page 35

Page 35

Name ? NMTOKEN A name that defines the usage of a comment. For example, it may determine whether
two comments should fill two distinct fields of a user interface. Predefined values
include:
Description – Human readable description, which is required if the Comment
element is required in a given context, as is the case in the Notification element (see
Table 3-32 Contents of the Notification element).
Orientation – Description of the orientation of a physical resource.
Default = Description, which is required if the Comment element may become
required, as is the case in the Notification element (see Table 3-32 Contents of the
Notification element.

Path ? PDFPath Description of the area that the comment is associated with in the coordinate system of
the element where the path resides.
In the case of physical resources, Layout resources and resources that are related to
Layout, Path is defined within the coordinate system of the resource in which it
resides. For example, if the comment is inserted in an ExposeMedia resource that
describes a plate, the path refers to the plate coordinate system.
In all other cases, it is defined in the process coordinate system of the JDF node that
contains the element that Comment containing Path is defined in.
Note that there are cases where a coordinate system is not available and therefore
defining Path is not recommended, e.g. CustomerInfo.

 text Body of the comment. Note that whitespace is preserved only as generic whitespace in
XML. Thus carriage returns, line feeds or tabs may be lost.[RP72]

The following figure shows the structure of the generic content defined above.

Figure 3.2 Structure of JDF Generic Contents

3.1.2 Fundamental JDF Attributes and Elements
The following table presents the attributes and elements likely to be found in any given JDF node. Three of the
attributes in Table 3.3, below, are required, and must appear in every JDF node. Although the rest are designated as
optional, they are optional in the sense that they are required only under certain circumstances, not that they may be
left out if desired. The circumstances under which they are required are described in the Description column.

The most important of the attributes is the Type attribute, which defines the node type. The value of the Type
attribute defines the product or process the JDF node represents. As is detailed in Section 3.2 Common Node Types,
all nodes fall into one of the following four general categories: process, process group, combined processes and
product intent. Each node is identified as belonging to one of these categories by the value of its Type attribute, as
described in the table below. For example, if Type = Product, the node is a product intent node. Each of these
categories is described in greater detail in the sections that follow.

Page 36

Page 36

Table 3-3 Contents of a JDF node

Name Data Type Scope Description
Describes the activation status of the node. Allows for a range of
activity, including deactivation and testrunning. Possible values,
in order of involvement from least to most active, are:
Inactive – The node and all its descendents must not be executed
or tested. This value is set if only certain parts of a JDF job should
be executed or tested or if the node contains information required
by other processes (as is the case with independent spawning and
merging, described in Section 4.4.5).
Informative – The JDF ticket is for information only. If a job is
Informative, it must not be processed. Jobs with Activation=
Informative will generally be sent to an operator console for
preview but are still completely under the control of an external
controller. When a JDF ticket is supplied to a customer as proof of
execution, its Activation should also be Informative. When a new
Job ticket with an identical ID attribute and a higher Activation is
submitted to a Device, that JDF job ticket must replace the JDF job
ticket that was submitted to the Device with an Activation of
Informative.[RP73]
Held – Execution has been held. If a job is Held, it must not be
processed until its Activation is changed to Active. TestRun – The
node requests a test run check by an controller or a device. This
does not imply that the node should be automatically executed
when the check is completed. Descendents of a node that is being
test run are not to be considered Active.
TestRunAndGo – Similar to TestRun, but requests a subsequent
automatic start if the testrun has been completed
successfully.Active – Default value. The node maybe executed as
soon as all inputs are Available or Complete and all outputs are not
incomplete.
A child node inherits the value of the Activation attribute from its
parent. The value of Activation corresponds to the least active
value of Activation of any ancestor, including itself. Therefore, if
any ancestor has an Activation of Inactive, the node itself
isInactive. If no ancestor is Inactive but any ancestor is
Informative, the node is Informative unless the node itself is
Inactive.If no ancestor is Informative but any ancestor is TestRun,
the node is TestRun unless the node itself is Informative. If no
ancestor has a value of Inactive or TestRun and any ancestor has a
value of TestRunAndGo, the node has a value of TestRunAndGo
unless that node is Inactive or TestRun, and so on.
The following table illustrates the actions to be applied to a node
depending on the value of Activation.
Activation Test Node Execute Node
Inactive false false
Informative false false
Held false false
Active false true
TestRun true false

Activation ?
Modified in JDF 1.1

enumeration special
see
text
(D)

TestRunAndGo true true

Page 37

Page 37

Name Data Type Scope Description
Category ? NMTOKEN D Named category of this node. Used when Type=”Combined” or

Type=”ProcessGroup” to identify the general node category. This
allows processors to identify the general purpose of a node without
parsing the Types field. For instance a RIP for final output and
RIP for proof process may have identical Types attribute values
but will have Category=”ProofRIPping” or Category
=”RIPping” respectively. Values include:
Binding: Binding of a bound product.
DigitalPrinting: A RIP&Print run on a digital printer that produces
final output.
Folding: Folding of a product.
Printing: A press run that produces final output.
Proofing: Generation of a proof.
ProofRIPping: RIP process for generating a proof.
RIPping: RIP process for generating final output.
PrePress: General prepress.
PostPress: General postpress.[RP74]

ICSVersions ? NMTOKENS D ICS Versions that this JDF node complies with. The format is
<ICSName>-<Version>. For instance:
DigitalPrinting_LVL1-1.0: ICS for Digital Printing, level 1,
version 1.0.[RP75]

ID ID L Unique identifier of a JDF node. This ID is used to refer to the
JDF node.

JobID ? string D Job identification used by the application that created the JDF job.
Typically, a job is identified by the internal order number of the
MIS system that created the job.

JobPartID ? string D Identification of a JDF Node within a job, used by the application
that created the job. Typically, this is internal to the MIS system
that created the job and coincides with a process or set of
processes.

MaxVersion ? string D Maximum JDF version to be written by an Agent that modifies this
node. If not specified, an Agent that processes the node may write
any version it is capable of writing.[RP76]

ProjectID ?
 New in JDF 1.1

string D Identification of the project context that this JDF belongs to. Used
by the application that created the JDF job.

RelatedJobID ? string D Job identification of a related job. Used to identify the JobID of a
previous run of this job or job with very similar settings. May be
used to retrieve non-JDF device specific settings from a data store.

RelatedJobPartID ? string D Job identification of a related job part. Used to identify the
JobPartID of a previous run of this job or job with very similar
settings. May be used to retrieve non-JDF device specific settings
from a data store.[RP77]

SpawnID ?
New in JDF 1.1

NMTOKEN D Identification of a spawned part of a job. Typically this is used to
map Audits and messages to a spawned processing step in the
workflow.

SettingsPolicy ? enumeration D SettingsPolicy has been moved to any JDF element (##ref table
generic contents of elements). [RP78]

Page 38

Page 38

Name Data Type Scope Description
New in JDF 1.1

Promoted in JDF 1.2
Status
Modified in JDF 1.1

enumeration L Identifies the status of the node. Possible values are:
Waiting – The node may be executed, but it has not completed a
test run.
TestRunInProgress – The node is currently executing a test run.
Ready – As indicated by the successful completion of a test run, all
ResourceLinks are correct, required resources are available, and
the parameters of resources are valid. The node is ready to start.
FailedTestRun – An error occurred during the test run. Error
information is logged in the Notification element, which is an
optional subelement of the AuditPool element described in Section
3.10.
Setup –The process represented by this node is currently being set
up.
InProgress – The node is currently executing.
Cleanup – The process represented by this node is currently being
cleaned up.
Spawned – The node is spawned in the form of a separate spawned
JDF.
The status Spawned can only be assigned to the original instance
of the spawned job. For details, see Section 4.4.
Stopped – Execution has been stopped. If a job is Stopped,
running may be resumed later. This status may indicate a break, a
pause, maintenance, or a breakdown—in short, any pause that does
not lead the job to be aborted.
Completed – Indicates that the node has been executed correctly,
and is finished.
Aborted – Indicates that the process executing the node has been
aborted, which means that execution will not be resumed again.
Pool – Indicates that the node processes partitioned resources and
that the Status varies depending on the partition keys. Details are
provided in the StatusPool element of the node.
Derivation of the Status of a parent node from the Status of child
nodes is non-trivial and implementation-dependent.

StatusDetails ?
New in JDF 1.2

string L Description of the status phase that provides details beyond the enumerative
values given by the Status attribute. For a list of supported values, see
Appendix G.[RP79]

Template ?
New in JDF 1.1

boolean R Indicates that this JDF ticket is a template that is used to generate
JDFs but must not be [RP80]exchanged as a job description. Default
= “false”.

TemplateID ?
New in JDF 1.2

string D Name or ID that identifies a JDF template. Can be used to
differentiate between various templates. If Template=false,
TemplateID identifies the template that was used to generate this
JDF.[RP81]

TemplateVersion ?
New in JDF 1.2

string D Version of the JDF template. Can be used to differentiate between
various template versions. If Template=false, TemplateVersion
identifies the version of the template that was used to generate this

Page 39

Page 39

Name Data Type Scope Description
JDF.[RP82]

Type NMTOKEN L Identifies the type of the node. Any JDF process name is a valid
type. The processes that have been predefined are listed in
Chapter 6, although the flexibility of JDF allows anyone to create
processes. In addition to these, there are three values which are
described in greater detail in the sections that follow:
Combined
ProcessGroup
Product: Identifies a Product Intent node.

xsi:type ? NMTOKEN L Informs schema aware validators of the JDF Node type definition
that the containing node is to be validated against. The schema for
this version includes definitions for all the JDF Nodes defined in
Section 6. If omitted then a general definition for JDF Nodes will
be used.
See Appnedix ##ref 3.1 for more information.[RP83]

Types ?
Modified in JDF
1.2[RP84]

NMTOKENS L List of the Type attributes of the nodes that are combined to create
this node. This attribute is required if Type = Combined, optional
when Type=”ProcessGroup” and is ignored if Type equals any
other value. For details on using Combined nodes, see Section
3.2.3.
If the Types attribute is specified, that JDF node must not contain
child JDF nodes.
The special tokens:
RIPping
Finishing
ProofImaging[RP85]
are defined to allow an MIS to roughly specify finishing, proofing
and RIPping without knowing the details of the respective
combined processes. [RP86]For details on using ProcessGroup
nodes, see Section ##ref 3.2.2.

Version ?
Modified in JDF 1.1
and 1.2

enumeration RD Text that identifies the version of the JDF node. Possible values
are:“1.1” and “1.2”. The Version attribute is required in the JDF
root node, but optional in child nodes. The version of a JDF Node
is defined by the highest version of the JDF Node itself or any
child JDF Node or element or any directly or indirectly linked
resources. For details on JDF versioning see chapter ##ref
3.12.[RP87]

xmlns?
New in JDF 1.1

URI RD JDF supports use of XML namespaces. The namespace must be
declared in the root JDF element. For details on using namespaces
in XML, see http://www.w3.org/TR/REC-xml-names/. For
versions 1.1 to 1.x of JDF xmlns, the value of xmlns must be
http://www.CIP4.org/JDFSchema_1_1

AncestorPool ? element R If this element is present, the current JDF node has been spawned,
and this element contains a list of all ancestors prior to spawning.
See Section 3.3.

AuditPool ? element L List of elements that contains all relevant audit information.
Audits are intended to serve the requirements of MIS for
evaluation and invoicing. See Section 3.10.

Page 40

Page 40

Name Data Type Scope Description
CustomerInfo ? element D Container element for customer-specific information. See Section

3.4.
JDF * element L Child JDF nodes. The nesting of JDF nodes defines the JDF tree.

In contrast to the elements above, JDF child nodes are not
contained in a list element.

NodeInfo ? element L Container element for process-specific information such as
scheduling and messaging setup. Scheduling affects the planned
times when a node should be executed. Actual times are saved in
the AuditPool. See Section 3.5 for more details.

ResourceLinkPool ? element L List element for ResourceLink elements, which describe the input
and output resources of the node. See Section 3.8 for more details.

ResourcePool ? element L1 List element for resources. See Section 3.6 for more details.
StatusPool ? element L Lists the details of a nodes partition dependent Status if the

Status of the node is “Pool”.

3.2 Common Node Types
As was noted in the preceding section, the Type of a node can fall into four categories. The first is comprised of the
specific processes of the kind delineated in Chapter 6, known simply as process nodes. The other categories are
made up of three enumerative values of the Type attribute: ProcessGroup, Combined, and Product, which is also
known as product intent. These three node types are described in this section.

The figure below, which was also presented as an illustration in Chapter 2, represents a theoretical job hierarchy
comprised of Product nodes, ProcessGroup nodes, and nodes that represent individual processes. The diagram is
divided into three levels to help illustrate the difference between the three kinds of nodes, but these levels do not
dictate the hierarchical nesting mechanism of a job. Note, however, that an individual process node may be the
child of a product intent node without first being the child of a process group node. Likewise, a process group node
may have child nodes that are also process groups.

1 Resources are unique and cannot be overwritten by descendents. Rather, they can only be used by descendents.
An exception to this is described in Section 4.4.5 Case 5: Spawning and Merging of Independent Jobs. In this case,
resources may also be used by a parent node.

Page 41

Page 41

Figure 3.3 Job hierarchy with process, process group, and product intent nodes

3.2.1 Product Intent Nodes
Except in certain specific circumstances, the agent assigned to begin writing a JDF job will very likely not know
every process detail needed to produce the desired results. For example, an agent that is a job-estimating or job-
submission tool may not know what devices can execute various steps, or even which steps will be required.

If this is the case, the initiating agent creates a set of top-level nodes to specify the product intent, without
providing any of the processing details. Subsequent agents then add nodes below these top-level nodes to provide
the processing details needed to fulfill the intent specified.

These top-level nodes have a Type attribute value of Product to indicate that they do not specify any
processing. All processing needed to produce the products described in these nodes must be specified in Process
nodes, which exist lower in the job hierarchy.

Product nodes include intent resources that describe the end results the customer is requesting. The intent
resources that have already been defined for JDF are easily recognizable, as they contain the word “intent” in their
titles. Examples include FoldingIntent and ColorIntent. All intent resources share a set of common
subelements, which are described in Section 7.1.1 Intent Resource Span Subelements. These resources do not
attempt to define the processing needed to achieve the desired results; instead they provide a forum to define a range
of acceptable possibilities for executing a job.

Each Product Intent node should contain at most one ResourceLink for one type of intent resource. If multiple
product parts with different intents are required, each part has its own Product Intent node. DeliveryIntent
resources are a notable exception. Specifying multiple DeliveryIntent resources effectively requests multiple
options of a quote. For more information about product intent, see Section 4.1.1 Product Intent Constructs.

3.2.2 Process Group Nodes
Intermediate nodes in the JDF job hierarchy—i.e., nodes 4, 5, and 6 in Figure 3.3—describe groups of processes.
The Type attribute value of these kinds of nodes is ProcessGroup. These nodes are used to describe multiple steps
in a process chain that have common resources or scheduling data.
Since the agent writing the job has the option of grouping processes in any way that seems logical, custom workflows
can be modeled flexibly. Process group nodes may contain further process group nodes, individual process nodes, or a
mixture of both node types. Sequencing of process group nodes should be defined by linking resources of the
appropriate leaves or, if the nature of the interchange resources is unknown, by linking PlaceHolder resources.

The higher the level of the process group nodes within the hierarchy, the larger the number of processes the
group contains. A high level process group node might include, for example, prepress, finishing, or printing
processes. Lower level process groups, on the other hand, define a set of individual steps that are executed as a

Page 42

Page 42

group of steps in the individual workflow hierarchy. For example, all steps performed by one designated individual
may be grouped in a lower level process group.

3.2.2.1 Use of the Types attribute in ProcessGroup nodes
ProcessGroup nodes may contain an optional Types attribute that allows a controller, e.g. an MIS system, to define
a set of processes that must be executed without defining the exact structure or grouping of these processes into
individual JDF nodes. ProcessGroup nodes with a non-empty Types attribute must not be executed. An Agent that
receives the ProcessGroup node must define the exact structure of the ProcessGroup node by executing the
following steps until the ProcessGroup/@Types list is empty:
Step 1: Select at least one of the process types defined in Types and remove these values from the ProcessGroup
Types list.
Step 2: Create one new JDF child node within the ProcessGroup that either
 A: Has a Type attribute matching the removed Types entry value
 B: Is a Combined or ProcessGroup Node that contains the removed Types value or values.
Step 3: Link the appropriate resources that were predefined in the original ProcessGroup to the newly created sub
JDF(s). The ResourceLink may either be retained or deleted from the ProcessGroup. If it is retained, the
ProcessGroup must not be executed before the Resource that is linked by that ResourceLink is available. Otherwise,
the ProcessGroup may be executed, even if the Resource is not available.
Step 4: Add missing types to the sub JDF where appropriate. For instance, the original ProcessGroup Types
attribute list may have specified “Interpreting Rendering” or simply “RIPping” but the newly created RIP node
would specify “Interpreting Rendering Trapping Screening”.
Step 5: Finalize the newly created sub JDF by adding any missing Resources and Resource attributes. Note that
newly created resources must not be linked to the ProcessGroup but only to the sub-JDF.
An Agent must instantiate all of the processes in the Types attribute before releasing the JDF. The ordering of the
processes in the Types attribute must be maintained when instantiating the child nodes. JDF ProcessGroup nodes
that contain both a non-empty Types attribute and child JDF nodes are NOT supported.[RP88]

3.2.2.2 ResourceLink Structure in ProcessGroup nodes
The contents of the ResourceLinkPool of a ProcessGroup node define the Resources that must be available for

the ProcessGroup itself to be executed.[RP89]
The following example shows the ResourceLink structure for a ProcessGroup in-line finishing node. Note the

presence of intermediate component links that link the individual processes. The corresponding Components have
been omitted for brevity.

<JDF Type = ”ProcessGroup” ID = ”J1”>
<!—the resource links in the ProcessGroup define the resources that must be
available for the ProcessGroup to be submitted -->
 <ResourceLinkPool>
<!-- printed output components -->
 <MediaLink Usage="Input" rRef="L2"/>
<!-- gathered output components -->
 < ComponentLink Usage="Output" rRef="L5"/>
 </ResourceLinkPool>
 <JDF Type = ”DigitalPrinting” ID = ”J2”>
 <ResourceLinkPool>
<!-- digital printing parameters -->
 <DigitalPrintingParamsLink Usage="Input" rRef="L1"/>
<!-- input sheets -->
 <MediaLink Usage="Input" rRef="L2"/>
<!-- printed output components -->
 <ComponentLink Usage="Output" rRef="L3"/>
 </ResourceLinkPool>
 </JDF>
 <JDF Type = ”Gathering” ID = ”J3”>
 <ResourceLinkPool>
<!-- gathering parameters -->
 <GatheringParamsLink Usage="Input" rRef="L4"/>

Page 43

Page 43

<!-- printed output components -->
 < ComponentLink Usage="Input" rRef="L3"/>
<!-- gathered output components -->
 < ComponentLink Usage="Output" rRef="L5"/>
 </ResourceLinkPool>
 </JDF>
 <JDF Type = ”Stitching” ID = ”J4”>
 <ResourceLinkPool>
<!-- Stitching parameters -->
<StitchingParamsLink Usage="Input" rRef="L6"/>
<!-- gathered output components -->
 <ComponentLink Usage="Input" rRef="L5"/>
<!-- stitched output components -->
 <ComponentLink Usage="Output" rRef="L7"/>
 </ResourceLinkPool>
 </JDF>
</JDF>

3.2.3 Combined Process Nodes
The processes described in Chapter 6 Processes define individual workflow steps that are assumed to be executed by a
single-purpose device. Many devices, however, are able to combine the functionality of multiple single-purpose
devices and execute more than one process. For example, a digital printer may be able to execute the Interpreting,
Rendering, and DigitalPrinting processes. To accommodate such devices, JDF allows processes to be grouped
within a node whose Type = Combined. Such a node must also contain a Types attribute, which in turn contains an
ordered list of the Type values of each of processes that the node specifies. The ordering of the process names in the
Types attribute is significant and specifies the ordering in which the processes are assumed to be executed.
Furthermore, ResourceLink elements in Combined nodes should specify a CombinedProcessIndex attribute in
order to define the subprocess to which the resource belongs. Combined nodes are leaf nodes and must not contain
further nested JDF nodes.

A device with multiple processing capabilities is able to recognize the Combined node as a single unit of work
that it can execute. Therefore, all resources for each of the subtasks that define the Combined node and that are
explicitly defined as ResourceLinks must be available before the node can be executed. In addition, all input and
output resources that are consumed and produced externally by the process must be specified in the
ResourceLinkPool element of the node. This includes all required Parameter resources as well as the initial input
resources and final output resources. Intermediate resources that are internally produced and consumed, on the other
hand, need not be specified.

In a combined process node, the information defined by the various resources linked as input to the various
subprocesses are logically available to all processes of the combined node. In situations where the parameter
resource of more then one subprocess specifies the mapping of sheet surface content to media, the subprocess that
specifies such a mapping that is defined earliest in the Types attribute list must be used, and any other mappings
specified by any down-stream subprocess Resource must be ignored.

3.2.3.1 Combined Process Nodes with Multiple Processes of the Same Type
A Combined node may contain multiple instances of the same process type, e.g. Types = “Cutting Folding
Cutting”. In this case, the ordering and mapping of links processes is significant – the parameters of the first
Cutting process are most likely to be different from those of the second Cutting process. Mapping is accomplished
using the CombinedProcessIndex attribute in the respective ResourceLink.

<JDF Type = ”Combined” Types = ”Cutting Folding Cutting” ID = ”J1”>
<!—Resources (incomplete…) -->
 <ResourcePool>
<!-- parameters of the first Cutting Process-->
 <CuttingParams ID="L1"/>
<!-- Folding parameters -->
 <FoldingParams ID="L2"/>

Page 44

Page 44

<!-- parameters of the third Cutting Process-->
 <CuttingParams ID="L3"/>
<!-- raw input components -->
 <Component ID="L4"/>
<!-- completed output components -->
 <Component ID="L5"/>
 </ResourcePool>

<!-- Links -->
 <ResourceLinkPool>
<!-- parameters of the first Cutting Process-->
 <CuttingParamsLink Usage="Input" CombinedProcessIndex="0" rRef="L1"/>
<!-- Folding parameters -->
 <FoldingParamsLink Usage="Input" CombinedProcessIndex="1" rRef="L2"/>
<!-- parameters of the first Cutting Process-->
 <CuttingParamsLink Usage="Input" CombinedProcessIndex="2" rRef="L3"/>
<!-- raw input components -->
 <ComponentLink Usage="Input" rRef="L4"/>
<!-- completed output components -->
 <ComponentLink Usage="Output" rRef="L5"/>
 </ResourceLinkPool>
</JDF>

3.2.3.2 Examples of Combined Process Nodes
The following example of the ResourceLinkPool of a JDF node describes digital printing with in-line finishing and
includes the same processes as the previous ProcessGroup example. The node requires the parameter resources and
consumable resources of all three processes as inputs, and produces a completed booklet as output. The
intermediate printed sheets and gathered piles are not declared, since they exist only internally within the device and
cannot be accessed or manipulated by an external controller.

<JDF Type = “Combined” Types = ”DigitalPrinting Gathering Stitching” ID =
“J1”>
 <ResourceLinkPool>
<!-- digital printing parameters -->
<DigitalPrintingParamsLink Usage="Input" CombinedProcessIndex="0" rRef="L1"/>
<!-- gathering parameters -->
 <GatheringParamsLink Usage="Input" CombinedProcessIndex="1" rRef="L4"/>
<!-- Stitching parameters -->
 <StitchingParamsLink Usage="Input" CombinedProcessIndex="2" rRef="L6"/>
<!-- input sheets -->
 <MediaLink Usage="Input" CombinedProcessIndex="0" rRef="L2"/>
<!-- stitched output components -->
 <ComponentLink Usage="Output" CombinedProcessIndex="2" rRef="L7"/>
 </ResourceLinkPool>
</JDF>

3.2.4 Process Nodes
Process nodes represent the very lowest level in a job hierarchy. They must not contain further nested JDF nodes, as
every process node is a leaf node. These nodes define the smallest work unit that may be scheduled and executed
individually within the JDF workflow model. In Figure 3.6 below, nodes 7-17 represent process nodes. The various
individual process node types are specified in Chapter 6 Processes.

3.3 AncestorPool
When a job is spawned, an AncestorPool is created in the spawned job to
identify its parents and grandparents. This allows storing of information about job
context in a spawned node as well as allowing the job to be correctly merged with
its parent after it is completed. The AncestorPool element is only required in the

An ancestor pool contains
the job’s context when the
job is spawned. This
includes scheduling
information and optionally
customer information.

Ancestor
Pool

Page 45

Page 45

root of a spawned job. Spawning and merging is described in Section 4.4 Spawning and Merging. The AncestorPool
element contains an ordered list of one or more Ancestor elements, which reflect the family tree of a spawned job.
Each Ancestor element identifies exactly one ancestor node. The ancestor nodes reside in the original job where the
job with the AncestorPool has been spawned off. The position of the Ancestor element in the ordered list defines the
position in the family tree. The first element in the list is the original root element, the last element in the list is the
parent, the last but one the grandparent, and so on. The following table lists the contents of an AncestorPool element.

Table 3-4 Contents of the AncestorPool element

Name Data Type Description
Ancestor + element Ordered list of one or more Ancestor elements, which reflect the family tree of a

spawned job.
Part *
New in JDF 1.1

element List of parts that this node was spawned with. Used in case of parallel Spawning of a
node. This defines the aggregated Parts in case of nested spawns, i.e. a logical AND of
all spawn Parts. For instance, the JDF that was spawned with a Sheetname partition
and subsequently spawned with a Separation would contain both the SheetName and
Separation within the Part.

An Ancestor element may contain read only copies of all the attributes of the node that it represents with the
exception of the ID attribute, which must be copied to the NodeID attribute of that Ancestor element. Ancestor
elements cannot, however, contain further subelements except for read only copies of CustomerInfo and NodeInfo.
The attributes of Ancestor elements are described in

Table 3-5 Attributes of the Ancestor element

Name Data Type Description
Activation ? enumeration Copy of the Activation attribute from the ancestor node. For details, see Table

3-3.
FileName ? URL The URL of the JDF file where the ancestor node resided prior to spawning.
JobID ? string Copy of the JobID attribute from the ancestor node. For details, see Table 3-3.
JobPartID ? string Copy of the JobPartID attribute from the original ancestor node. For details,

see Table 3-3.
MaxVersion ?
New in JDF 1.2

string Copy of the MaxVersion attribute from the original ancestor node. For details,
see Table 3-3.[RP90]

NodeID NMTOKEN 2 Copy of the ID attribute of the ancestor node.
ProjectID ? string Identification of the project context that this JDF belongs to. Used by the

application that created the JDF job.
SpawnID ?
New in JDF 1.1

NMTOKEN Copy of the SpawnID attribute of the ancestor node.

Status ? enumeration Copy of the Status attribute from the original ancestor node. For details, see
Table 3-3.

StatusDetails ? string Copy of the StatusDetails attribute from the original ancestor node. For
details, see Table 3-3.[RP91]

Type ? NMTOKEN Copy of the Type attribute from the original ancestor node. For details, see
Table 3-3.

Types ? NMTOKENS Copy of the Types attribute from the original ancestor node. For details, see
Table 3-3.

2 The data type is NMTOKEN and not IDREF because the ID does not reside in the spawned job. The
corresponding ID element resides in the original job.

Page 46

Page 46

Name Data Type Description
Version ? string Copy of the Version attribute from the original ancestor node. For details, see

Table 3-3.
CustomerInfo ?
New in JDF 1.1

element Reference copy of the CustomerInfo element from the original node. For
details, see Table 3-3.

NodeInfo ?
New in JDF 1.1

element Reference copy of the NodeInfo element from the original node. For details,
see Table 3-3.

3.4 Customer Information
The CustomerInfo element contains information about the customer who orders the job. Usually, this element is
specified in the uppermost node of a job (that is, the root node), although it is also valid in lower nodes in situations
such as model subcontracting. Table 3-6 Contents of the CustomerInfo element describes the contents of this
element.

Table 3-6 Contents of the CustomerInfo element

Name Data Type Description
BillingCode ? string A code to bill charges incurred while executing the node.
CustomerID ? string Customer identification used by the application that created the job. This is

usually the internal customer number of the MIS system that created the job.
CustomerJobName ? string The name that the customer uses to refer to the job.
CustomerOrderID ? string The internal order number in the system of the customer. This number is

usually provided when the order is placed and then referenced on the order
confirmation or the bill.

rRefs ? IDREFS Array of IDs of any elements that are specified as ResourceRef elements.
In this version it will be the IDREF of a ContactRef3.

Company ?
Deprecated in JDF 1.1

refelement Resource element describing the business or organization of the contact. In
JDF 1.1 and beyond, Company affiliation of Contacts is specified in
Contact.

Contact *
New in JDF 1.1

refelement Resource element describing contacts associated with the customer. There
must be one Contact which has ContactTypes including “Customer”.

CustomerMessage* element Element that describes messages to the customer when certain conditions are
met.

Table 3-7 Contents of the CustomerMessage element

Name Data Type Description
 . [RP92]

3 rRefs also enables spawning and merging if CustomerInfo is extended with private ResourceRef elements.

Customer information within JDF can provide a bridge between your
CRM systems and production. How could JDF be used to automate
the process of reporting to customers on the status of their jobs?

Creating Better
Job Tracking & Reporting

Page 47

Page 47

ComChannel * refelement Communication channel for the desired CustomerMessage.
In case it is not specified the CustomerMessage will be provided
according to system predefined information. The
CustomerMessage must be sent to each
ComChannel specified.[RP93]

Language ?

language Language to be used for the CustomerMessage. Possible values are
defined in IETF RFC 1766.
If none is specified, the system specified value is assumed.

3.5 Node Information
The NodeInfo element contains information about planned scheduling and message routing. It allows MIS to plan,
schedule and invoice jobs or job parts. Table 3-8 Contents of the NodeInfo element describes the contents of the
NodeInfo element.

Table 3-8 Contents of the NodeInfo element

Name Data Type Description
CleanupDuration ? duration Estimated duration of the clean-up phase of the process.
CostType ? enumeration Whether or not the execution of this JDF is chargeable to the customer or not.

One of:
Chargeable
Nonchargeable
If not specified, the cost type is unknown.[RP94]

DueLevel ? enumeration Description of the severity of a missed deadline. Possible values are:
Unknown – Default value. Consequences of missing the deadline are not
known.
Trivial – Missing the deadline has minor or no consequences.
Penalty – Missing the deadline incurs a penalty.
JobCancelled – The job is cancelled if the deadline is missed.

End ? dateTime Date and time at which the process is scheduled to end.
FirstEnd ? dateTime Earliest date and time at which the process may end.
FirstStart ? dateTime Earliest date and time at which the process may begin.
IPPVersion ?
New in JDF 1.1

XYPair A pair of numbers indicating the version of the IPP protocol to use when
communicating to IPP devices. The X value is the major version number.
Default = system specified

JobPriority ?
New in JDF 1.1

integer The scheduling priority for the job where 100 is the highest and 1 is the
lowest. Amongst the jobs that can be printed, all higher priority jobs should
be printed before any lower priority ones. If one of the deadline oriented
attributes, e.g., FirstStart or LastEnd and JobPriority are specified, the
deadline oriented attributes must be honored before considering JobPriority.
Default = 50.

LastEnd ? dateTime Latest date and time at which the process may end. This is the deadline to
which DueLevel refers.

LastStart ? dateTime Latest date and time at which the process may begin.
NaturalLang ?
New in JDF 1.1

language Language selected for communicating attributes. If not specified, the
operating system language is assumed.

MergeTarget ? boolean If MergeTarget = true and this node has been spawned, it must be merged
with its direct ancestor by the controller that executes this node. The path of

Page 48

Page 48

Name Data Type Description
Deprecated in JDF 1.1 the ancestor is specified in the last Ancestor element located in the

AncestorPool of this node. It is an error to specify both MergeTarget and
TargetRoute in one node.
Default = false, which means that some other controller will take care of
merging.
Note: MergeTarget has been deprecated in JDF 1.1 because avoiding
concurrent access to the ancestor node is ill defined and cannot be
implemented in an open system without proprietary locking mechanisms.

Route ? URL The URL of the controller or device that should execute this node. If Route
[RP95]is not specified, the routing controller must determine a potential
controller or device independently. For details, see Process Routing

rRefs ? IDREFS Array of IDs of any elements that are specified as ResourceRef elements.
In this version it may be the IDREF of a JMFRef or EmployeeRef4.

SetupDuration ? duration Estimated duration of the setup phase of the process.
Start ? dateTime Date and time of the planned process start.
TargetRoute ? URL The URL where the JDF should be sent after completion. If TargetRoute is

not specified, it defaults to the input Route attribute of the subsequent node
in the process chain. If this is also not known, the JDF should be sent to the
processor default output URL. JMF/QueueSubmissionParams/@ReturnURL
takes precedence over NodeInfo/@TargetRoute of the JDF that is
processed.

TotalDuration ? duration Estimated total duration of the process, including setup and cleanup.
WorkType ? enumeration Definition of the work type for the execution this JDF, i.e. whether or not this

JDF relates to originally planned work, an alteration or rework. One of
Original: Standard work that was originally planned for the job
Alteration: Work done to accommodate change made to the job at the request of
the customer
Rework: Work done due to unforeseen problem with original work (bad plate,
resource damaged, etc.)
If not specified, the work type is undefined.

WorkTypeDetails
?

string Definition of the details of the work type for the execution this JDF, i.e. why the
work will be done.
For WorkType=”Alteration”, values may include
CustomerRequest: The customer requested change(s) requiring the work.
InternalChange: Change was made for production efficiency or other internal
reason.
For WorkType=”Rework”, values may include
ResourceDamaged: A resource needs to be created again to account for a
damaged resource (damaged plate, etc.)
EquipmentMalfunction: Equipment used to produce the resource malfunctioned,
resource must be created again.
UserError: Incorrect operation of equipment or incorrect creation of resource
requires creating the resource again.
If not specified, the work type details are unknown.[RP96]

BusinessInfo? element Container for business related information. It is expected that JDF will be
utilized in conjunction with other eCommerce standards, and this container is

4 rRefs also enables spawning and merging if NodeInfo is extended with private ResourceRef elements.

Page 49

Page 49

Name Data Type Description
provided to store the eCommerce information within JDF in case a workflow
with JDF as the root level document is desired. When JDF is used as part of
an eCommerce solution such as PrintTalk, the information given in the
envelope document overrides the information in BusinessInfo.

Employee ? refelement The internal administrator or supervisor that is responsible for the product or
process defined in this node.

JMF * element Represents JMF query messages that set up a persistent channel, as described
in Section 5.2.2.3 Persistent Channels. These message elements define the
receiver that is designated to track jobs via JMF messages. These message
elements should be honored by any JMF-capable controller or device that
executes this node. When these messages are honored, a persistent
communication channel is established that allows devices to transmit, for
example, the status of the job as JMF Signals.

NotificationFilter * element Defines the set of Notification elements that should be logged in the
AuditPool. This provides a logging method for devices that do no not support
JMF messaging. For details of the NotificationFilter element, see 5.5.1.1
Events.

3.6 StatusPool
The StatusPool describes the Status of a JDF node that processes partitioned resources. StatusPool elements are
only valid if the node’s Status=”Pool”, otherwise the node’s Status is valid for all parts, regardless of the contents
of StatusPool. It may contain PartStatus elements that define the node’s status with respect to specific partitions.
It is an error to define PartStatus elements that reference identical or overlapping parts within one StatusPool.
Partitioned resources are described in Section 3.9.2 Description of Partitionable Resources.

Table 3-9 Contents of the StatusPool element

Name Data Type Description
Status ? enumeration Identifies the status of the node. The Status of individual partitions may be

overwritten by PartStatus elements. Possible values are all valid Status attributes
of a JDF node except “Pool” are valid as defined in Table 3-3 Contents of a JDF
node, Status.

StatusDetails ?
New in JDF 1.2

string Description of the status that provides details beyond the enumerative values
given by the Status attribute. The StatusDetails of individual partitions may be
overwritten by PartStatus elements. For a list of supported values, see
Appendix G.[RP97]

PartStatus * element Element that defines the node’s status for a set of parts.

The following table describes the PartStatus element.

Table 3-10 Contents of the PartStatus element

Name Data Type Description
Status ? enumeration Identifies the status of an individual part of the node. Overwrites the Status

attribute defined in StatusPool. Possible values are identical to those defined
in: Status

Page 50

Page 50

Name Data Type Description
StatusDetails ?
New in JDF 1.2

string Description of the status that provides details beyond the enumerative values
given by the Status attribute. Overwrites the StatusDetails attribute defined
in StatusPool. Possible values are identical to those defined in: For a list of
supported values, see Appendix G.[RP98]

Part 5
Modified in JDF 1.1,
1.2

element Specifies the selected part that the PartStatus is valid for. This must be a leaf
or intermediate partition of the Node’s output resource. Thus, if the node’s
output resource is partitioned by Side and Separation, The Part may contain
either Side only or Side and Separation, but not Separation only.

3.7 Resources
Resources represent the “things” that are produced or consumed by processes. They may be physical items such as
inks, plates, or glue; electronic items such as files or images; or conceptual items such as parameters and device
settings. Processes describe what resources they input or output through ResourceLinks, discussed in Section 3.8
Resource Links. By examining the input and outputs of a set of processes, it is possible to determine process
dependencies, and therefore job routing.

All resources are contained in the ResourcePool element of a node. The ResourcePool element is described
in the following table.

Table 3-11 Contents of the ResourcePool element

Name Data Type Description
Resource * element List of Resource elements. The Resource elements are abstract and serve as

placeholders for any resource type.

Like the Type attribute in abstract JDF nodes, the Class attribute in Resource elements helps to identify how
particular resources should be used. This attribute contains seven values, and all resources fall under one of these
seven classifications. For example, all resources whose Class = Consumable are physical resources that will be
consumed over the course of the process. These values are listed in Table 3-12, below, and are described in greater
detail in the sections that follow.

Table 3-12 Contents of the abstract Resource element

Name Data Type Description
AgentName ?
New in JDF 1.2

String The name of the agent application that created the resource. Both the
company name and the product name can appear, and should be consistent
between versions of the application.

AgentVersion ?
New in JDF 1.2

String The version of the agent application that created the resource. The format
of the version string can vary from one application to another, but should
be consistent for an individual application.

Author ?
New in JDF 1.2

string Text that identifies the person who generated the resource. [RP99]

CatalogID ? string Identification of the resource e.g. in a catalog environment. Defaults to the
ProductID.

CatalogDetails ? string Additional details of a resource in a catalog environment.
Class enumeration Defines the abstract resource type. For details, see the sections that follow.

Possible values are:
Consumable
Handling

5 The cardinality of Part in PartStatus has been changed from * to none, e.g. exactly one element in version 1.1 of
the JDF specification.

Page 51

Page 51

Name Data Type Description
Implementation
Intent
Parameter
PlaceHolder
Quantity

ID ID Unique identifier of a resource.
Locked ? boolean If true, the resource is referenced by an Audit and cannot be modified

without invalidating the Audit.
Default = false

PipeID ? string If this attribute exists, the resource is a pipe. The PipeID is used by JMF
pipe-control messages to identify the pipe. For more information, see
Section 4.3.2 Partial Processing of Nodes with Partitioned Resources
JDF nodes themselves may not be partitioned, although the input and
output resources may. If the input and output ResourceLinks reference
one or more individual partitions, the Node executes using only the
referenced Resources.
If multiple input resources are input to a process, the resource with the
highest granularity defines the partitioning. For instance, a
ConventionalPrinting process may consume a non-partitioned
ConventionalPrintingParams, and a set of Ink and ExposedMedia(Plate)
resources that are partitioned by Separation. The partition granularity will
be defined by the Ink and ExposedMedia(Plate) resources to be Separation.
The Separation partition set is defined by the superset of all defined
partition key values. If the Separation key values of Ink were Black and
Varnish, and the the Separation key values of ExposedMedia(Plate)
were Black, the resulting set is Black and Varnish.

The partition keys of both input and output restrict the process. If the
partition keys are not identical, both must be applied to restrict the node. If
the partition keys are non-overlapping, e.g. in an Imposition node, where a
RunList based input partition is mapped to a sheet based output partition,
the application must explicitily calculate the result. The following
examples illustrate the restriction algorithms:

Input Partition 1 Input Partition 2 Output Partition

Page 52

Page 52

Name Data Type Description
SheetName=
”S1”
Separation=
”Cyan”

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Implicit”)

- SheetName=
”S1”
Separation=
Cyan”
+
SheetName=
”S1”
Separation=
”Black”

SheetName=
”S1”

- SheetName=
”S1”
Separation=
”Cyan”

SheetName=
”S1”
Separation=
”Cyan”

SheetName=
”S1”

- SheetName=
”S2”
Separation=
”Cyan”

error

SheetName=
”S1”
Separation=
”Magenta”

Separation=
”Cyan” +
Separation=
”Black”

- error This is an error a
set. The first inp
SheetName and
defines the partit
The second inpu
Separation only
non-overlapping
values. The sepa
therefore the nul

SheetName=
”S1”
Separation=
”Cyan”

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Explicit”)

- error The first input is
SheetName and
defines the partit
The second inpu
Separation only
SheetName and
overlapping set o
The separation v
defined by the se

RunIndex=”0~7” - SheetName=
”s2”

special This specifies sh
PlacedObject ele
in the range of 0
case is important
entries occur mu
imposition sheet

Overlapping Processing Using Pipes.

PipeProtocol ?
New in JDF 1.2

NMTOKEN Defines the protocol use for pipe handling. JMF is the only non-proprietary
piping protocol that is supported. Proprietary pipe protocols may be
specified in addition to those defined below but will not necessarily be
interoperable. Allowed values include:
JMF – JMF based PipePush / PipePull messages.
None – No pipe support.

Page 53

Page 53

Name Data Type Description
If PipeURL is specified and PipeProtocol is not specified, JMF is
assumed.

ProductID ? string An ID of the resource as defined in the MIS system.
rRefs ? IDREFS Array of IDs of internally referenced resources.
SettingsPolicy ?
New in JDF 1.1

Promoted in JDF
1.2

enumeration SettingsPolicy has been moved to any JDF element (##ref table generic
contents of elements). [RP100]

SpawnIDs ?
New in JDF 1.1

NMTOKENS List of SpawnIDs. This is used as a reference count how often the resource
has been spawned.

SpawnStatus ? enumeration The spawn status of a node indicates whether or not a node has been
spawned, and under what circumstances. The list is assumed to be ordered,
so that the SpawnStatus of a resource that has rRefs entries is defined as
the maximum SpawnStatus of all recursively linked resources. Possible
values are:
NotSpawned – Default value. Indicates that the resource has not been copied
to another process.
SpawnedRO – Indicates that the resource has been copied to another process
where it cannot be modified. RO stands for read-only.
SpawnedRW – Indicates that the resource has been copied to another process
where it can be modified. RW stands for read/write.

Status
Modified in JDF
1.1

enumeration The status of a node indicates under what circumstances it may be processed
or modified. The list is assumed to be ordered, so that the Status of a
resource that has rRefs entries is defined as the minimum Status of all
recursively linked resources. Possible values are:
Incomplete – Indicates that the resource does not exist, and the metadata is
not yet valid.
Unavailable – Indicates that the resource is not ready to be used or that the
resource in the real world represented by the physical resource in JDF is not
available for processing. The metadata is valid.
InUse – Indicates that the resource exists, but is in use by another process.
Also used for active pipes (see Sections 3.7.3 and 4.3.2).
Draft – Indicates that the resource exists in a state that is sufficient for
setting up the next process but not for production.
Complete – Indicates that the resource is completely specified and the
parameters are valid for usage. A physical resource with Status = Complete
is not yet available for production, although it is sufficiently specified for a
process that references it through a ResourceRef from a parameter resource
to commence execution.
Available – Indicates that the whole resource is available for usage.

UpdateID ?
New in JDF 1.1

NMTOKEN Unique ID that identifies the Resource or Resource partition. Note that
only one Resource, Resource partition or ResourceUpdate with a given
value of UpdateID may occur per JDF document, even though the scope of
the ResourceUpdate is local to the resource that it is defined in.

Figure 3.4 shows the structure of the abstract resource classes defined above. Arrows define inheritance relations
and the thin orthogonal lines describe containing relations.

Page 54

Page 54

Figure 3.4 Structure of the abstract resource types

3.7.1 Resource Classes
The following sections describe the functions of each of the seven values of the Class attribute. All resources fall
into one of these classes. In Chapter 7 Resources,
the class of each resource is indicated in the Resource
Properties subheading.

3.7.1.1 Parameter Resources
Parameter resources define the details of processes,
as well as any non-physical computer data such as
files used by a process. They are usually associated
with a specific process. For example, a required
input resource of the ColorSpaceConversion
process is the ColorSpaceConversionParams
resource. All predefined parameter resources contain
the moniker “Params” in their titles. Other examples
of Parameter resources include FoldingParams and ConventionalPrintingParams.

Parameter and Intent Resources are information
about the print job. Intent resources may originate
in the customer’s RFQ and may include
information such as trim size, paper, the number of
colors, and so on. Later on in the process of
estimating and scheduling the job, these intents
may become parameters for production process.

Parameter &
Intent Resources

Page 55

Page 55

Table 3-13 Additional contents of the abstract parameter Resource elements

Name Data Type Description
NoOp ?
New in JDF 1.1

boolean Indicates whether a resource or resource partition should be treated as if it
did not exist, e.g., to switch off a complete process step for the process that
requires the given parameter resource or partition as input. Default = false,
i.e., the Resource is operational and should be honored.

3.7.1.2 Intent Resources
Intent resources define the details of products to be produced without defining the process to produce them. In
addition, they provide structures to define sets of allowable options and to match these selections with prices. The
details of all intent resources are described in Section 7.1 Intent Resources. The abstract Intent resource element
contains no attributes or elements besides those contained in the abstract Resource element.

3.7.1.3 Implementation Resources
Implementation resources define the devices and operators that execute a given node. Only two implementation
resource types are defined: Employee (see Section 7.2.51) and Device, each of which is described in greater detail
in the Chapter 7.

Implementation resources can only be used as input resources and may be linked to any process. The abstract
Implementation resource element contains no attributes or elements besides those contained in the abstract
Resource element. An example demonstrating how to use implementation resources is provided in Section 3.8.2
Links to Implementation Resources.

Note that it is not recommended to specify the capabilities of a Device that is linked to a process to specify that
it should execute the given process.

3.7.1.4 Physical Resources (Consumable, Quantity, Handling)
Any resource whose Class is Consumable, Quantity, or Handling is considered a physical resource. They are
defined as follows:

• Consumable resources are resources that are
consumed during a process. Examples include Ink
and Media. They are the unmodified inputs in a
process chain.

• Quantity resources are resources that have been
created by a process from either a Consumable
resource or an earlier Quantity resource. For
example, printed sheets are cut and a pile of cut
blocks is created. Component resources are an
example of Quantity resources.

• A Handling resource is used during a process, but is
not destroyed by that process. ExposedMedia and
Tool are examples of such a resource, although it does describe various kinds of items such as film and
plates. A Handling resource may be created from a Consumable resource.

Table 3-14 Additional contents of the abstract physical Resource elements defines the additional attributes and
elements that may be defined for physical resources. The processes that consume physical resources—any kind of
physical resource—have the option of using these attributes and elements to determine in what way the resources
should be consumed. Table 3-14 Additional contents of the abstract physical Resource elements then describes the
contents of the Location subelement of physical resource elements.

Table 3-14 Additional contents of the abstract physical Resource elements

Name Data Type Description
AlternateBrand ? string Information, such as the manufacturer or type, about a resource compatible

to that specified by the Brand attribute, which is described below.

JDF’s handling of physical resources provides
a bridge between your JDF enabled systems
and inventory management, ordering and
replenishing systems. This opens the door to
just-in-time inventory management driven by
real-time scheduling and consumption data.

Automating Inventory
Management

Page 56

Page 56

Name Data Type Description
Amount ? number Actual amount of the resource that is available.

Note that the amount of consumption and production of a node is specified
in the corresponding resource links.

AmountProduced ? number Total amount of the resource that has been produced by all nodes that
reference this resource as output. This corresponds to the sum of all
CumulativeAmount values of output resource links of leaf JDF Nodes with
Status=”Completed” that reference this resource.[RP101]

AmountRequired ? number Total amount of the resource that is referenced by all nodes that will
consume this resource. This corresponds to the sum of all Amount values
of input resource links that reference this resource.

BatchID ? string ID of a specific batch of the physical resource
Brand ? string Information, such as the manufacturer or type, about the resource being

used.
PipePause ?
New in JDF 1.2

number Parameter for controlling the pausing of a process if the resource amount in
the pipe buffer passes the specified value. For details on using PipePause,
see Section 4.3.2.

PipeResume ?
New in JDF 1.2

number Parameter for controlling the resumption of a process if the resource amount
in the pipe buffer passes the specified value. For details on using
PipeResume, see Section 4.3.2.

RemotePipeEndPa
use ?
New in JDF 1.2

number Parameter for controlling the pausing of a process at the other end of the
pipe if the resource amount in the pipe buffer passes the specified value. For
details on using RemotePipeEndPause, see Section 4.3.2.

RemotePipeEndRe
sume ?
New in JDF 1.2

number Parameter for controlling the resumption of a process at the other end of the
pipe if the resource amount in the pipe buffer passes the specified value. For
details on using RemotePipeEndResume, see Section 4.3.2.

ResourceWeight ?
New in JDF 1.1

double Weight of a single component of the resource in grams.

Unit ? NMTOKEN Unit of measurement for the values of Amount and AmountRequired.
Note that it is strongly discouraged to specify units other than those that are
defined in Units

Weight ?
Illegal in 1.1

double Weight of a single component of the resource in grams. This parameter
collides with Media::Weight and is therefore illegal and has been replaced
with ResourceWeight in version 1.1 and beyond.

Contact ? refelement If this element is specified, it describes the owner of the resource.
IdentificationField
*
New in JDF 1.1

refelement If this element is specified, a bar code or label is associated with this
physical resource.

Location ? refelement Description of details of the resource location.
Note, in order to describe multiple locations, resources may be partitioned
by the Location-key as described in Section 3.9.2 Description of
Partitionable Resources.

QualityResult * refElement Results of quality measurements which were performed during or after the
production of this resource.

Page 57

Page 57

Structure of Location Subelement
Table 3-15 Contents of the Location element

Name Data Type Description
LocationName ?
New in JDF 1.1

string Name of the location, e.g., for example in MIS. This part key allows to
describe distributed resources.

LocID ? string Location identifier, e.g., within a warehouse system.
Address ? refelement Address of the storage facility. For more information, see Section 7.2.2.

3.7.1.5 PlaceHolder Resources
PlaceHolder resources, unlike physical resources, do not describe any logical or physical entity. Rather, they define
process linking and help to define process ordering when the exact nature of interchange resources is still unknown.
In essence, they serve as placeholders that stand in for defined resources. Using PlaceHolder resources, a
processing skeleton can be constructed that gives a basic shape to a job. The appropriate resources can be
substituted for PlaceHolder resources when they become known.

This kind of resource should only be used to link nodes of Type = ProcessGroup, since process leaf nodes have
well defined resources that should be used in preference. The only resource whose Class = PlaceHolder is called
PlaceHolderResource.

Like Parameter and Implementation resources, PlaceHolder resources contain no attributes besides those
contained in the abstract Resource element.

3.7.1.6 Selector Resources
Removed in JDF 1.1
Resources of class Selector have been removed in JDF version 1.1 and higher. Note that they are not only
deprecated but actually removed from the format including the schema and must not be supported by a JDF 1.1
conforming agent

3.7.2 Position of Resources within JDF Nodes
Resources may exist in any JDF node, but JDF nodes may only reference local or global resources. In other words,
JDF nodes may only reference resources in the two kinds of locations: in the node’s own ResourcePool element
or in JDF nodes that are hierarchically closer to the JDF root. An exception to this rule, however, occurs if two
independent jobs are merged for a process step and are to be separated afterwards, as is the case when two
independent jobs are printed on the same web-fed press. For further details on independent job merging, see Section
4.4.5 Case 5: Spawning and Merging of Independent Jobs.

It is good practice to put resources into the highest-level node that references the resource. For example, the
RenderingParams resource should be located in the Rendering node, unless it is used by multiple Rendering
processes, in which case it should be located in the ProcessGroup node that contains the Rendering process
nodes. Resources that link more than one node should be placed in the parent node of the siblings that are linked by
the resource.

A process that needs additional detailed process information specifying the creation of a resource must infer this
information by explicitly linking to the appropriate parameter resource.

3.7.3 Pipe Resources
A Pipe describes the resource dependency in which a process begins to consume a resource while it is being
produced by another process. For example, stacking components while they are being printed, or consuming a data
stream while it is being written by an upstream process. Note that defining a Pipe resource does not automatically
set up communication between processes. The Controllers/Agents that execute the process must still implement the
protocol that defines the Pipe.

Using dynamic pipe control, a downstream process may control the total quantity produced by an upstream
process, and/or the quantity buffered by an inter-process transport device (i.e. Conveyor belt.) Additional description

Page 58

Page 58

of pipes and process communication via pipes is provided in Section 4.3.2 Partial Processing of Nodes with
Partitioned Resources
JDF nodes themselves may not be partitioned, although the input and output resources may. If the input and output
ResourceLinks reference one or more individual partitions, the Node executes using only the referenced
Resources.
If multiple input resources are input to a process, the resource with the highest granularity defines the partitioning.
For instance, a ConventionalPrinting process may consume a non-partitioned ConventionalPrintingParams, and a set
of Ink and ExposedMedia(Plate) resources that are partitioned by Separation. The partition granularity will be
defined by the Ink and ExposedMedia(Plate) resources to be Separation. The Separation partition set is defined by
the superset of all defined partition key values. If the Separation key values of Ink were Black and Varnish, and the
the Separation key values of ExposedMedia(Plate) were Black, the resulting set is Black and Varnish.

The partition keys of both input and output restrict the process. If the partition keys are not identical, both must be
applied to restrict the node. If the partition keys are non-overlapping, e.g. in an Imposition node, where a RunList
based input partition is mapped to a sheet based output partition, the application must explicitily calculate the result.
The following examples illustrate the restriction algorithms:

Input Partition 1 Input Partition 2 Output Partition Node Partition Description
SheetName=
”S1”

- - SheetName=
”S1”

If only the input is
partitioned, the node
partition is defined by
the input.

SheetName=
”S1”
Separation=
”Cyan”

- - SheetName=
”S1”
Separation=
”Cyan”

If only the input is
partitioned, the node
partition is defined by
the input.

SheetName=
”S1”
Separation=
”Cyan”

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Implicit”)

- SheetName=
”S1”
Separation=
Cyan”
+
SheetName=
”S1”
Separation=
”Black”

The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only but
has an implied
SheetName and has a
larger but overlapping
set of separation
values. The separation
value set is therefore
defined by the second
key.

SheetName=
”S1”

- SheetName=
”S1”
Separation=
”Cyan”

SheetName=
”S1”
Separation=
”Cyan”

The input and output
base partitions are
identical. The output
further restricts the
partition.

SheetName=
”S1”

- SheetName=
”S2”
Separation=
”Cyan”

error Input and output are
not overlapping. This
specifies the null set.

Page 59

Page 59

SheetName=
”S1”
Separation=
”Magenta”

Separation=
”Cyan” +
Separation=
”Black”

- error This is an error and
defines the null set.
The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only and
has a larger but non-
overlapping set of
separation values. The
separation value set is
therefore the null set.

SheetName=
”S1”
Separation=
”Cyan”

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Explicit”)

- error The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only but has
no implied SheetName
and therefore has a
non-overlapping set of
partition keys. The
separation value set is
therefore defined by
the second key.

RunIndex=”0~7” - SheetName=
”s2”

special This specifies sheet s2,
with all PlacedObject
elements with an Ord
in the range of 0 to 7.
This special case is
important when
RunList entries occur
multiply on different
imposition sheets.

Overlapping Processing Using Pipes.

Resources may contain a string attribute called PipeID that declares the resource to be a pipe, and identifies it in
a dynamic-pipe messaging environment. A pipe that is also controlled by JMF pipe messages is called dynamic
pipe. For more information about dynamic pipes, see Section 4.3.2.2 Dynamic Pipes.

3.7.4 ResourceUpdate Elements
New in JDF 1.1
ResourceUpdate elements are an abstract element class that optionally contains any of the attributes and elements
valid for the Resource that they reside in. Required attributes and elements of resources are optional in the
respective ResourceUpdate. In addition, a ResourceUpdate defined within a Resource must contain a unique

Page 60

Page 60

UpdateID of type NMTOKEN. Only devices that process the resource as input can reference the UpdateID of a
ResourceUpdate. Such references to ResourceUpdate elements must update the current state of the device.

When a ResourceUpdate is referenced from a device, e.g., from a PPML TicketRef element, said device will
update ONLY those elements that are explicitly specified within the ResourceUpdate. No attributes are inherited
from the Resource that contains the ResourceUpdate.

ResourceUpdate elements are useful for process input resources only and must not be applied to product
intent resources.

Table 3-16 Contents of the abstract ResourceUpdate Element

Name Data Type Description
UpdateID
New in JDF 1.1

NMTOKEN Unique ID that identifies the ResourceUpdate. Note that only
one Resource, Resource partition or ResourceUpdate with
a given value of UpdateID may occur per JDF document, even
though the scope of the ResourceUpdate is local to the
resource that it is defined in.

Example:
The following example shows ResourceUpdate elements in highlight.

<JDF xmlns=”http://www.CIP4.org/JDFSchema_1_1” ID="MyCombinedProcessNode" Status="Ready"
Type="Combined"
Types="Interpreting Rendering DigitalPrinting" Version="1.1">

<ResourceLinkPool>
 <InterpretingParamsLink rRef=”PDFIParams” Usage=”Input” CombinedProcessIndex=”0”/>
 <RenderingParamsLink rRef=”RParams” Usage=”Input” CombinedProcessIndex=”1”/>
 <DigitalPrintingParamsLink rRef=”DPParams” Usage=”Input” CombinedProcessIndex=”2"/>
. . .
</ResourceLinkPool>

<ResourcePool>
 <Media ID="White" … />
 <InterpretingParams ID="PDFIParams" Class="Parameter" Status="Available" PrintQuality="High"
Polarity="Positive" EmitPDFTransfers="false" UpdateID="SetPrintQualityDefault"/>
 <InterpretingParamsUpdate UpdateID=”SetNegativePolarity” Polarity=”Negative”/>
 <InterpretingParamsUpdate UpdateID=”SetPositivePolarity” Polarity=”Positive”/>
 <InterpretingParamsUpdate UpdateID=”SetPrintQualityDraft” PrintQuality=”Draft”/>
 <InterpretingParamsUpdate UpdateID=”SetPrintQualityNormal” PrintQuality=”Normal”/>
 <InterpretingParamsUpdate UpdateID=”SetPrintQualityHigh” PrintQuality=”High”/>
 </PDFInterpretingParams>
 <RenderingParams ID="RParams" Class="Parameter" Status="Available">
 <AutomatedOverprintParams OverPrintBlackText="true" OverPrintBlackLineArt="true"/>
 </RenderingParams>
 <DigitalPrintingParams ID="DPParams" Class="Parameter" Status="Available" PrintingType="Sheet">
 <MediaRef rRef="White" MediaLocation=”WhiteTray” UpdateID=”SetMediaDefault”/>
 <DigitalPrintingParamsUpdate UpdateID=”SetMediaYellow”/>
 <Media ID="Yellow" MediaLocation=”YellowTray” />
 </DigitalPrintingParamsUpdate>
 </DigitalPrintingParams>
. . .
</ResourcePool>

</JDF>

3.8 Resource Links
ResourceLinks describe what resources a node uses, and how it uses them. They also allow node dependencies to be
calculated. The following diagram summarizes resource linking within a JDF node. In this example there are two
resources, A and B, which are placed in the node’s ResourcePool. To reference the resources, the node has two
resource links, ALink and BLink, in the ResourceLinkPool. The resource links are named by appending “Link” to

Page 61

Page 61

the type of resource referenced. Resource B also contains a reference to resource A, called ARef. References to
resources from within resources are named by appending “Ref” to the type of resource referenced.

Figure 3.5 Resource Links and ResourceRefs

The previous section described resources used by the node in which it resides. This section describes how resources
may serve as links between nodes. As was described in Section 2.2 JDF Workflow, any resource that is the output
of one process will very likely serve as an input of a subsequent resource. Furthermore, some resources are shared
between ancestor nodes and their child nodes.

Each JDF node contains a ResourceLinkPool element that in turn contains all of the ResourceLink elements
that link the node to the resources it uses. They also define whether the resources are inputs or outputs. These
inputs and outputs provide conceptual links between the execution elements of JDF nodes. Outputs of one node
may in turn become inputs in another node, and a given node must not be executed before all required input
resources are available.6 Figure 3.6 shows two processes that are linked by a resource. The resource represents the
output of Node 1, which in turn becomes an input for Node 2.

6 The availability of a resource that is consumed as a whole is given by the Resource attribute
Status = Available. In the case of pipe resources, the availability depends on the individual parameter defining the
dynamics of a pipe (for details see Section 4.3.2 Partial Processing of Nodes with Partitioned Resources
JDF nodes themselves may not be partitioned, although the input and output resources may. If the input and output
ResourceLinks reference one or more individual partitions, the Node executes using only the referenced
Resources.
If multiple input resources are input to a process, the resource with the highest granularity defines the partitioning.
For instance, a ConventionalPrinting process may consume a non-partitioned ConventionalPrintingParams, and a set
of Ink and ExposedMedia(Plate) resources that are partitioned by Separation. The partition granularity will be
defined by the Ink and ExposedMedia(Plate) resources to be Separation. The Separation partition set is defined by
the superset of all defined partition key values. If the Separation key values of Ink were Black and Varnish, and the
the Separation key values of ExposedMedia(Plate) were Black, the resulting set is Black and Varnish.

The partition keys of both input and output restrict the process. If the partition keys are not identical, both must be
applied to restrict the node. If the partition keys are non-overlapping, e.g. in an Imposition node, where a RunList
based input partition is mapped to a sheet based output partition, the application must explicitily calculate the result.
The following examples illustrate the restriction algorithms:

Input Partition 1 Input Partition 2 Output Partition Node Partition Description
SheetName=
”S1”

- - SheetName=
”S1”

If only the input is
partitioned, the node
partition is defined by
the input.

SheetName=
”S1”
Separation=
”Cyan”

- - SheetName=
”S1”
Separation=
”Cyan”

If only the input is
partitioned, the node
partition is defined by
the input.

Page 62

Page 62

SheetName=
”S1”
Separation=
”Cyan”

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Implicit”)

- SheetName=
”S1”
Separation=
Cyan”
+
SheetName=
”S1”
Separation=
”Black”

The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only but
has an implied
SheetName and has a
larger but overlapping
set of separation
values. The separation
value set is therefore
defined by the second
key.

SheetName=
”S1”

- SheetName=
”S1”
Separation=
”Cyan”

SheetName=
”S1”
Separation=
”Cyan”

The input and output
base partitions are
identical. The output
further restricts the
partition.

SheetName=
”S1”

- SheetName=
”S2”
Separation=
”Cyan”

error Input and output are
not overlapping. This
specifies the null set.

SheetName=
”S1”
Separation=
”Magenta”

Separation=
”Cyan” +
Separation=
”Black”

- error This is an error and
defines the null set.
The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only and
has a larger but non-
overlapping set of
separation values. The
separation value set is
therefore the null set.

Page 63

Page 63

Figure 3.6 Nodes linked by a resource

ResourceLink elements may also contain optional attributes to select a part of a resource, such as a single
separation. A detailed description of resource partitioning is given in Section 3.9.2 Description of Partitionable
Resources.

ProcessGroup and Product nodes may be defined without the knowledge of the individual process nodes that
define a specific workflow. In this case, these intermediate nodes will contain ResourceLink elements that link the
appropriate resources. For example, a prepress node may be defined that produces a set of plates. When the
processes for creating the plates are defined in detail, the agent that writes the nodes may remove the ResourceLink
elements from the intermediate node. Removing the ResourceLink specifies that the intermediate node may
execute; that is, it may be sent to the appropriate controller or department, even though the specific resources are not
yet available. If the ResourceLinks are not removed, the intermediate node must not execute until the input
resources that are linked are available.

SheetName=
”S1”
Separation=
”Cyan”

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Explicit”)

- error The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only but has
no implied SheetName
and therefore has a
non-overlapping set of
partition keys. The
separation value set is
therefore defined by
the second key.

RunIndex=”0~7” - SheetName=
”s2”

special This specifies sheet s2,
with all PlacedObject
elements with an Ord
in the range of 0 to 7.
This special case is
important when
RunList entries occur
multiply on different
imposition sheets.

Overlapping Processing Using Pipes).

Page 64

Page 64

Resource links may be used for process control. For example, if a proof input resource is required for a print
process, a print run may only commence when the proof is signed. The JDF format specification also includes a
complete specification of how resources are managed when JDF tickets are spawned and merged.

In some cases, determining whether information should be stored in an input or an output resource may be
difficult, as the distinction can be ambiguous. For example, is the definition of the color of a separation in the RIP
process a property of the output separation or a parameter that describes the RIP process? In order to reduce this
ambiguity, the following rules have been applied for the definition of input and output resources of processes as
described in Chapter 6 Processes and Chapter 7 Resources:

• Product intent and process parameters are generally input resources, except when one process defines the
parameters of a subsequent process.

• Consumable resources are always input resources.
• Quantity and Handling resources are used both as input and output resources. Their usage is defined by the

“natural” process usage. For example, a printing plate is described as an ExposedMedia resource that is the
output of a ImageSetting process and the input of a ConventionalPrinting process.

• Printed material is exchanged from node to node using the Component resource. Product intent nodes also
create Component output resources.

• Every detailed process description must be defined as an input parameter of the first process where it is
referenced. This means that a device must not imply process parameters from its output resources. For
example, paper grammage MAY be defined in the Component output resource of the printing process but
MUST be defined as an input parameter of the Media of the printing process.

• Any resource parameter that is used must be referenced explicitly. Resource parameters cannot be inferred
by following the chain of nodes backwards. This would make spawning of nodes non-local.

• The last process in a chain of processes defines the output resource of its parent process.
• In case of parallel processing, the sum of the outputs of all parallel subnodes defines the output of the parent node.

Page 65

Page 65

Figure 3.7 Structure of the abstract ResourceLink types

Like Resource elements, ResourceLink elements are an abstract data type. The class tree of abstract
ResourceLink elements is further subdivided into classes defined by the Class attribute of the resource that it
references. Individual instances of ResourceLink elements are named by appending the suffix “Link” to the name
of the referenced resource. For example the link to a Component resource is entitled ComponentLink and the
link to a ScanParams resource is entitled ScanParamsLink. The following eight abstract resource link classes
exist:

• ParameterLink
• ImplementationLink
• ConsumableLink
• QuantityLink

• HandlingLink
• PlaceHolderLink
• IntentLink

Each listed class name is described in greater detail in the sections that follow. The following figure shows the
abstract resource link types derived from the abstract ResourceLink type.
The following table lists the contents of a ResourceLinkPool element.

Table 3-17 Contents of the ResourceLinkPool element

Name Data Type Description
ResourceLink * Element List of ResourceLink elements. The ResourceLink elements are abstract and

are a placeholder for any resource link element.

The following table lists the possible contents of all ResourceLink elements.

Page 66

Page 66

Table 3-18 Contents of the abstract ResourceLink element

Name Data Type Description
CombinedProcessInd
ex ?
New in JDF 1.1

IntegerList Combined nodes contain input resources from multiple process nodes.
The CombinedProcessIndex attribute specifies the indices of
individual processes in the Types attribute to which a ResourceLink
in a Combined node belongs. Multiple entries in CombinedProcess-
Index specify that the ResourceLink is used by the respective multiple
processes in the Combined node.

CombinedProcessTyp
e ?
Deprecated in JDF 1.1

NMTOKEN Combined nodes contain input resources from multiple process nodes.
The CombinedProcessType attribute specifies the name individual
process to which a ResourceLink in a Combined node belongs. Must
match one of the entries in the Types attribute of the node. Replaced by
CombinedProcessIndex in JDF 1.1.

DraftOK ? boolean If true, the process may commence with a draft resource. Default = false
PipePartIDKeys ?
Modified in JDF 1.2

enumerations Defines the granularity of a dynamic pipe for a partitioned resource.
For instance, a resource may be partitioned by sheet, surface and
separation (resource attribute PartIDKeys = SheetName Side
Separation), but pipe requests should only be issued once per surface
(resource link attribute PipePartIDKeys = SheetName Side). The
contents of PipePartIDKeys must be a subset of the PartIDKeys
attribute of the resource that is linked by this ResourceLink. If
PipePartIDKeys is not specified, it defaults to the implied or explicit
value of PipePartIDKeys of the referenced resource.

PipeProtocol ?
New in JDF 1.1

NMTOKEN Defines the protocol use for pipe handling. JMF is the only non-
proprietary piping protocol that is supported. Proprietary pipe protocols
may be specified in addition to those defined below but will not
necessarily be interoperable. Allowed values include:
JMF – JMF based PipePush / PipePull messages.
None – No pipe support.
If PipeURL is specified and PipeProtocol is not specified, JMF is
assumed.

PipeURL ? URL Pipe request URL. Dynamic pipe requests from this end of a pipe
should be made to this URL.1 Note that this URL is only used for
initiating pipe requests. Responses to a pipe request are issued to the
URL that is defined in the PipePush or PipePull message. For details
on using PipeURL, see Section 4.3.2.

ProcessUsage ? string Identifies the resource usage in the process if multiple resources of the
same type are required. For example, this attribute appears when two
components—one Cover and one BookBlock—are used in
AdhesiveBinding. The allowed values of ProcessUsage are defined
in the appropriate process descriptions in Chapter 6 Processes.

rRef IDREF Link to the target resource.
rSubRef ?
Deprecated in JDF 1.2

IDREF Link to a subelement within the resource.
In JDF 1.2 and beyond, Resource Links should only reference resources
that are present in a ResourcePool.[RP102]

Usage enumeration Resource usage within this JDF node. Possible values are:
Input – The resource is an input.

1 Note that in most cases this is the URL of the controller of the other end of the pipe. This may seem
counterintuitive, but it allows parallel spawning and merging of processes that represent a dynamic pipe without
having to include the node that describes the other end in the spawned file.

Page 67

Page 67

Name Data Type Description
Intermediate – The resource is an intermediate resource in a Combined
process. This Usage is used to define properties such as orientation of
an exchange resource within a Combined process. The
CombinedProcessIndex of the ResourceLink applies to the process
that consumes the exchange resource as input. Usage=”Intermediate”
must not be specified in JDF nodes other than Combined process nodes.
New in JDF 1.2[RP103]
Output – The resource is an output.

AmountPool ?
New in JDF 1.1

element Definition of partial amounts and pipe parameters for this
ResourceLink. The allowed contents of the AmountPool are described
for the various types of resource links in the sections below. If
AmountPool is specified, none of the Amount related attributes defined
in AmountPool/PartAmount must be specified in the
ResourceLink.[RP104]

Part * element The Part elements identify the parts of a partitioned resource that are
referenced by the ResourceLink. The structure of the Part element is
defined in Table 3-26 Contents of the Part element. For details on
partitioned resources, see Section 3.9.2.

The following table lists the generic contents of an AmountPool element. Further parameters of the AmountPool
are described in the sections below.

Table 3-19 Contents of the AmountPool element

Name Data Type Description
PartAmount *
New in JDF 1.1

element Element that defines the amounts and pipe parameters for a partitioned resource.
The contents of a PartAmount depends on the type of the ResourceLink.

The following table lists the generic contents of a PartAmount element. Further parameters of the PartAmount are
described in the respective sections below (Table 3-21 Contents of the abstract ImplementationLink or PartAmount
element and Table 3-22 Additional contents of the abstract physical ResourceLink and PartAmount or AmountPool
element). Note that PartAmount inherits values from its parent ResourceLink.

Table 3-20 General contents of the PartAmount element

Name Data Type Description
DraftOK ?
New in JDF 1.1

boolean If true, the process may commence with a draft resource partition.

PipeURL ?
New in JDF 1.1

URL Pipe request URL for this partition. Dynamic pipe requests from this
end of a pipe should be made to this URL.2 Note that this URL is only
used for initiating pipe requests. Responses to a pipe request are issued
to the URL that is defined in the PipePush or PipePull message.
For details on using PipeURL, see Section 4.3.2.

Part
New in JDF 1.1

element Specifies the selected part that the PartAmount is valid for. This must be
a leaf partition of the resource.

2 Note that in most cases this is the URL of the controller of the other end of the pipe. This may seem
counterintuitive, but it allows parallel spawning and merging of processes that represent a dynamic pipe without
having to include the node that describes the other end in the spawned file.

Page 68

Page 68

3.8.1 Links to Parameter Resources
Parameter resources are linked by an instance of a ParameterLink element. These elements contain no further
attributes or elements besides those found in the abstract ResourceLink element.

3.8.2 Links to Implementation Resources
Implementation resources are linked by an instance of an ImplementationLink element. Using the resource
attributes, the link may specify whether the implementation is a recommendation that may be ignored or a request
that must be fulfilled. For example, the job may contain a request that the job be run by a specific, experienced
operator. If the value or the Recommendation is true and that operator is ill, he may be replaced by a less
experienced operator. If, on the other hand, a product could be created on a device that theoretically can do the job
but does not produce sufficient quality, and if it is certain that customer will reject inferior quality,
Recommendation should be set to false.

Since implementation ResourceLinks define the usage of a specific device during the course of a job,
situations can arise where that resource is not required during the whole processing time. For instance, a forklift that
only has to transport the completed components is not required to be available during the entire process run, only
during the times when it is needed. This means that, contrary to the general rule that all resources must be Available
for node execution to commence, a node may commence when implementation resources are still InUse by other
processes if Start or StartOffset are specified. ImplementationLink elements always have a Usage of Input.

Table 3-21 Contents of the abstract ImplementationLink or PartAmount element

Name Data Type Description
Duration ? duration Estimated duration during which the resource will be used.
Recommendation ? boolean If true and the request cannot be fulfilled, the change may be logged as a

Modified Audit and the job may continue. If false, an error occurs if the
request is not fulfilled.
Default = false

Start ? dateTime Time and date when the usage of the implementation resource starts.
StartOffset ? duration Offset time when the resource is required after processing has begun. If

both Start and StartOffset are specified, Start has precedence.

The following example shows how the operator Smith is linked to a ConventionalPrinting process as the only valid
operator:

<ResourcePool>
 <Employee PersonalID=”007” ID=”L1” Class=”Implementation”>
 <Person FamilyName=”Smith” JobTitle=”Press Operator”>
 </Employee>
</ResourcePool>
…
<ResourceLinkPool>
 <EmployeeLink Recommendation="false" Usage="Input" rRef="L1"/>
</ResourceLinkPool>

3.8.3 Links to Physical Resources
The physical resources that fall into the Consumable, Quantity, and Handling classes are linked, predictably, by the
appropriate instances of ConsumableLink, QuantityLink, or HandlingLink resource link elements. Just as
physical resources inherit the contents of the abstract resource element, physical resource links inherit the contents
of the abstract resource link element. They may, however, contain additional contents. These optional attributes are
described in Table 3-22, below. The attributes in Table 3-22 may occur either directly in the physical ResourceLink
or in AmountPool and PartAmount elements of a resource link.

It is important to note that the order of occurrence of links to physical resources may be significant – most
specifically with QuantityLinks. For example, a Gathering process might have among its inputs, links to three

Page 69

Page 69

component resources. The order of these links indicates the order in which the components should occur in the new,
gathered output component.

Table 3-22 Additional contents of the abstract physical ResourceLink and PartAmount or AmountPool element

Name Data Type Description
Amount ? number For a link with a Usage of ‘Input’, specifies the amount of the resource that is

required by the process, in units as defined in the resource.
For a link with a Usage of ‘Output’, specifies the amount of the resource that is to
be produced by the process, in units as defined in the resource.
Allows resources to be only partially consumed or produced (see Section 3.9.1
Resource Amount).

CumulativeAmount
[RP105]?

number Total amount of the resource that has been produced (in a ResourceLink
with Usage=”Output”) or consumed (in a ResourceLink with
Usage=”Input”) by this node in every execution. [RP106]

Orientation ?
New in JDF 1.1

enumeration Named orientation describing the transformation of the orientation of a physical
resource relative to the ideal process coordinate using this resource as input or
output. Allowed values are:
Rotate0:
Rotate90:
Rotate180:
Rotate270:
Flip0:
Flip90:
Flip180:
Flip270:
For details, of the semantics of the enumeration, see Table 2-3. This is needed to
convert the coordinate system of the resource to the coordinate system of the
process. Agents should supply one of Orientation or Transformation for
resources where they are relevant, e.g., Component. When neither Orientation
or Transformation are present, the orientation of the resource is system specified.
If Orientation is specified for an output resource, the node that processes the
physical resource should manipulate the resource in such a way as to reflect the
transformation. The coordinate system of the resource itself is NOT modified.
Only one of Orientation or Transformation may be specified in one
ResourceLink.

PipePause ? number Parameter for controlling the pausing of a process if the resource amount in the
pipe buffer passes the specified value. For details on using PipePause, see
Section 4.3.2.

PipeResume ? number Parameter for controlling the resumption of a process if the resource amount in
the pipe buffer passes the specified value. For details on using PipeResume, see
Section 4.3.2.

RemotePipeEndPa
use ?

number Parameter for controlling the pausing of a process at the other end of the pipe if
the resource amount in the pipe buffer passes the specified value. For details on
using RemotePipeEndPause, see Section 4.3.2.

RemotePipeEndR
esume ?

number Parameter for controlling the resumption of a process at the other end of the pipe
if the resource amount in the pipe buffer passes the specified value. For details on
using RemotePipeEndResume, see Section 4.3.2.

Page 70

Page 70

Name Data Type Description
Transformation ?
New in JDF 1.1

matrix Matrix describing the transformation of the orientation of a physical resource
relative to the ideal process coordinate using this resource as input or output. This
is needed to convert the coordinate system of the resource to the coordinate
system of the process. Agents should supply one of Orientation or
Transformation for resources where they are relevant, e.g., Component. When
neither Orientation or Transformation are present, the orientation of the resource
is system specified.
If Transformation is specified for an output resource, the node that processes the
physical resource should manipulate the resource in such a way as to reflect the
transformation. The coordinate system of the resource itself is NOT modified.

The following example shows an InkLink with an AmountPool.

<ResourcePool>
 <Ink ID="Link0015" Brand="NoName" Class="Consumable" Locked="false"
Status="Available" PartIDKeys="Separation">
 <Ink ColorName="Cyan" Separation="Cyan"/>
 <Ink ColorName="Magenta" Separation="Magenta"/>
 <Ink ColorName="Yellow" Separation="Yellow"/>
 <Ink ColorName="Black" Separation="Black"/>
 <Ink ColorName="Heidelberg Spot Blau" Separation="Heidelberg Spot Blau"/>
 </Ink>
</ResourcePool>
<ResourceLinkPool>
 <InkLink rRef="Link0015" Usage="Input">
 <AmountPool>
 <PartAmount Amount="1000">
 <Part Separation="Cyan"/>
 </PartAmount>
 <PartAmount Amount="1200">
 <Part Separation="Magenta"/>
 </PartAmount>
 <PartAmount Amount="700">
 <Part Separation="Yellow"/>
 </PartAmount>
 <PartAmount Amount="3000">
 <Part Separation="Black"/>
 </PartAmount>
 <PartAmount Amount="300">
 <Part Separation="Heidelberg Spot Blau"/>
 </PartAmount>
 </AmountPool>
 </InkLink>
</ResourceLinkPool>

3.8.4 Links to PlaceHolder Resources
PlaceHolder resources are linked by a PlaceHolderLink element. PlaceHolder links, used together with the
PlaceHolderResource resource, can be employed to predefine a skeleton of a processing network consisting of
process group nodes without knowing the exact nature of the interchange resources. For instance, although the
deadlines for the job may be known, it may not be known whether a press run will be defined for a digital press or a
conventional press.

3.8.5 Links to Intent Resources
Intent resources are linked by an instance of a IntentLink element. They have no additional parameters.

Page 71

Page 71

3.8.6 Inter-Resource Linking Using ResourceRef
In some cases, it is necessary to reference resource elements directly from other resources in order to reuse
information. These links are abstract ResourceRef elements. The ResourceRef’s name is generated by
appending the string “Ref” to the element name. Candidate elements for inter-resource linking have a data type of
refelement in the content description tables of this chapter and Chapter 7. The following table defines the attributes
of the abstract ResourceRef element (see also Figure 3.4 and ResourceElement in Table 3-12). The
ResourceElement is defined in Table 3-23 Contents of the abstract ResourceElement

Table 3-23 Contents of the abstract ResourceElement

Name Data Type Description

ID ?
Deprecated in
JDF 1.2[RP107]

ID Unique identifier of a resource element.
In JDF 1.2 and beyond, ResourceRef and ResourceLink elements should only
reference resources that are present in a ResourcePool. Therefore elements
that are defined locally within a resource should not be referenced and should
not contain an ID.[RP108]

Table 3-24 Contents of the abstract ResourceRef element

Name Data Type Description
rRef IDREF Reference to the resource.
rSubRef ?
Deprecated in
JDF 1.2[RP109]

IDREF Reference to a subelement of the resource.
In JDF 1.2 and beyond, ResourceRef elements should only reference resources
that are present in a ResourcePool.[RP110]

Part ?
New in JDF 1.1

element Definition of the partition that this ResourceRef references. This must be a
leaf partition of the resource.

In order to enable spawning and merging without having to scan every single resource, inter-resource links must be
specified in the rRefs attribute of the resource. In the case of a link to a resource subset, the rRefs attribute contains
a reference to the atomic resource. Even if a resource is linked more than once, one occurrence of that resource in
the rRefs array is sufficient.

The Part element in a ResourceRef defines the part of the target that this ResourceRef references. If both the
resource that contains ResourceRef element and the target resource are partitioned, the ResourceRef does NOT
implicitly reference the part of the target with the same partitioning attributes, but rather the parts of the target
resource that are explicitly specified by the Part element within the ResourceRef.

When a ResourceRef references a partitioned resource node that is not a resource leaf, the children of the
referenced Resource are ignored. Otherwise, the referenced structure would be invalid when inlined. Thus the
following example equivalence applies:

ResourceRef example with partition:
<Media ID=”MediaID” PartIDKeys=”Location” Size=”72 72”>
 <Comment Name=”foo”>bar</Comment>
 <Media Location=”desk”>
 <Media Location=”drawer”>
</Media>
…
<Sheet>

Page 72

Page 72

 <MediaRef rRef=”MediaID”/>
</Sheet>

Valid inlined ResourceRef example with partition:
<Sheet>
 <Media ID=”MediaID” Size=”72 72”>
 <Comment Name=”foo”>bar</Comment>
 </Media>
</Sheet>

Invalid inlined ResourceRef example with partition:
<Sheet>
 <Media ID=”MediaID” PartIDKeys=”Location” Size=”72 72”>
 <Comment Name=”foo”>bar</Comment>
 <Media Location=”desk”>
 <Media Location=”drawer”>
 </Media>
</Sheet>[RP111]

ResourceRef elements may also occur in the NodeInfo and CustomerInfo element of a JDF node. Resource
elements that are referenced must reside in a ResourcePool. The restrictions on locations of Resource elements
described in section ##ref 3.7.2 that apply to resource links similarly apply to refElements.[RP112]

Elements within a resource, i.e. not direct children of the ResourcePool, may also contain an ID attribute (see
Table 3-23 Contents of the abstract ResourceElement). These elements are denoted as ResourceElement. These
elements may be explicitly referenced by a ResourceRef.

Prior to JDF 1.2, the ResourceRef element had an optional rSubRef attribute that contained an IDREF to the
ID of the ResourceElement within the resource.

In some cases, it seemed desirable to define a ResourceElement that was not explicitly linked by a Node
directly within a ResourcePool as a Resource. These Resources were referenced only by other resources which
contained ResourceRef elements pointing to these. The ResourceElements instantiated as a Resource had to
contain the required attributes of abstract resources and have a Class="Parameter". The following example
demonstrated inter-resource linking to resource Elements.[RP113]

<ResourcePool>
 <Layout rRefs="res1 res2"><!—This is a Resource-->
 …
 <!—These are ResourceRefs-->
 <SurfaceRef rRef="res1" rSubRef="surf1"/>
 <SurfaceRef rRef="res2" rSubRef="surf2"/>
 <SurfaceRef rRef="res1" rSubRef="surf1"/>
<!-- another link to the same resource -->
 </Layout>
 <Sheet ID="res1"><!—This is a Resource-->
 <Surface ID="surf1" … /> <!—This is a ResourceElement-->
 </Sheet>
 <Sheet ID="res2"> <!—This is a Resource-->
 <Surface ID="surf2" … /> <!—This is a ResourceElement-->
 </Sheet>
</ResourcePool>

3.8.6.1 Status of Resources That Contain rRef References
The Status of a resource that contains an rRef attribute is defined by the lowest Status of all recursively referenced
resources. The ordering is defined as:
Incomplete
Unavailable

InUse
Draft

Page 73

Page 73

Complete Available

Thus, if any referenced resource has a Status of Incomplete, the complete resource has a calculated Status of
Incomplete, even though its own Status attribute may be Unavailable, Draft, Available etc.

3.8.6.2 Alignment of ResourceLink and ResourceRef
New in JDF 1.1A
ResourceRef elements must not contain any of the attributes and elements that may be specified in the
ResourceLink as defined in chapter 3.8 Resource Links. The value of these properties is implied from the value of
the properties for the appropriate part in the AmountPool of the ResourceLink of the node. The following example
illustrates the alignment of a MediaLink and MediaRef in a DigitalPrinting node.

<JDF ID="n20020626134204" Type="DigitalPrinting" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Waiting" Version="1.1">
 <ResourcePool>
 <!—Media is partitioned so that it can be referenced from the AmountPool -->
 <Media ID="r0006" Class="Consumable" Status="Available" PartIDKeys="RunIndex">
 <Media RunIndex="0 -1"/>
 <Media RunIndex="1~-2"/>
 </Media>
 <DigitalPrintingParams ID="r0007" Class="Parameter" rRefs="r0006" Status="Available"
PartIDKeys="RunIndex">
 <DigitalPrintingParams RunIndex="0 -1">
 <!-- PartAmount with <Part RunIndex="0 -1"/> contains the partition details for this
MediaRef -->
 <MediaRef rRef="r0006">
 <Part RunIndex="0 -1"/>
 </MediaRef>
 </DigitalPrintingParams>
 <DigitalPrintingParams RunIndex="1~-2">
 <!-- PartAmount with <Part RunIndex="1~-2/> contains the partition details for this
MediaRef -->
 <MediaRef rRef="r0006">
 <Part RunIndex="1~-2"/>
 </MediaRef>
 </DigitalPrintingParams>
 </DigitalPrintingParams>
 </ResourcePool>
 <ResourceLinkPool>
 <MediaLink rRef="r0006" Usage="Input">
 <!-- the AmountPool contains the ResourceLink partition details -->
 <AmountPool>
 <PartAmount Usage="Input" Orientation="Flip180">
 <Part RunIndex="0 -1"/>
 </PartAmount>
 <PartAmount Usage="Input" Orientation="Rotate0">
 <Part RunIndex="1~-2"/>
 </PartAmount>
 </AmountPool>
 </MediaLink>
 <DigitalPrintingParamsLink rRef="r0007" Usage="Input"/>
 </ResourceLinkPool>
</JDF>

3.9 Subsets of Resources
In many cases, a set of similar resources—such as separation films, plates, or RunList resources—is produced by one
process and consumed by another. When this occurs, it is convenient to define one resource element that describes the
complete set and allows individual subsets to be referenced. This mechanism also removes process ambiguity if
multiple input resource links and multiple output resource links exist that must be unambiguously correlated.

In other cases, there can be a need to change some attribute of a parameter resource for some subset of the
processing to be done by a device (for instance, when printing a document using DigitalPrinting, it would be a

Page 74

Page 74

common application to change the dimensions of the media to be selected based on the actual media box changes in a
PDF file).

Resource elements and ResourceLink elements have optional attributes that enable an agent to specify an
explicit part of a structured resource. There are two ways to reference a subset of a resource. The first is by
quantity, by specifying an Amount in a ResourceLink that is less than the Resource’s Amount. The second is to
select certain parts of a partitioned resource by supplying a filtering Part element in the ResourceLink.

3.9.1 Resource Amount
Yet another flexible feature of resources is that they may be only partially consumed. For example, in a scenario in
which various versions of a product share identical parts—such as versioned books that all have the same cover—
each version will only use as many copies of the cover as it needs to fulfill its job requirement, even though all of
the covers can be printed in one step for all versions. This feature is specified in the Amount attribute of the
resource links and allows multiple JDF nodes to share resources. It allows both the sharing of output resources (as
when a binding process consumes identical sheets from multiple press lines) and the sharing of input resources (as
when the covers for multiple jobs are identical and are all printed in one press run).

The Amount attribute of a physical resource element contains the actual amount of a given resource. It is
adjusted by the production or consumption amount of every process that is executed, and refers to that amount in the
corresponding physical resource link element. Thus the value of the Amount attribute of a resource that is
consumed as an input should be reduced by the amount that is consumed. It is up to the agent that writes a JDF job
to ensure that the Amount attributes of resources and the resource links that reference them are consistent. The
units used in the Amount attribute of a physical resource link element is defined by the unit of the resource element
to which the link refers. The definition of Amount for partitioned resources is explained in detail in Section 3.9.2
Description of Partitionable Resources.

Note that for resources which are the output of processes, the Amount attribute on the ResourceLink determines
the quantity of the resource to be produced. For example, for a DigitalPrinting process that included a RunList as its
input with 16 pages to be printed and a ComponentLink to its output, the Amount and AmountProduced attributes
[RP114]attribute would indicate the number of copies of those 16 pages that the process would produce.

3.9.1.1 Specifying [RP115]Amount for a partially completed process
A process may be interrupted before the requested amount of output has been produced. When the job is resent from
the controller to the Device, only the rest Amount must be produced by the Device. The following table summarizes
the values of the Amount and AmountProduced attributes in the Output Component, the CumulativeAmount of
ComponentLink and the Resource audit in various steps of the process:

Process Step Component-
Link
CumulativeA
mount

following
Input
Component-
Link
CumulativeA
mount

Component
Amount

Component-
Link Amount

Original JDF, no processing has commenced. 0 0 0
Unavailable

100000

Break after producing 30000 Copies 30000 0 30000
Available

100000

Break after producing additional 40000 Copies 70000 0 70000
Available

100000

Completed 100000 0 100000
Available

100000

Consumption of the Output by a subsequent process

Page 75

Page 75

Process Step Component-
Link
CumulativeA
mount

following
Input
Component-
Link
CumulativeA
mount

Component
Amount

Component-
Link Amount

A following process consumes 50000 Copies 100000 50000 50000
Available

100000

Additional Copy Request

20000 additional Copies are requested 100000 50000 50000
Available

120000

The 20000 Copies are produced 120000 50000 70000
Available

120000

Parallel Production by a second device

30000 additional Copies of the same resource are requested from a
different node

0 50000 70000
Available

30000

The 30000 Copies are produced 30000 50000 100000
Available

30000

Parallel Production by first device

40000 additional Copies of the same resource are requested from a
different node

120000 50000 100000
Available

120000

The 40000 Copies are produced 160000 50000 140000
Available

160000

.[RP116]

3.9.2 Description of Partitionable Resources
Printing workflows contain a number of processes that are repeated over a potentially large number of individual files,
sheets, surfaces or separations. In order to define a partitioned resource in a concise manner without having to create a
large number of individual nodes and resources, a set of resources may be partitioned by factoring them by one or more
attributes. The common elements and defaults are placed in the parent element, while partition-specific attributes and
overrides are placed in the child elements. This saves space. Also, by providing a single parent ID for the resources, it
allows easy access to the entire resource, or iteration over each part.
To reference part of a resource, a ResourceLink references the parent resource, and supplies a Part element that contains
an actual value for a partition. The result is all the child elements with matching partition values, including common
values and defaults from the parent resource. If PartUsage = “Implicit”, the parent attributes are returned if there is no
matching partition.

A partitionable resource may contain [RP117]nested elements, each with the same name as the resource. The part-
independent resource elements and attributes are located in the root of the resource, while the partition-dependent elements
are located in the nested elements. Thus one individual part is defined by the convolution of the partition-independent
elements and attributes, with the elements and attributes contained in the appropriate nested elements. The attributes of
nested part elements may be overwritten by the equivalent attributes in descendent parts. If a leaf contains elements that
may multiply, and additional elements with the same name exist in nodes that are closer to the root, only the elements in
the leaf are valid for the respective part. For example, the following SeparationSpec is two color duo-tone (only Black and
SpotGreen) in the part with PageNumber=1:

<LayoutElement PartIDKeys="PageNumber">

Page 76

Page 76

 <SeparationSpec Name="Cyan"/>
 <SeparationSpec Name="Magenta"/>
 <SeparationSpec Name="Yellow"/>
 <SeparationSpec Name="Black"/>
 <FileSpec (…)/>
 <LayoutElement PageNumber=”0” (…)/>
 <LayoutElement PageNumber=”1” (…)>
 <SeparationSpec Name="Black"/>
 <SeparationSpec Name="SpotGreen"/>
 </LayoutElement>
</LayoutElement>

3.9.2.1 Amount in Partitionable resources[RP118]

The Amount attribute of a partitioned resource is treated formally exactly in the same manner as any other attribute.
This implies that the amount specified refers to the amount defined by one leaf and not to the amount defined by the
sum of leaves in a branch. The Amount attribute defined in the example below is, therefore, two, even though 24
physical plates are described.

The following example defines two sets of 12 plates for two sheets with three surfaces. Each has a common
brand attribute called “Gooey”. Each individual separation has its own ProductID. Furthermore, the Status
attribute varies from part to part. For example, if a yellow plate breaks, only it will need to be remade and therefore
set to Unavailable; the others, meanwhile, may remain Available.
<ExposedMedia Class="Handling" Brand="Gooey" ID="L1" Status="Available"
PartIDKeys="SheetName Side Separation" Amount="2">
 <Media MediaType=”Plate” Dimension=”500 600”/>
 <ExposedMedia SheetName="S1">
 <ExposedMedia Side="Front">
 <ExposedMedia Separation="Cyan" ProductID="S1FCPlateJ42"/>
 <ExposedMedia Separation="Magenta" ProductID="S1FMPlateJ42"/>
 <ExposedMedia Separation="Yellow" ProductID="S1FYPlateJ42"
Status=“Unavailable"/>
 <ExposedMedia Separation="Black" ProductID="S1FKPlateJ42"/>
 </ExposedMedia>
 <ExposedMedia Side="Back">
 <ExposedMedia Separation="Cyan" ProductID="S1BCPlateJ42"/>
 <ExposedMedia Separation="Magenta" ProductID="S1BMPlateJ42"/>
 <ExposedMedia Separation="Yellow" ProductID="S1BYPlateJ42"/>
 <ExposedMedia Separation="Black" ProductID="S1BKPlateJ42"/>
 </ExposedMedia>
 </ExposedMedia>
 <ExposedMedia SheetName="S2" Side="Front">
 <ExposedMedia Separation="Cyan" ProductID="S2FCPlateJ42"/>
 <ExposedMedia Separation="Magenta" ProductID="S2FMPlateJ42"/>
 <ExposedMedia Separation="Yellow" ProductID="S2FYPlateJ42"/>
 <ExposedMedia Separation="Black" ProductID="S2FKPlateJ42"/>
 </ExposedMedia>
</ExposedMedia>

3.9.2.2 Relating PartIDKeys and Partitions
The PartIDKeys attribute describes the partition keys that may occur in a partitioned resource. The sequence and
number of keys is restricted in order and cardinality to ensure interoperability. The first entry in the PartIDKeys list
defines the partition closest to the root, the next entry defines the next intermediate partition node and so forth until
the last entry, which defines the partition leaves. Each partition key must occur exactly once in the PartIDKeys list.
Note that some of the restrictions specified in this section were assumed to be in place in versions before JDF 1.2
but were not explicitly stated in the specification.

3.9.2.2.1 Incomplete Partitions
Partitioned resources may be partitioned by a restricted subset of keys in the PartIDKeys list. Keys from the back of
the list may be omitted in individual partitions. If a key is omitted all following keys must also be omitted.

Page 77

Page 77

The following example demonstrates a legal incomplete partition:
<Preview PartIDKeys= “PreviewType Separation”>
 <Preview PreviewType=”Separation”>
 <Preview Separation=”Cyan”/>
 <Preview Separation=”Magenta”/>
 </Preview>
 <Preview PreviewType=”Thumbnail”/>
</Preview>

The following example demonstrates an illegal incomplete partition since the omitted keys are not at the end of the
PartIDKeys list:
<Preview PartIDKeys= “PreviewType Separation”>
 <Preview Separation=”Cyan”/>
 <Preview Separation=”Magenta”/>
</Preview>

3.9.2.2.2 Multiple Keys per partitioned Leaf or Node
Only one partition key must be specified per leaf or node. This allows XPath-type searches on partitioned leaves.
The following example demonstrates a legal partition:
<Preview PartIDKeys= “PreviewType Separation”>
 <Preview PreviewType=”Separation”>
 <Preview Separation=”Cyan”/>
 </Preview>
</Preview>

The following example demonstrates an illegal incomplete partition since more than one partition key is specified in
the leaf:
<Preview PartIDKeys= “PreviewType Separation”>
 <Preview PreviewType=”Separation” Separation=”Cyan”/>
</Preview>[RP119]

3.9.2.2.3 Degenerate Partitions
A partitionable resource must not contain partition keys in the root. Mapping partitioned parameters to non-
partitioned resources is achieved by partitioning the Resource with exactly one leaf. The following example
specifies that only c1 must be folded:
<Component PartIDKeys=”SheetName” ID=”c1” Class=”Quantity”/>

<Component SheetName=”Sheet 1”/>
</Component>
<Component PartIDKeys=”SheetName” ID=”c2” Class=”Quantity”/>

<Component SheetName=”Sheet 2”/>
</Component>
<FoldingParams PartIDKeys=”SheetName” NoOp=”true” ID=”fold”>

<FoldingParams SheetName=”Sheet 1” NoOp=”false”/>
</FoldingParams>

The following example is NOT valid:
<Component PartIDKeys=”SheetName” SheetName=”Sheet 1” ID=”c1”
Class=”Quantity”/>
<Component PartIDKeys=”SheetName” SheetName=”Sheet 2” ID=”c2”
Class=”Quantity”/>
<FoldingParams PartIDKeys=”SheetName” NoOp=”true” ID=”fold”>

<FoldingParams SheetName=”Sheet 1” NoOp=”false”/>
</FoldingParams>[RP120]

Page 78

Page 78

3.9.2.3 Partitioning of Resource sub-Elements
[RP121]Only resources must [RP122]be partitioned. If a resource contains subelements, the subelements must NOT be
partitioned. Subelements must be always specified completely in that part where they occur. The content of
subelements is not convoluted with the content of subelements in parts closer to the root.

Five examples are provided below. The first and the fourth example are valid, the second third, and fifth are
invalid. In the first example, the ExposedMedia resource is partitioned:
<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" … >
 <Media MediaType="Film" Brand="foo"/>
 <ExposedMedia Separation="Cyan"/>
 <ExposedMedia Separation="Magenta">
 <Media MediaType="Film" Brand="bar"/>
 </ExposedMedia >
</ExposedMedia >

In this invalid example #2, the Media in the leaves is not complete because it does not contain the MediaType
attribute. MediaType cannot not be derived from the Media part in the root element:
<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" … >
 <Media MediaType=”Film”/>
 <ExposedMedia Separation=”Cyan”>
 <Media Brand=”foo”/>
 </ExposedMedia >
 <ExposedMedia Separation=”Magenta”>
 <Media Brand=”bar”/>
 </ExposedMedia >
</ExposedMedia >

In this invalid example #3, Media is a subelement that must NOT be partitioned:
<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" … >
 <Media MediaType=”Film”>
 <Media Brand=”foo” Separation=”Cyan”>
 <Media Brand=”bar” Separation=”Magenta” />
 </Media >
</ExposedMedia >

Partitioning may be combined with inter-resource links, i.e. RefElements. In the following valid example #4, each
MediaRef is equivalent to an in-lined leaf with the explicit Part elements to define the partition, i.e. it is equivalent
to the valid example #1.
<Media ID=”MediaID” MediaType=”Film” PartIDKeys="Separation">
 <Media Separation=”Cyan” Brand=”foo”/>
 <Media Separation=”Magenta” Brand=”bar”/>
</Media>
<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" … >
 <ExposedMedia Separation=”Cyan”>
 <!—equivalent to <Media MediaType=”Film” Brand=”foo”/> -->
 <MediaRef rRef=”MediaID”>
 <Part Separation=”Cyan”/>
 </MediaRef>
 </ExposedMedia>
 <ExposedMedia Separation=”Magenta”>
 <!—equivalent to <Media MediaType=”Film” Brand=”bar”/> -->
 <MediaRef rRef=”MediaID”/>
 <Part Separation=” Magenta”/>
 </MediaRef>
 </ExposedMedia >
</ExposedMedia >

Page 79

Page 79

In this invalid example #5, MediaRef does not reference the leaves of Media, but rather the root of Media. It is
equivalent to the invalid example #3.
<Media ID=”MediaID” MediaType=”Film” PartIDKeys="Separation">
 <Media Separation=”Cyan” Brand=”foo”/>
 <Media Separation=”Magenta” Brand=”bar”/>
</Media>
<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" … >
 <MediaRef rRef=”MediaID”>
</ExposedMedia >

3.9.2.4 Additional Attributes for use with partitioned Resources[RP123]
In addition to the usual resource attributes and elements, the partitionable Resource element has partition-specific
attributes and elements in its root. Specifying PartIDKeys in the root defines a partitioned [RP124]resource. Further
attributes are listed in the following table:

Table 3-25 Contents of the partitionable Resource element

Name Data Type Description
List of attribute names that are used to separate the individual parts.
PartIDKeys also defines the sequence from root to leaf in which the
PartIDKeys must occur in the partitioned resource. Each entry in the
PartIDKeys list must occur only once. PartIDKeys must not be specified
below the root of a partitioned resource, i.e. in an intermediate node or
leaf. [RP125]Possible values are:
BinderySignatureNa
me[RP126]
BlockName
BundleItemIndex -
CellIndex [RP127]
Condition[RP128]
DocCopies
DocIndex
DocRunIndex
DocSheetIndex
FountainNumber
LayerIDs
Location
Option

PageNumber
PartVersion
PreflightRule[RP129]
PreviewType
RibbonName
Run
RunIndex
RunTags
RunPage
SectionIndex
[RP130]Separation

SetDocIndex
SetIndexSetRunIndex
SheetIndex
SheetName
Side
SignatureName
TileID
WebName

PartIDKeys ?
Modified in JDF
1.2

enumerations

For details, see Table 3-26.
PartUsage ?
New in JDF 1.1

enumeration Description of the interpretation of partitions. One of:
Explicit – Require explicit partition matches. All referenced partitions
referenced in Part must exist, otherwise it is an error. The default attributes
are returned, overridden by the partition’s values, if found. This is the
default behavior.
Implicit – Allow sparse overrides of default values. The referenced partition
is not required to exist. The default attributes are returned, overridden by the
partition’s values, if found.
PartUsage must only be specified in the root of a partitioned resource.[RP131]
For details on PartUsage, see section 3.9.3.2, Implicit and Explicit
PartUsage in Partitioned Resources.

PipePartIDKeys ?
New in JDF 1.2

enumerations Defines the granularity of a dynamic pipe for a partitioned resource. For
instance, a resource may be partitioned by sheet, surface and separation
(resource attribute PartIDKeys = SheetName Side Separation), but pipe

Page 80

Page 80

Name Data Type Description
requests should only be issued once per surface (resource link attribute
PipePartIDKeys = SheetName Side). The contents of PipePartIDKeys
must be a subset of the PartIDKeys attribute of the resource that is linked
by this ResourceLink. If PipePartIDKeys is not specified, it defaults to
PartIDKeys, i.e. maximum granularity. For details on partitioned resources,
see Section 3.9.2.

Resource * element Nested resource elements that contain the appropriate part ID(s). These
elements must be of the same name and type as the root Resource element.
They represent the individual parts or groups of parts.

Partitionable resources are uniquely identified by the attribute values listed in PartIDKeys attributes. The choice of
which attributes to use depends on how the agent organizes the job.

The following table lists the content of a Part element, which contains a set of attributes that have a well
described meaning. Each of the attributes, except Sorting, may be used in the nested resource elements of
partitionable resources as the part ID key (see example above).

Part elements match a given partition when all of the attributes of a Part element match the attributes of the
referenced Resource. This corresponds to Boolean AND operation. If multiple Part elements are defined, the result
is a Boolean OR of the multiple parts.

Table 3-26 Contents of the Part element

Name Data Type Description
BinderySignatureNa
me ?

NMTOKEN Name of the BinderySignature used in a ##ref LayoutObject
description.[RP132]

BlockName ?
New in JDF 1.1

NMTOKEN Identifies a CutBlock from a Cutting process. The value of this
attribute must match the value of the [RP133]Name attribute of a
CutBlock.

CellIndex ? IntegerRangeList Index of BinderyCells in a LayoutObject or BinderySignature.[RP134]
Condition ? NMTOKEN Condition of a physical resource. This key specifies whether a resource

is good or waste and also specifies the various types of waste. For a set
of predefined values, refer to ##ref appendix conditions.[RP135]

DocCopies ? IntegerRangeList Identifies a set of document copies to which the partition applies.
DocCopies is a logical reference that may be independent of the
RunList structure and must NOT be used as an explicit partition key
of RunList resources.[RP136]

DocIndex ? IntegerRangeList The DocIndex attribute selects a set of logical instance documents
from a RunList resource. DocIndex is a logical reference that may
be independent of the RunList structure and must NOT be used as an
explicit partition key for RunList resources.

DocRunIndex ? IntegerRangeList The DocRunIndex attribute selects a set of logical pages from
instance documents of a RunList resource. For example
DocRunIndex = ”0 –1” specifies the first and last page of every copy
of every selected instance document (assuming that additional
partitioning using DocCopies and/or DocIndex is not also specified).
DocRunIndex is a logical reference that may be independent of the
RunList structure and must NOT be used as an explicit partition key
for RunList resources. The index always refers to entries of the
entire RunList and must not be modified if only a part of the RunList
is spawned.

Page 81

Page 81

Name Data Type Description
DocSheetIndex ? IntegerRangeList The DocSheetIndex attribute selects a set of logical sheets from

individual instance documents. For example DocSheetIndex = ”0 –
1” specifies the first and last sheet of every selected copy of every
instance document (assuming that additional partitioning using
DocCopies and/or DocIndex is not also specified). DocSheetIndex is
a logical reference that may be independent of the RunList structure
and must NOT be used as an explicit partition key for RunList
resources. The index always refers to entries of the entire RunList
and must not be modified if only a part of the RunList is spawned.

FountainNumber ? integer Zero based position index of the fountain. Used to partition fountains
along the axis of a roller, may be used for web printing.

ItemNames ? NMTOKENS List of items to select from a Bundle. If not specified, all
BundleItems are processed.

LayerIDs ?
New in JDF 1.1

IntegerRangeList The LayerIDs attribute selects a set layers that are defined by
LayerID. If not specified, all layers are processed.

Location ? string Name of the location, e.g.[RP137] in MIS. This part key allows to
describe distributed resources. Note that this name does not define the
location by itself. See section ##ref3.9.2.6 for details on specifying
locations.[RP138]

Option ? string Option of an RFQ. Used mainly in Intent resources.
PageNumber ? IntegerRangeList Page number in a Component or document, e.g., FileSpec that is

not described as a RunList.
PreflightRule ? string Definition of the specific parts of a PRRule used in preflight

applications.[RP139]
PartVersion ? string Version identifier, such as the language version of a catalog.
PreviewType ?
New in JDF 1.1

enumeration Type of the preview. Possible values are:
Separation: separated preview in medium resolution.
SeparationRaw: separated preview in medium resolution.with no
compensation.[RP140]
SeparatedThumbNail: Very low resolution separated preview.
ThumbNail: Very low resolution rgb preview.
Viewable: rgb preview in medium resolution.
If both PreviewType and ##refPreview/@PreviewUsage or
##refPreviewGenerationParams/@PreviewUsage are specified,
they must match.[RP141]

RibbonName ? string A string that uniquely identifies each ribbon. Multiple ribbons are
created out of one web after dividing in case of web printing.

Run ?
Modified in JDF 1.1

string The Run attribute selects a set of partitioned RunList elements from a
RunList resource.

Page 82

Page 82

Name Data Type Description
RunIndex ? IntegerRangeList The RunIndex attribute selects a set of logical pages from a RunList

resource in a manner that is independent from the internal structure of
the RunList. It contains an array of mixed ranges and individual
indices separated by whitespace. Each range consists of two indices
connected with a tilde (~) and no whitespace. For example,
RunIndex = “2~5 8 10 22~-1”. Negative numbers reference pages
from the back of a file in base-1 counting. In other words, -1 is the
last page, -2 the second to last, etc. Thus RunIndex = “0~-1” refers to
a complete range of pages, from first to last. RunIndex is a logical
reference that is independent of the RunList structure and must NOT
be used as an explicit partition key. The index always refers to entries
of the entire RunList and must not be modified if only a part of the
RunList is spawned.

RunTags ?
New in JDF 1.1

NMTOKENS List of names in a named RunList. Used to partition resources that
are linked from processes that also have a RunList as input when the
sequence of the RunList is undefined. The partition is selected if the
explicit or implied (e.g. from the PDL) value of RunTag of the
RunList matches any of the entries in RunTags.

RunPage ?
New in JDF 1.1

integer Zero based page number. Used when a document / file based RunList
is broken down into a page based RunList. For instance, a 2 page
document runlist:
<RunList URL=”doc.pdf”(…)/>
is split into:
<RunList PartIDKeys=”RunPage” (…)>
 <RunList URL=”doc_page0.pdf” RunPage=”0” (…)/>
 <RunList URL=”doc_page1.pdf” RunPage=”1” (…)/>
</RunList>

SectionIndex ? IntegerRangeList List of sections in a ##ref LayoutObject.[RP142]
Separation ? string Identifies the separation name. Possible values include:

Composite – Non-separated resource.
Separated – The resource is separated, but the separation definition is
handled internally by the resource, such as a PDF file that contains
SeparationInfo dictionaries.
Cyan – Process color.
Magenta – Process color.
Yellow – Process color.
Black – Process color.
Red – Additional process color.
Green – Additional process color.
Blue – Additional process color.
Orange – Additional process color.
Spot – Generic spot color. Used when the exact nature of the spot
color is unknown.
Varnish – Varnish.
Other values may be any separation name defined in the Name
attribute of a Color element in the ColorPool.
When Separation is applied to a ColorantControlLink, it defines an

Page 83

Page 83

Name Data Type Description
implicit partition that selects a subset of separations for the process
that is described by the ColorantControl. For details, see ##ref
ColorantControl.[RP143]

SetDocIndex ? IntegerRangeList The SetDocIndex attribute selects a set of logical instance documents
from instance document sets of a RunList resource. For example
SetDocIndex = ”0 –1” specifies the first and last page of every copy
of every selected instance document set. SetDocIndex is a logical
reference that may be independent of the RunList structure and must
NOT be used as an explicit partition key for RunList resources. The
index always refers to entries of the entire RunList and must not be
modified if only a part of the RunList is spawned.

SetIndex ?
New in JDF 1.1

IntegerRangeList The SetIndex attribute selects a set of logical instance document sets
from a RunList resource. SetIndex is a logical reference that may be
independent of the RunList structure and must NOT be used as an
explicit partition key for RunList resources. The index always refers
to entries of the entire RunList and must not be modified if only a
part of the RunList is spawned.

SetRunIndex ? IntegerRangeList The SetRunIndex attribute selects a set of logical pages from
instance document sets of a RunList resource. For example
SetRunIndex = ”0 –1” specifies the first and last page of every copy
of every selected instance document set. SetRunIndex is a logical
reference that may be independent of the RunList structure and must
NOT be used as an explicit partition key for RunList resources. The
index always refers to entries of the entire RunList and must not be
modified if only a part of the RunList is spawned.

SheetIndex ?

IntegerRangeList The SheetIndex attribute selects a set of logical sheets from a
RunList resource. In 1-up simplex printing, it is identical to
RunIndex. SheetIndex is a logical reference that is independent of
the RunList structure and must NOT be used as an explicit partition
key.

SheetName ? string A string that uniquely identifies each sheet. The value of this attribute
must match the value of the Name attribute of a sheet.

Side ? enumeration Denotes the side of the sheet. Possible values are:
Front
Back
If Side is specified, the Part element refers to one surface of the sheet.
If it is not specified, it refers to both sides.
In case of web printing, Front is a synonym for the upper side and
Back for the down side of the web.

SignatureName ? string A string that uniquely identifies the signature within the partitionable
resource. The value of this attribute must match the value of the
Name attribute of a Signature.[RP144]

Page 84

Page 84

Name Data Type Description
Sorting ? IntegerRangeList Mapping from the implied partitionable resource order to a process

order. The indices refer to the elements of the complete partitionable
resource, not to the index in the selection of parts defined by the Part
element.1 Defaults to “0~-1”, i.e. the part order is the same as the
sorting order.
Sorting must NOT be used as a partition key.

SortAmount ? boolean If a sorted resource has an Amount attribute and SortAmount = true,
each resource must be processed completely. If SortAmount = false
(the default), each Part element must be processed the number of
times specified in the Amount attribute before starting the next Part.
SortAmount must NOT be used as a partition key.

TileID ? XYPair XYPair of integer values that identifies the tile. Tiles are identified by
their X and Y indexes. Values are zero-based and expressed in the PS
coordinate system. So
“0 0” is the lower left tile and “1 0” is the tile next to it on the right.
Tile resources are described in detail in the Section 7.2.214 Tile.
May also be used to identify multiple plates per cylinder. Then the x-
index corresponds to a zero based position index along the axis of a
roller and the y-value to a zero based position index along the
circumference of a roller.

WebName ? string A string that uniquely identifies each web.

If multiple Part ID keys are used in a partitioned resource, for example PartIDKeys="SheetName Side Separation
Location", then all part ID keys must be defined for each leaf in the partitioned resource. In other words, if you
walk from a leaf of a partitioned resource up to the root, each of the part ID keys defined in PartIDKeys must occur
exactly one time. For example, it is not allowed that only the part ID keys SheetName and Separation be defined for
some leaves in a partitioned resource with PartIDKeys="SheetName Side Separation" defined in the root.

3.9.2.5 Options in Intent Resources
JDF defines Option as a part key in order to specify multiple options e.g. for multiple quotes in a non-redundant
manner. A ResourceLink that links to a resource with an Option partition but has no Part element to choose the
Option, defaults to the root resource.

3.9.2.6 Locations of Physical Resources
Unlike other kinds of resources, physical resources may be stored at multiple, distributed locations. This is specified
by including a Location element [RP145]in the resource element. A Location partition key is provided to define
multiple locations of one resource. The partition key carries no semantic meaning and does not by itself define the
name of a location.

 [RP146]

The following example describes a set of plates that are distributed over two locations:

<ExposedMedia ID="L1" PartIDKeys="Location" … >
 <ExposedMedia Amount="42" Location="dd1[RP147]">
 <Location LocationName=”Desk Drawer 1" LocID="PP_01234">
 <Address … />
 </Location>
 </ExposedMedia>
 <ExposedMedia Amount="100" Location="dd2[RP148]">

1 Note that Sorting is semantically different from the other attributes in this table, as it implies an ordering of parts,
whereas the other attributes define a selection of parts.

Page 85

Page 85

 <Location LocationName=”Desk Drawer 2" LocID="PP_01235">
 <Address … />
 </Location>
</ExposedMedia>
…
<ExposedMediaLink ResourceID="L1" Amount="50" Usage="Input">
 <Part Location="dd2"/>
<!-- Note that @Location may but is not required to match
Location/@LocationName -->[RP149]
</ExposedMediaLink>
The following example describes two different Media in the top and bottom tray of a LayoutPreparation process.
The Media is selected for the cover and inside pages respectively.

<Media ID="TopMedia" … >
 <Location LocationName=”Top"/>
</Media>
<Media ID="BottomMedia" … >
 <Location LocationName=”Bottom"/>
</Media>

…
<LayoutPreparationParams Sides=”TwoSidedFlipY” PartIDKeys=”RunIndex”(…)>
 <!-- Partition that defines the first and last page of the document -->
 <LayoutPreparationParams RunIndex=”0 1 –2 –1”>
 <MediaRef rRef=”TopMedia”/>
 </LayoutPreparationParams>
 <!-- Partition that defines the inside pages of the document -->
 <LayoutPreparationParams RunIndex=”2~-3”>
 <MediaRef rRef=”BottomMedia”/>
 </LayoutPreparationParams>
</LayoutPreparationParams>

3.9.3 Linking to Subsets of Resources
An agent can link to a subset of a resource by including a Part element in a ResourceLink element in order to
define a specific subset of a resource. For details of the Part element, please refer to Table 3-26 Contents of the Part
element .

Partitionable hierarchies define an implied ordering of the individual parts. In the example in Section 3.9.2
Description of Partitionable Resources, the first element has a ProductID = S1FCPlateJ42 and the last has a ProductId
= S2FKPlateJ42. If process ordering of a partitionable resource is important, the Part element of the ResourceLink
must specify a Sorting attribute. If Sorting is not specified, process ordering is arbitrary. If Sorting is specified
multiple times, the resolution of the sorting must be unambiguous.

The Sorting attribute maps the implied part ordering to a specified process ordering in a 0-based list. The first
entry in Sorting defines the first entry to be processed. The following example, using a ResourceLink element,
describes how the plates described in the previous example could be ordered by separation for the first sheet
followed by the complete second sheet, in reverse order (back to front). Each set of two plates, as specified in the
Amount attribute of the resource, would be processed together.

<ExposedMediaLink rRef="L1">
 <Part Sorting="0 4 1 5 2 6 3 7 –1~8" SortAmount=”false”/>
</ExposedMediaLink>

A partitionable resource may also be split into individual resources by an agent. In this case, one resource must be
created for each individual part or set of parts. For example, a resource that describes a set of films that are also
separated may be split into a set of resources that each describe all separations of a sheet.

Page 86

Page 86

3.9.3.1 Handling Amount in a ResourceLink to a Partitioned Resource
The Amount specified in a ResourceLink to a physical resource specifies the sum of individual resource partitions.
Individual amounts are specified in the PartAmount elements of the AmountPool. The following example shows
the ResourceLink that refers to the previous example for a total of five plates.

<ExposedMediaLink rRef="L1" Amount=”4”>
 <Part SheetName="S1" Separation="Cyan"/>
 <Part SheetName="S1" Separation="Magenta"/>
 <AmountPool Amount=”1”>
 <PartAmount>
 <Part SheetName="S1" Side="Front" Separation="Cyan"/>
 </PartAmount>
 <PartAmount>
 <Part SheetName="S1" Side="Back" Separation="Cyan"/>
 </PartAmount>
 <PartAmount>
 <Part SheetName="S1" Side="Front" Separation="Magenta"/>
 </PartAmount>
 <PartAmount Amount=”2”>
 <Part SheetName="S1" Side="Back" Separation="Magenta"/>
 </PartAmount>
 </AmountPool>
</ExposedMediaLink>

3.9.3.2 Implicit and Explicit PartUsage in Partitioned Resources
The PartUsage attribute defines how overspecified ResourceLinks are resolved.
If PartUsage=”Explicit”, ResourceLinks that do not point to an explicitely defined partition of a resource are an
error.
If PartUsage=”Implicit”, ResourceLinks that do not point to an explicitely defined partition of a resource refer to
the closest matching resource Partition..

<ExposedMedia Class="Handling" Brand="Gooey" ID="XM_ID" Status="Available"
PartIDKeys="SheetName Side Separation" PartUsage=”Implicit/Explicit” ProductID="Root">
 <Media MediaType=”Plate” Dimension=”500 600”/>
 <ExposedMedia SheetName="S1" ProductID="S1">
 <ExposedMedia Side="Front" ProductID="S1F">
 <ExposedMedia Separation="Cyan" ProductID="S1FC"/>
 <ExposedMedia Separation="Magenta" ProductID="S1FM"/>
 <ExposedMedia Separation="Yellow" ProductID="S1FY"/>
 <ExposedMedia Separation="Black" ProductID="S1FK"/>
 </ExposedMedia>
 <ExposedMedia Side="Back" ProductID="S1B">
 <ExposedMedia Separation="Cyan" ProductID="S1BC"/>
 <ExposedMedia Separation="Magenta" ProductID="S1BM"/>
 <ExposedMedia Separation="Yellow" ProductID="S1BY"/>
 <ExposedMedia Separation="Black" ProductID="S1BK"/>
 </ExposedMedia>
 </ExposedMedia>
 <ExposedMedia SheetName="S2" Side="Front" ProductID="S2F">
 <ExposedMedia Separation="Cyan" ProductID="S2FC"/>
 <ExposedMedia Separation="Magenta" ProductID="S2FM"/>
 <ExposedMedia Separation="Yellow" ProductID="S2FY"/>
 <ExposedMedia Separation="Black" ProductID="S2FK"/>
 </ExposedMedia>
</ExposedMedia>

<ExposedMediaLink rRef=”XM_ID”>

<Part SheetName=”x” Side=”y” Separation=”z”/>
</ExposedMediaLink>

Page 87

Page 87

The following table shows the ProductID of the Resource Partition that is selected for various values of
SheetName, Side and Separation for PartUsage=”Implicit” and “Explicit” respectively.

Table 3-28 PartUsage example usages

SheetName Side Separation Implicit Explicit
- - - Root Root
S1 - - S1 S1
S2 - - S2F S2F
S3 - - Root -
S2 Back Cyan Root -
S1 Back Cyan S1BC S1BC
S1 Back Orange S1B -
S1 - Cyan S1BC, S1FC S1BC, S1FC

3.9.3.3 Referencing Partitioned Resources from Nodes That Allow Multiple
ResourceLinks.

Some processes, e.g., Collecting, Gathering allow multiple input resources of the same type. These multiple
input resources may be represented by multiple individual resources or by partitioned resources or by a mixture of
both. If ordering is significant, the order of the leaves in a partitioned resource defines said ordering. The following
examples of gathering three input sheets are equivalent:

Explicit reference of ordered partitioned resources:
<JDF ID="Link0037" Type="Gathering" Status="Waiting">
 <ResourcePool>
 <GatheringParams ID="Gather01" Class="Parameter" Locked="false"
Status="Available"/>
 <Component ID="Sheets01" Class="Quantity" Status="Available"
PartIDKeys="SheetName" ComponentType="Sheet" DescriptiveName="printed insert
sheets">
 <Component SheetName="Sheet1"/>
 <Component SheetName="Sheet2"/>
 <Component SheetName="Sheet3"/>
 </Component>
 </ResourcePool>
 <ResourceLinkPool>
 <GatheringParamsLink rRef="Gather01" Usage="Input"/>
 <!—three ComponentLink explicitly reference individual parts -->
 <ComponentLink rRef="Sheets01" Usage="Input">
 <Part SheetName="Sheet1"/>
 </ComponentLink>
 <ComponentLink rRef="Sheets01" Usage="Input">
 <Part SheetName="Sheet2"/>
 </ComponentLink>
 <ComponentLink rRef="Sheets01" Usage="Input">
 <Part SheetName="Sheet3"/>
 </ComponentLink>
 </ResourceLinkPool>
</JDF>

Implicit reference of ordered partitioned resources:
<JDF ID="Link0037" Type="Gathering" Status="Waiting">
 <ResourcePool>

Page 88

Page 88

 <GatheringParams ID="Gather01" Class="Parameter" Locked="false"
Status="Available"/>
 <Component ID="Sheets01" Class="Quantity" Status="Available"
PartIDKeys="SheetName" ComponentType="Sheet" DescriptiveName="printed insert
sheets">
 <Component SheetName="Sheet1"/>
 <Component SheetName="Sheet2"/>
 <Component SheetName="Sheet3"/>
 </Component>
 </ResourcePool>
 <ResourceLinkPool>
 <GatheringParamsLink rRef="Gather01" Usage="Input"/>
 <!—the ComponentLink implicitly references all three parts -->
 <ComponentLink rRef="Sheets01" Usage="Input"/>
 </ResourceLinkPool>
</JDF>

3.9.4 Splitting and Combining Resources
Depending on the circumstances, it may be appropriate either to split a resource into multiple new nodes or to specify
multiple locations or parts for an individual resource. There are four possible methods for splitting and combining
resources, each of which is illustrated in Figure 3.8, below. Both Case A and Case B in Figure 3.8 represent workflows
that use the Amount attribute of their resource links to share resources. This method is practical when one controller
controls all aspects of resource consumption or production. In Case A, the resource amount is split between subsequent
processes. In Case B, individual processes produce amounts that are then combined into a unified resource that is, in
turn, used by a single process. In both cases, a single, shared resource is employed. To enable independent parallel
processing by multiple controllers, however, independent resources are required. To create independent resources from
one resource, the Split process is used, as shown in Case C (for further details, see Section 6.2.10 Split). This process
allows multiple processes to be spawned off, after which multiple processes can consume the same resource in parallel
and may therefore run in parallel. Case D demonstrates the reverse situation, which occurs if resources have been
produced by multiple processes and are then consumed, as a unified entity, by a single subsequent process. To
accomplish this, the Combine process combines multiple resources to create the single resource.

Page 89

Page 89

Figure 3.8 Splitting and combining physical resources

3.10 AuditPool
Audit elements contain the post-facto recorded results of a process such
as the execution of a JDF node or modification of the JDF itself. Audit
elements become static after a process has been finished. They cannot
ever be modified after the process has been aborted or completed.
Therefore, if Audit elements link to resources, those resources should be
locked in order to inhibit accidental modification of audited information,
which is why JDF includes a locking mechanism for resources. The ID
of all resources that are referenced by Audit elements must be included
in the rRefs attribute of the AuditPool in order to enable spawning and
merging. Audit elements record any event related to the following
situations:

1. The creation of a JDF node by a Created element.

2. Spawning and merging, including resource copying by spawned and merged elements.

3. Errors such as unnecessary ResourceLink elements, wrongly linked resources, missing resources, or missing
links, which may be detected by agents during a test run or by a Notification element.

Node 1

Res1+2+3 Node BNode 2

Node 3

 Amount 2 Amount 1+2+3

 Amount 1

 Amount 3

Node 1 Res 1

Combine-Node Res1+2+3 Node BNode 2 Res 2

Node 3 Res 3

Split-Node

Node 1

Node A Res 1+2+3

Res 1

Node 2Res 2

Node 3Res 3

Node 1

Node A Res 1+2+3 Amount 1+2+3

 Amount 1

Node 2

Node 3

 Amount 2

 Amount 3

D: exact workflow for combining

B: brief workflow for combining by a shared output resource

C: exact workflow for splitting

A: brief workflow for splitting by a shared input resource

Audit information is the Job’s
history and can support your daily,
quality control and troubleshooting
management reporting needs.

Audit Pools

Page 90

Page 90

4. Actual data about the production and resource consumption by a ResourceAudit element.

5. Any process phase times. Examples include setting up a device, maintenance, and washing, as well as down-
times as a result of failure, breaks, or pauses. Changes of implementation resource usage, such as a change of
operators by a PhaseTime element, would also constitute an example of a phase time.

6. Actual process scheduling data. For example, the process start and end times, as well as the final process
state, as determined by a ProcessRun element.

7. Any modification of a JDF node not covered by the preceding items, as recorded by a Modified or Deleted
element.

Audit information may be used by MIS for operations such as evaluation or invoicing. Figure 3.9 depicts the
structure of the AuditPool and Audit element types derived from the abstract audit type.

Page 91

Page 91

Figure 3.9 Structure of Audit element types derived from the abstract Audit type

Audit entries are ordered chronologically, with the last entry in the AuditPool representing the newest. A
ProcessRun element containing the scheduling data finalizes each process run. All subsequent entries belong to
the next run. The following table defines the contents of the AuditPool element.

Page 92

Page 92

Table 3-29 Contents of the AuditPool element

Name Data Type Description
rRefs ? IDREFS List of all resources that are referenced from within the AuditPool. Needed for Spawning.
Audit * element Chronologically ordered list of Audit elements. The Audit elements are abstract and serve

as placeholders for any audit. Audit elements are described in the sections that follow.

3.10.1 Audit Elements
All Audit elements inherit the content from the abstract Audit data type, described in the following table.

Table 3-30 Contents of the abstract Audit type

Name Data Type Description
AgentName ?
New in JDF 1.2

String The name of the agent application that added the audit element to the audit
pool (and was responsible for the creation or modification). Both the
company name and the product name can appear, and should be consistent
between versions of the application.

AgentVersion ?
New in JDF 1.2

String The version of the agent application that added the audit element to the
audit pool (and was responsible for the creation or modification). The
format of the version string can vary from one application to another, but
should be consistent for an individual application.

Author ?
Modified in
JDF 1.2

string Text that identifies the person who made the entry.

SpawnID ?
New in JDF
1.1

NMTOKEN Text that identifies the spawned processing step when the entry was generated. This is
a copy of the SpawnID attribute of the root JDF node of the process that generates the
Audit at the time the Audit is generated.

TimeStamp dateTime In case of the audits Created, Modified, Spawned, Merged, and Notification, this
attribute records the date and time when the related event occurred.
In case of the audits PhaseTime, ProcessRun, and ResourceAudit, the attribute
describes the time when the entry was appended to the audit pool.

Listed in the following sections are the elements derived from the abstract Audit type. Following the description of
each element is a table outlining the attributes associated with that element.

3.10.1.1 ProcessRun
This element serves two related functions. Its first is to summarize one complete execution run of a node. It
contains attributes that record the date and time of the start, the end time, the final process state when the run is
finished, and, optionally, the process duration of the process run. These attributes are described in Table 3-31.

Table 3-31 Contents of the ProcessRun element

Name Data Type Description
Duration ? duration Time span of the effective process runtime without intentional or unintentional breaks.

That time span is the sum of all process phases when the Status is InProgress, Setup
or Cleanup.

End dateTime Date and time at which the process ends.
EndStatus enumeration The Status of the process at the end of the run. For a description of process states, see

Table 3-3 Contents of a JDF node.
Possible values are:
Aborted

Page 93

Page 93

Name Data Type Description
Completed
FailedTestRun
Ready
Stopped – The execution of the node is stopped and may commence at a later time,
e.g., on another device.

Start dateTime Date and time at which the process starts.
Part *
New in JDF
1.1

element Describes which parts of a process this ProcessRun belongs to. If Part is not
specified for a ProcessRun, it refers to all parts. For example, imagine a print job
that should produce three different sheets. All sheets are described by one partitioned
resource. The Part elements define, unambiguously, the processing of the sheet to
which the ProcessRun refers.

The second function of a ProcessRun element is to delimit a group of audits for each individual process run.
Every group of audits terminates with a ProcessRun element, which contains the information described above. If a
process must be repeated (as a result of a late change in the order, for example), all audits belonging to the new run
will be appended after the last ProcessRun element that terminates the audits of the previous run. The number of
ProcessRun elements is, therefore, always equivalent to the number of process runs.

If a node describes partitioned resources, one ProcessRun may be specified for each individual part.

3.10.1.2 Notification
This element contains information about individual events that occurred during processing. For a detailed
discussion of event properties, see Section 4.6 Error Handling.

Table 3-32 Contents of the Notification element

Name Data Type Description
Class enumeration Class of the notification. Possible values, in order of severity from lowest to

highest, are:
Event – Indicates that a pure event due to any activity has occurred, for example,
machine events, operator activities, etc. This class is used for the transfer of
conventional event messages. In case of Class = Event, further event
information should be provided by the Type attribute and NotificationDetails
element.
Information – Any information about a process which cannot be expressed by
the other classes. No user interaction is required.
Warning – Indicates that a minor error has occurred and an automatic fix was
applied. Execution continues.
Error – Indicates that an error has occurred that requires user interaction.
Execution cannot continue.
Fatal – Indicates that a fatal error led to abortion of the process.

Type ? NMTOKEN Identifies the type of notification. Also defines the name of the abstract
NotificationDetails element.2 A list of predefined Notification types is
compiled in Appendix J NotificationDetails.

Comment * telem The Notification element may contain Comment elements with a verbose,
human-readable description of the event. If the value of the Class attribute is
one of Information, Warning, Error, or Fatal, it should provide at least one
Comment element. In case of Class = Event, Comment elements are optional.

CostCenter ? element The cost center to which this event should be charged.
Employee * refelement The Employee(s) associated with this event.

2 Type allows parsers that do not have access to the schema to find the instance of NotificationDetails.

Page 94

Page 94

Name Data Type Description
Notification-
Details ?

element Abstract element which is a placeholder for additional structured information. It
provides additional information beyond the Class and Type attribute and
beyond the Comment element. For a list of supported NotificationDetails
elements, see Appendix J NotificationDetails.

Part *
New in JDF 1.1

element Describes which parts of a process this Notification belongs to. If Part is not
specified for a Notification, it refers to all parts. For example, imagine a print
job that should produce three different sheets. All sheets are described by one
partitioned resource. The Part elements define, unambiguously, the sheet to
which the audit refers.

Table 3-33 Redundant table removed

Name Data Type Description

3.10.1.2.1 NotificationDetails
The abstract NotificationDetails element is a placeholder only with no additional attributes. For a list of supported
NotificationDetails elements, see Appendix J NotificationDetails.

3.10.1.3 PhaseTime
This element contains audit information about the start and end times of any process states and substates, denoted as
phases. Phases may reflect any arbitrary subdivisions of a process, such as maintenance, washing, plate changing,
failures, and breaks.

PhaseTime elements may also be used to log the actual time spans when implementation resources are used by
a process. For example, the temporary necessity of a fork lift can be logged if a PhaseTime element is added that
contains a link to the fork lift device resource and specifies the actual start and end time of the usage of that fork lift.

The times specified in the PhaseTime elements should not overlap with each other and should cover the
complete time range defined in the ProcessRun element that identifies the end of the run.

Table 3-34 Contents of the PhaseTime element

Name Data Type Description
CostType ? enumeration Whether or not this PhaseTime is chargeable to the customer or not. One of:

Chargeable
Nonchargeable
If not specified, the cost type is unknown.[RP150]

Duration ? duration Duration of the phase. If not specified the value of End-Start is implied.
End dateTime Date and time of the end of the phase.
Start dateTime Date and time of the beginning of the phase.
Status enumeration Status of the phase. Possible values of JDF node states are:

TestRunInProgress
Setup
InProgress
Cleanup
Spawned
Stopped
The states listed above are a subset of the possible states of a JDF node. For all
possible states of a JDF node see Table 3-3. The remaining set of states, i.e. the
end states — Ready, FailedTestRun, Aborted and Completed—must be logged by
the ProcessRun audit element that terminates the list of audits for one process
run.

Page 95

Page 95

Name Data Type Description
StatusDetails ? string Description of the status phase that provides details beyond the enumerative

values given by the Status attribute. For a list of supported values, see
Appendix G.

WorkType ? enumeration Definition of the work type for this PhaseTime, i.e. whether or not this
PhaseTime relates to originally planned work, an alteration or rework. One of
Original: Standard work that was originally planned for the job
Alteration: Work done to accommodate change made to the job at the request of
the customer
Rework: Work done due to unforeseen problem with original work (bad plate,
resource damaged, etc.)
If not specified, the work type is undefined.

WorkTypeDetails
?

string Definition of the details of the work type for this PhaseTime, i.e. why the work
was done.
For WorkType=”Alteration”, values may include
CustomerRequest: The customer requested change(s) requiring the work.
InternalChange: Change was made for production efficiency or other internal
reason.
For WorkType=”Rework”, values may include
ResourceDamaged: A resource needs to be created again to account for a
damaged resource (damaged plate, etc.)
EquipmentMalfunction: Equipment used to produce the resource malfunctioned,
resource must be created again.
UserError: Incorrect operation of equipment or incorrect creation of resource
requires creating the resource again.
If not specified, the work type details are unknown.[RP151]

Device * refelement Links to Device resources that are working during this phase.
Employee * refelement Links to Employee resources that are working during this phase.
ModulePhase * element Additional phase information of individual device modules, such as print units.
Part * element Describes which parts of a job is currently being logged. If Part is not specified

for a node that modifies partitioned resources, PhaseTime refers to all parts.
For example, imagine a print job that should produce 3 different sheets. All
sheets are described by one partitioned resource. In order to separate the
different print phases for each sheet, the Part elements define, unambiguously,
the sheet to which the audit refers.

ResourceLink *
New in JDF 1.1

element These resource links specify the actual consumption/usage or production of
resources during this production phase.

It is possible to monitor the states of individual modules of a complex device, such as a printer with multiple print
units, by defining ModulePhase elements. One PhaseTime element may contain multiple ModulePhase
elements and can, therefore, record the status of multiple units in a device. In contrast to PhaseTime audit
elements ModulePhase elements are allowed to overlap in time with one another. ModulePhase elements are
defined in the following table.

Table 3-35 Contents of the ModulePhase element

Name Data Type Description
DeviceID string Name of the device. This must be the DeviceID attribute of one of the Device

elements specified in the PhaseTime audit.

Page 96

Page 96

Name Data Type Description
DeviceStatus enumeration Status of the device module. Possible values are:

Unknown – The module status is unknown.
Idle – The module is not used, for example, a color print module that is inactive
during a black-and-white print.
Down – The module cannot be used. It may be broken, switched off etc.
Setup – The module is currently being set up.
Running – The module is currently executing.
Cleanup – The module is currently being cleaned.
Stopped – The module has been stopped, but running may be resumed later. This
status may indicate any kind of break, including a pause, maintenance, or a
breakdown, as long as running can be easy resumed.
These states are analog to the device states of Table 5-46.

Duration ? duration Duration of the ModulePhase. If not specified the value of End-Start is implied.
End dateTime Date and time of the end of the module phase.
ModuleIndex
Modified in JDF
1.2

IntegerRange
List

0-based indices of the module or modules. The list is based on all modules of the
Device.If multiple module types are available on one device, each must be unique
in the scope of the device.

ModuleType NMTOKEN Module description. The allowed values depend on the type of device that is
described. The predefined values are listed in Appendix A.

Start dateTime Date and time of the beginning of the module phase.
StatusDetails ? string Description of the module status phase that provides details beyond the

enumerative values given by the DeviceStatus attribute. For a list of supported
values, see Appendix G.

Employee * refelement Links to Employee resources that are working during this module phase on this
module (the module is specified by the attributes ModuleIndex and
ModuleType).

3.10.1.4 ResourceAudit
The ResourceAudit element describes the usage of resources during execution of a node or the modification of the
intended usage of a resource, in other words the modification of a resource link. It logs consumption and production
amounts of any quantifiable resources, accumulated over one process run or one part of a process run. It contains one
or two abstract ResourceLink elements. The first is required and specifies the actual consumption/usage or production
of the resource. The second ResourceLink is optional and used to store information about the original resource link,
which also refers to the original resource. If the original resource does not need to be saved, a boolean
ContentsModified attribute in the ResourceAudit should be used to indicate that a change has been made.

Table 3-36 Contents of the ResourceAudit element

Name Data Type Description
ContentsModified ? boolean Specifies that a modification has occurred but that the original resource has been

deleted.
Reason ?
New in JDF 1.1

enumeration Reason for the modification. One of:
PlanChange – The resource was modified due to a change of plan before actual
processing.
ProcessResult – The default.

ResourceLink element The first resource link specifies the actual consumption/usage or production of a
resource.

ResourceLink ? element The second optional resource link logs the modification of a resource link and the
modification of the resource it refers to. It holds the planned resource link which

Page 97

Page 97

Name Data Type Description
also refers to the planned resource. The planned and actual resource may be the
same.

For details on ResourceLink elements and ResourceLink subclasses, see Section 3.8 Resource Links. The
partitioning of resources using Part elements is defined in Section 3.9.2 Description of Partitionable Resources.

3.10.1.4.1 Logging Machine Data by Using the ResourceAudit
If a resource is modified during processing, any nodes that also reference the resource may also be affected. The
following logging procedure is recommended in order to track the resource modification and to insure consistency
of the job:

1. Create a copy of the original resource with a new ID.
2. Modify the original resource to reflect the changes.
3. Insert a ResourceAudit element that references the modified original resource with the first

ResourceLink and the copied resource with the second ResourceLink attribute.

The following example describes the logging of a modification of the media weight and amount. The JDF document
before modification requests 400 copies of 80 gram media:
<JDF … >
 <ResourceLinkPool>
 <MediaLink rRef="RLink" Usage="Input" Amount="400"/>
 </ResourceLinkPool>
 <ResourcePool>
 <Media Weight="80" ID="RLink" Amount="400" (…)/>
 <ResourcePool/>
</JDF>

The JDF after modification specifies that 421 copies of 90-gram media have been consumed:
<JDF … >
 <ResourceLinkPool>
 <MediaLink rRef="RLink" Usage="Input" Amount="400"/>
<!—note that the ResourceLink has not changed -->
 </ResourceLinkPool>
 <ResourcePool>
 <Media Weight="80" ID="RPrev" Amount="400" (…) /> <!—Copy of the original
resource-->
 <Media Weight="90" ID="RLink" Amount="421" (…)/> <!—modified resource-->
 <ResourcePool/>
 <AuditPool>
 <ResourceAudit (…)>
 <MediaLink rRef="RLink" Usage="Input" Amount="421"/>
 <MediaLink rRef="RPrev" Usage="Input" Amount="400"/>
 </ResourceAudit>
 </AuditPool>
</JDF>[RP152]

3.10.1.4.2 Logging Changes in Product Descriptions by Using the ResourceAudit
ResourceAudit elements may also be used to store the original intent resources of a product specification in a
change order or request for requote. The mechanism is the same as above. The following example shows the
structure of a MediaIntent with Option partitions, where a late change of options from Option1 (80 gram paper) to
Option2 (90 gram paper) is requested.
<JDF … >
 <ResourceLinkPool>
 <MediaIntentLink rRef="id" Usage="Input">
 <Part Option=”Option2”/>
 </MediaIntentLink>
 </ResourceLinkPool>
 <ResourcePool>
 <MediaIntent PartIDKeys=”Option” (…)>
 <!— the common MediaIntent resource details -->

Page 98

Page 98

 <MediaIntent Option=”Option1” (…)>
 <Weight Preferred=”80”/>
 </MediaIntent>
 <MediaIntent Option=”Option2” (…)>
 <Weight Preferred=”90”/>
 </MediaIntent>
 </MediaIntent>
 <ResourcePool/>
 <AuditPool>
 <ResourceAudit (…)>
 <!— the actual MediaIntent resource link -->
 <MediaIntentLink rRef="id" Usage="Input">
 <Part Option=”Option2”/>
 </MediaIntentLink>
 <!— the original MediaIntent resource link -->
 <MediaIntentLink rRef="id" Usage="Input"/>
 <Part Option=”Option1”/>
 </MediaIntentLink>
 </ResourceAudit>
 </AuditPool>
</JDF>

3.10.1.5 Created
This element allows the creation of a JDF node or resource to be logged. If the element refers to a JDF node, it can
be located in the AuditPool element of the node that has been created or in any ancestor node. If the element refers
to a resource it must be located in the node where the resource resides so that the spawning and merging mechanism
can work effectively.

Table 3-37 Contents of the Created element

Name Data Type Description
ref ? IDREF Represents the ID of the created element. Defaults to the ID of the local JDF node.
TemplateID ? string Defines the Template JDF that was used as the template to create the node.
TemplateVersio
n ?

string Defines the version of Template JDF that was used as the template to create the
node.

3.10.1.6 Deleted
This element allows any deletions of a JDF node or Resource to be logged. The Deleted element must reside in the
the same AuditPool as the corresponding Created element.

 Table 3-38 Contents of the Deleted element

Name Data Type Description
jRef ? string The ID of the modified node or resource. The Deleted audit resides in a parent JDF of the

deleted node or resource.
XPath ? xpath Location of the deleted element relative to the parent JDF node of the Deleted audit element.

3.10.1.7 Modified
This element allows any modifications affecting a JDF node, such as changes made to the NodeInfo element or
CustomerInfo element, to be logged. Changes that can be logged by other audit element types, such as resource
changes, must not use this common log entry. The modification can be described textually by adding a generic
Comment element to the Modified element. The Modified element must reside in the the same AuditPool as the
corresponding Created element.
 Table 3-39 Contents of the Modified element
Name Data Type Description
jRef ? IDREF The ID of the modified node. The modified element resides in the modified node. Defaults to

the ID of the local JDF node.

Page 99

Page 99

3.10.1.8 Spawned
This element allows a job that has been spawned to be logged in the AuditPool of the parent node of the spawned
job-part or in the AuditPool of the node that has been spawned in case of spawning of individual partitions. For
details about spawning and merging, see Section 4.4 Spawning and Merging.

Table 3-40 Contents of the Spawned element

Name Data Type Description
Independent ? boolean Declares that independent jobs that have previously been merged into a big job

are spawned.
If it is set to true, the attributes jRefDestination, rRefsROCopied and
rRefsRWCopied have no meaning and should be omitted.
Default = false

jRef IDREF ID of the JDF node that has been spawned.
jRefDestination ? NMTOKEN ID of the JDF node to which the job has been spawned.3 This attribute must be

specified in the parent of the original node if independent jobs are spawned.
NewSpawnID
New in JDF 1.1

NMTOKEN Copy of the SpawnID of the newly spawned node. Note that a Spawned audit
may also contain a SpawnID attribute, which is the SpawnID of the node that
this audit is being placed into prior to spawning.

rRefsROCopied ? IDREFS List of IDs separated by whitespace. Identifies the resources copied to the
ResourcePool element of the spawned job during spawning. These resources
should NOT be modified by the spawned job.

rRefsRWCopied ? IDREFS List of IDs separated by white spaces. Identifies the resources copied to the
ResourcePool element of the spawned job during spawning. These resources
may be modified by the spawned job and must be copied back into their
original location by the merging agent.
Resource copying is required if resources are referenced simultaneously from
spawned nodes and from nodes in the original JDF document.

Status ?
New in JDF 1.1

enumeration Status of the spawned node at the time of spawning. Allowed values are
defined in Table 3-3 Contents of a JDF node, Status.

URL ?
New in JDF 1.1

URL Locator that specifies the location where the spawned node was stored by the
spawning process.

Part * element Identifies the parts that were selected for spawning in case of parallel spawning
of partitionable resources (see Section 4.4.3).

3.10.1.9 Merged
This element logs a merging event of a spawned node. For more details, see Section 4.4 Spawning and Merging.

Table 3-41 Contents of the Merged element

Name Data Type Description
Independent ? boolean Declares that independent jobs are merged into a big job for common

production.
If it is set to true, the attributes jRefSource and rRefsOverwritten have no
meaning and should be omitted.
Default = false

jRef IDREF ID of the JDF node that has been returned or merged.
jRefSource ? NMTOKEN ID of the JDF root node of the big job from which the spawned structure has

been returned. 4

3 The data type is NMTOKEN and not IDREF because the attribute refers to an external ID.
4 The data type is NMTOKEN and not IDREF because the attribute refers to an external ID.

Page 100

Page 100

Name Data Type Description
MergeID
New in JDF 1.1

NMTOKEN Copy of the SpawnID of the merged node. Note that a Merged audit may
also contain a SpawnID attribute, which is the SpawnID of the node that this
audit is being placed into prior to merging.

rRefsOverwritten ? IDREFS Identifies the copied resources that have been overwritten during merging.
Resources are usually overwritten during return if they have been copied
during spawning with read/write access.

URL ?
New in JDF 1.1

URL Locator that specifies the location of the merged node prior to merging by the
merging process.

Part * element Specifies the selected parts of the resource that were merged in case of parallel
spawning and merging of partitionable resources (see Section 4.4.3).

3.11 JDF Extensibility
JDF is meant to be flexible and therefore useful to any vendor, as each vendor will have specific data to include in
the JDF files. JDF is able to provide this kind of versatility by using the XML namespaces. This chapter describes
how JDF uses the XML extension mechanisms.

3.11.1 Namespaces in XML
JDF Extensibility is implemented using XML Namespaces. The Namespaces in XML specification is found at
http://www.w3.org/TR/REC-xml-names/.

XML namespaces are defined by xmlns attributes. A general example
is provided below. The example illustrates how private namespaces are
declared and used to extend an existing JDF resource by adding private
attributes and a private element.

<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1"
xmlns:foo="fooschema URI" … >
 …
 <SomeJDFDefinedResource name="abc"
foo:specialname="cba">
 …
 <foo:PrivateStuff type=""/>
 …
 </SomeJDFDefinedResource>
 …
</JDF>

Namespaces are inserted in front of attribute and element names. The associated namespace of element names with
no prefix is the default namespace defined by the xmlns attribute. The associated namespace of attributes with no
prefix is that one of the element (see Appendix A.2 XML Namespace Partitions in the specification Namespaces in
XML). All namespaces prefixes must be declared using standard xmlns:xxx attributes.

3.11.1.1 JDF Namespace
The official namespace URI for JDF Version 1.0 is: "http://www.CIP4.org/JDFSchema_1".
The official namespace URI for JDF Version 1.1 through 1.x [RP153]is: "http://www.CIP4.org/JDFSchema_1_1".
It is strongly recommended to use either the default namespace with no prefix or a prefix of “JDF” as the jdf
namespace prefix.

It is required to define the
default namespace in a JDF
document, even if no non-JDF
extensions are used. JDF may
be defined either in the default
namespace or in a qualified
namespace.

Using
Namespaces

In JDF

Page 101

Page 101

3.11.1.2 JDF Extension Namespace
CIP4 defines an extension namespace where new features that are anticipated to be included in a future version of
the specification are defined.
The official extension namespace URI for JDF Version 1.1 is: "http://www.CIP4.org/JDFSchema_1_1_X".
It is strongly recommended to use a prefix of “JDFX” as the jdf extension namespace prefix.

3.11.2 Extending Process Types
JDF defines a basic set of process types. Because JDF allows flexible encoding, however, this list, by definition,
will not be complete. Vendors that have specific processes that do not fit in the general JDF processes and that are
not combinations of individual JDF processes (see Section 3.2.3 Combined Process Nodes) can create JDF process
nodes of their own type. Then the content of the Type attribute may be specified with a prefix that identifies the
organization. The prefix and name must be separated by a single colon (‘:’) as shown in the following example:

<JDF Type="myCompaniesNS:MyVeryImportantProcess" xmlns=
"http://www.CIP4.org/JDFSchema_1_1" xmlns:myCompaniesNS="my companies namespace URI" …
>
 …
</JDF>
The use of namespace prefixes in the Type attribute is for extensions only. Standard JDF process types must be
specified without a prefix in the Type attribute or the Types attribute of a combined node.
If a process is simply an extension of an existing process, it is possible to describe the private data by extending the
existing resource types. This is described in greater detail in the sections below.

Extending the NodeInfo and CustomerInfo nodes is achieved in a manner analogous to the extension of
resources, which is described below. On the other hand, extending the direct contents of JDF nodes by adding new
elements or attributes is discouraged.

3.11.3 Extending Existing Resources
All resources defined by JDF may be extended by adding attributes and elements using one’s own namespace for
these resource extensions. This is useful when the predefined resource types need only a small amount of private

data added, or if those resources are the only appropriate place to put the data. The namespace of the resource
extended must not be modified. However, the mechanism for creating new resources in a separate namespace is
provided in the next section.

JDF’s “Extensibility” simply means that you can add your own XML elements, attributes, and
enumerations to a JDF application. Although JDF is quite extensive, odds are you’ll find that your
current databases and workflow systems use information elements that are unique to your client
market or company … they may have even been defined by your internal MIS staff. CIP4
acknowledges that it can’t define everything, nor should it prevent innovation by codifying
everything in a static manner, and JDF’s extensibility provides both printers and technology
providers with the flexibility they need to make JDF a success.

However, if you or your technology vendors extend JDF, please do so with caution. JDF’s
success depends on the ability of MIS systems and JDF-enabled devices to write, read, parse,
and use JDF. Extensions are custom integration applications and great care needs to be made to
ensure that extensions made for one systems or device will not jam the JDF workflow or other JDF
enabled systems and devices. If they use extensions to JDF, your technology providers should be
able to provide you with a fully validated JDF schema and documentation that includes the use of
their extensions. Extensions that are not documented, or that may not be disclosed to third parties
for integration purposes, should be viewed skeptically.

E x t e n s i b i l i t y C a u t i o n

Page 102

Page 102

This does not mean that duplicate functionality may be added into these resource types. You must make sure to
use the JDF-defined attributes and elements where possible and extend them with additional information that cannot
be described using JDF-defined constructs. For example, it is not allowed to extend the RIP resource that controls
the resolution with a foo:Resolution or foo:Res attribute that overrides the JDF defined resolution parameter (see
attribute Resolution of resource RenderingParams in Section 7.2.119).

3.11.4 Extending NMTOKEN Lists
Many resources contain attributes of type NMTOKEN and some of these have a set of predefined, suggested
enumerative values. These lists may be extended with private keywords. In order to identify private keywords, it is
strongly suggested to prefix these keywords with a namespace-like syntax, i.e., a namespace prefix separated by a
single colon (‘:’). Implementations that find an unknown NMTOKEN prefixed by a namespace prefix may then
attempt to use the default value of that attribute. For instance, if a JDF instruction contains the following text:

<TrappingParams TrapEndStyle=”HDM:FooBar” (…)/>

Based of the definition of TrappingParams, the best assumption is to use TrapEndStyle = “Miter”.
Example from TrappingParams

Name Data Type Description
TrapEndStyle ? NMTOKEN Instructs the trap engine how to form the end of a trap that touches another object.

Possible values include:
Miter
Overlap
Other values may be added later as a result of customer requests.
Default = Miter

3.11.5 Creating New Resources
There are certain process implementations that have functionality that cannot be specified by the predefined Resource
types. In these cases, it is necessary to create a new Resource-type element, which must be clearly specified using its
own namespace. These resource types may only be linked to custom type JDF process nodes.

3.11.6 Future JDF Extensions
In future versions, certain private extensions will become more widely used, even by different vendors. As private
extensions become more of a general rule, those extensions will be candidates for inclusion in the next version of the JDF
specification. At that time the specific extensions will have to be described and will be included into the JDF namespace.

3.11.7 Maintaining Extensions
Given the mix of vendors that will use
JDF, it is likely that there will be a
number of private extensions.
Therefore, JDF controllers must be
prepared to receive JDF files that have
extensions. These controllers can and
should ignore all extensions they don’t
understand, but under no circumstance
are they allowed to remove these
extensions when making modifications
to the JDF. If they do, it will break the
extensibility mechanism. For example,
imagine that JDF Agent A creates a JDF
and inserts private information for

Writing JDF extensions? CIP4 encourages you to become part
of the standard and submit your private extensions for review
and possible inclusion in future versions of the JDF standard.
Not only may adoption of extensions into the JDF standard
help make it easier for customers to decide to buy your
products, but CIP4 is also considering adopting a formal
review process for extensions with future editions of the JDF
standard; by participating in JDF’s development now you could
save time and customer confusion in the future.

Submit Your Extensions to CIP4

Page 103

Page 103

Process P. Furthermore, the information is only understood by agent A and the appropriate device D for executing
P. If the JDF needs to be processed first by another Agent/Device C, and that process removes all private data for P,
Process P will not be able to produce the correct results on device D that were specified by Agent A.

3.11.8 Processing Unknown Extensions
If a node is processed by a controller or device and it encounters an unknown extension in one of its input resources,
the expected behavior depends on the current value of SettingsPolicy.

If SettingsPolicy =”BestEffort”, a Notification audit element with Class = warning should be logged.

If SettingsPolicy =”MustHonor” the process must not continue and a Notification audit element with Class =
error should be logged.

If SettingsPolicy =”OperatorIntervention” the process must stop and wait for an operator intervention and a
Notification audit element with Class = warning should be logged.

3.11.9 Derivation of Types in XMLSchema
The XML Schema definition http://www.w3.org/TR/xmlschema-1/ describes a mechanism to create new types by
derivation from old types. This is an alternative to extend or create new elements and is described in Section 4 of
http://www.w3.org/TR/xmlschema-0/. This mechanism is not allowed to be applied to any elements defined by JDF
because such new element types can only be understood by agents/devices that know the extension. The use of the
derivation mechanism is allowed only for private extensions but not required.

3.12 JDF Versioning
The JDF Specification is an evolving document that exists in multiple versions. Real workflows will be executed by
devices that individually support different versions of the specification. Complete JDF workflow descriptions may
therefore contain sub-jdf nodes that must be specified with different versions in one document.

3.12.1 JDF Version Requirements
The following list of requirements take the specific needs of a mixed version JDF workflow into account:

• JDF Documents with mixed versions must be supported.
o Environments with devices that support different JDF versions will exist.
o It is not feasible to enforce simultaneous software upgrades for devices from multiple vendors in

one production facility.
• MIS systems will NOT always support all versions of all devices that are described in the JDF.

o Customers may update a workflow system or device without updating the MIS system.
• Archived JDF documents must remain valid when a new version of the JDF specification and schema is

published.

3.12.2 JDF Version Definition
The Version of a JDF node is defined as the highest version of all attributes or elements and linked resources.
The version of a resource is defined as the highest version of all elements, attributes or resources that are linked via
refElements.

3.12.3 JDF Version Policies
The following proposal specifies the policies for evolving JDF 1.x versions. When JDF is stated in this context, JMF
is implied to be included analogously. It involves three areas: JDF Specification rules, JDF Schema definition rules
and JDF Application behavior. The policies are in place beginning with the transition from JDF 1.1 to JDF 1.2. JDF
1.0 is not included in this versioning discussion.

Page 104

Page 104

3.12.3.1 JDF Specification Version Policies
The following list defines the policies that will be followed when extending the JDF specification.

• Changes to the JDF specification must be backwards compatible.
o Extension elements or attributes must not be required.

 New attributes in existing elements must be optional.
 New elements in existing elements must be optional.
 New elements may contain required elements or attributes.

o Elements and attributes must not be removed.
 Deprecated elements or attributes are still valid in all versions of JDF 1.x

o Data type changes must be extensions of existing data types. In other words the datatype of an
extended attribute must be a complete superset of the existing datatype. For instance, only the
extensions defined by the arrow directions are valid.

 enumeration NMTOKEN
 NMTOKEN string
 integer IntegerList
 integer double

• The JDF/@Version attribute is required in the root of JDF instance documents.
• The semantics of attributes and elements will not be altered.

o No new attributes or elements will be introduced that conditionally modify the semantics of
existing attributes and elements.

o Semantics will only be altered when the previous definition is clearly wrong and the result is
unpredictable with the previous definition. (bug fixes in the specification). These changes will be
clearly marked in the specification.

3.12.3.2 JDF Schema Version Policies
The following list defines the policies that will be followed when generating new schemas for new versions of the
JDF specification.

• Changes to the JDF schema must be backwards compatible.
o JDF 1.x documents must validate against JDF 1.(x+n) schemas.

• Only one JDF schema namespace will be defined for all versions of JDF 1.x.
o The namespace is http://www.CIP4.org/JDFSchema_1_1.

• The xs:version attribute will be defined in the schema.
o Applications that read a schema may verify that they are compatible with the version of the

schema.
o Applications may choose a schema based on the schema’s version tag.

 the schema version selection can be based on a best match to both application and JDF
ticket or even JDF node.

• The JDF/@Version attribute is defined as an enumeration that contains all valid versions for the schema,
e.g. 1.1 and 1.2 for the JDF 1.2 version of the schema.

o This allow schema validators to detect incompatible versions when parsing a local legacy schema.
• The version annotations in the schema will be maintained wherever possible.
• Explicit copies of published legacy schema versions will be available on the CIP4 website.

3.12.3.3 JDF Application Version Policies
This section specifies the policies that implementations should follow in order to support multiple versions of JDF.
The policies are specified for Agents and Controllers/Devices separately.

3.12.3.3.1 JDF Agent Version Policies
JDF agents must ensure that the JDF that they generate is consistently versioned.

• An agent must update the JDF/@Version attribute when inserting new attributes or elements.
o If an Agent is not aware of versions, it must assume that anything that it writes belongs to the

Agent’s maximum version. In this case, the Version of any node that is affected is the maximum
of its prior version or the Agent’s version.

• An agent must honor the JDF/@MaxVersion attribute.

Page 105

Page 105

o An Agent must not add attributes, elements or attribute values that were introduced in a version
that is higher than JDF/@MaxVersion.

• An Agent should insert the lowest possible JDF/@Version attribute that is applicable to the nodes version
as described in ##ref 3.12.2.

• The JDF/@Version of a spawned JDF node is identical to the JDF/@Version of that node in a complete
JDF.

3.12.3.3.2 JDF Device/Controller Version Policies
A JDF Device/Controller, i.e. any implementation that reads JDF should be backwards compatible:

• Implementations are strongly encouraged to handle deprecated elements and attributes gracefully.
o MustHonor / BestEffort is applied to previous versions of the JDF.

JDF Devices/Controllers, i.e. any implementation that reads JDF should attempt to be forwards compatible.

• Schema validation errors that find an unknown attribute, element or attribute value in a JDF with a version
that is higher than the schema should not lead to an abort.

• An Agent that reads a JDF with a version that is higher than the version that it was developed for should
attempt to execute the JDF if SettingsPolicy=BestEffort.

• An Agent that reads a JDF with a version that is higher than the version that it was developed for must not
execute the JDF if SettingsPolicy=MustHonor.

• Implementations are strongly encouraged to handle non-fatal version validation errors gracefully.
o Unknown attributes/elements in the JDF namespace should be treated analog to foreign

namespace attributes/elements when handling nodes that are not executed by the Controller.
o Unknown versions of the JDF namespace should be treated analog to foreign namespace elements

when handling nodes that are not executed by the Controller.[RP154]

Page 106

Page 106

Chapter 4 Life Cycle of JDF
Introduction
This chapter describes the life cycle of a JDF job, from creation through modification to processing. Information is
provided about the spawning of individual aspects of jobs and in what way they are reincorporated into the job once the
process is completed. Ancillary aspects of the life cycle, such as test running and error handling, are also discussed.

4.1 Creation and Modification
The life cycle of a JDF job will likely follow one of two scenarios. In the first scenario, a job is created all at once,
by a single agent, and then is consumed by a set of devices. More often, however, a job is created by one agent and
is then transformed, or modified, over time by a series of other agents. This process may require specification of
product intent, which is defined in Section 4.1.1, below.

Jobs can be modified in a variety of ways. In essence, any job is modified as it is executed, since information
about the execution is logged. The most common instance of modification of a JDF job, however, occurs during
processing, when more detailed information is learned or understood and then added along the way. This
information may be added because an agent knows more about the processing needed to achieve some result
specified in a JDF node than the original, creating agent knew. For example, one agent may create a product node
that specifies the product intent of a series of pages. This product node may include information about the number
of pages and the paper properties. Another node may then be inserted that includes a resource describing how the
pages should be Ripped. Later, another agent may provide more detail about the RIPpi[RP155]ng process by
appending optional information to the RIP parameter resource.

Regardless of where in the life cycle they are written, nodes and their required resources must be valid and
include all required information in order to have a Status of Ready (in case of nodes) or Available (in case of
resources). This restriction allows for the definition of incomplete output resources. For example, a URL resource
without a file name may be completed by a process. On the other hand, it is impossible to define a valid and
executable node with insufficient input parameters.

Once all of the inputs and parameters for the process requested by a node are completely specified, a controller
can route the JDF job containing this node to a device that can execute the process. When the process is completed,
the agent/controller in charge of the device will modify the node to record the results of the process.

4.1.1 Product Intent Constructs
JDF jobs, in essence, are requests made by customers for the
production of quantities of some product or products. In
other words, a job begins with a particular goal in mind. In
JDF, product goals are often specified by using a construct
known as product intent, represented by intent resources. In
contrast to process resources that define precise values,
intent resources allow ranges or sets of preferred values to
be specified. Resources of this kind include
FoldingIntent, ColorIntent, MediaIntent, and
ShapeCuttingIntent, all of which are described in
Chapter 7 Resources.

The product intent of a job is like a plan of action. The
plan may be extremely vague, detailing only the general
goal, or it may be very specific, stipulating the specific
requirements inherent in meeting that goal. Product intent
may be defined for an end product about which little is known or about which the processing details for the job are entirely
unknown. Product intent constructs also allow agents to describe jobs that comprise multiple product components, and that
may share some parts.

“Product Intent” is another way of saying “Job
Specifications.” Rather than describing how a
job will be made, “Product Intent” describes
what a job (or some aspect of a job) will look
like when it is completed. “Product Intents” may
initiate with the customer and in rather vague
terms and they may be later flushed out or
completed by a printer’s customer service
representative, estimating department or
production planners.

Product Intent

Page 107

Page 107

Product intent is defined by the initiating agent of a job. It is not required, however. Many JDF jobs are written
with full knowledge of the necessary processes, and are therefore comprised entirely of the various kinds of process
nodes described in Sections 3.2.1, 3.2.2, and 3.2.3. Any job that specifies product intent, however, must include
nodes whose Type = Product. This representation is described in the following section.

4.1.1.1 Representation of Product Intent
The product description of a job is a hierarchy of Product nodes, and the bottom-most level of the product hierarchy
represents portions of the product that are each homogeneous in terms of their materials and formats. All nodes
below these Product nodes begin specifying the processes required to produce the products.

Product nodes are required to contain only one thing, and that is a resource that represents the physical result
specified by the node. This resource is generally a Component. In addition, somewhere in the hierarchy of
product nodes, it is a good idea to include an intent resource to describe the characteristics of the intended product.
Although these are the only resources that should occur, product nodes can contain multiple resources. For
example, some ResourceTypes, such as MediaIntent and LayoutIntent, are defined to provide more general
mechanisms to specify product intent.

In some cases, more than one high level product node will use the output of a product node. These high level
nodes represent the combination of homogeneous product parts. In this case, the Amount attribute of the
ResourceLinks that connect the nodes will identify how the lower level product is shared.

4.1.1.2 Representation of Product Binding
Some product intent nodes, such as BindingIntent, define how to combine multiple products. To accomplish this,
the respective Component resources must be labeled according to their usage. For example, the Cover and Insert
attributes use the ProcessUsage attribute of the respective resource links. For more information about product
intent, see Section 3.2.1 Product Intent Nodes.

4.1.2 Defining Business Objects Using Intent Resources
Business objects like requests for quote, quote, invoice, etc. need to reference processes at a level that is well represented
by product intent nodes. It is assumed that business object
metadata such as financial information, business document
type, customer information, etc. is defined by an XML
envelope that contains JDF as a job description. If this is
not the case, the business related metadata may be placed
into the BusinessInfo element of the NodeInfo element of
the root JDF and the customer related data may be placed
into the CustomerInfo element of the root JDF.

This section sketches the usage of JDF in an eCommerce environment using the business object model that was
defined by the PrintTalk www.PrintTalk.org consortium.

The following table describes the individual business objects and their relationships. Object Type defines the name
of the XML element that defines the metadata. All object types are inherited from the abstract PrintTalk Request
element. References defines the business objects that are responded to when generating the business object and
buyer-provider arrow defines the direction of the transaction.

Table 4-1. Business Objects as defined by PrintTalk

Object Type Description References Direction
Request for Quote
(RFQ)

Initiated by a buyer to a print supplier. It may
instigate a new product process or it may supersede
an existing RFQ. The Change Order and Request
for Requote variations are included within Request
for Quote.

None, Quote, Confirmation B→P

Quote Normally sent in response to a RFQ. The Requote
and Change Order Quote variations are included
within Quote. A Quote may supersede an existing
Quote before the Print Buyer has answered with a

RFQ, PO, Confirmation B←P

A PrintTalk implementation guide can be found at
http://www.printtalk.org/implementation.html

PrintTalk Implementation

Page 108

Page 108

Object Type Description References Direction
RFQ or an Order.

Purchase Order Typically sent as a response to a quote, but may be
the initial document in a well defined buyer / print
supplier relationship or when ordering finished
goods items. The Change Order variation is
included within Purchase Order. An order may
supersede an existing Order prior to the Print
Provider having confirmed it.

None, Quote, Confirmation B→P

Order Confirmation Sent by the print supplier to the buyer
acknowledging receipt of the purchase order. It
may contain information about expected due dates
and final pricing that were undetermined at the time
of the quote.

PO B←P

Cancellation Cancels a complete job. If only parts of a job
should be cancelled, one must send a new RFQ,
Quote, or PO. In case of canceling parts of a
confirmed order the Change Order variations of
these Business Objects must be sent.

RFQ, Quote, PO,
Confirmation

B↔P

Refusal Used to explicitly decline a Business Object sent by
the counter party. Alternatively, the non-accepted
Business Object expires.

RFQ, Quote, PO B↔P

Order Status Request Generated anytime one party requests status from
another party.

 Confirmation B↔P

Order Status
Response

An Order Status Response can be sent as a response
to an Order Status Request or it can be sent
automatically.

Confirmation, Order Status
Request

B↔P

Proof Approval
Request

Provides a transport for proofing from supplier to
buyer. This may contain MIME data or a URL
where the proof is located.

Confirmation B←P

Proof Approval
Response

Contains buyer’s approval or denial of a proof. Proof Approval Request B→P

Invoice Typically sent once the job is shipped, but can also
be sent several times, when certain milestones
during production are reached. May include
additional charges or discounts.

Confirmation, Cancellation B←P

In the following figure the workflow of these business objects is partly illustrated in a simplified manner. See the
PrintTalk specification at www.printtalk.org for a complete picture.

Page 109

Page 109

Figure 4.1 Simplified PrintTalk workflow (negotiation phase)

The node that defines an RFQ must contain one or more DeliveryIntent resources that define the amounts and
methods of delivery. The Usage of the ResourceLinks is Input, its Type is “Product” and the Business object is
an RFQ.

The examples quoted in this section use an object model as defined by PrintTalk with the business objects
defined in BusinessInfo. This does not preclude the use of other eCommerce systems. The following examples show
equivalent PrintTalk and pure JDF document text. The highlights show the respective position of an RFQ.

PrintTalk example
<PrintTalk>
 <Header>
 Standard CXML header
 </Header>
 <Request>
 <RFQ AgentID="Lara" RequestDate=”2002-04-05T1700-0800” Expires="2002-04-15T1700-0800"
Estimate="false" AgentDisplayName="Lara Garcia-Daniels" Currency="EUR" BusinessID="RFQ_ID">
 <JDF ID="ScreenTest" Type="Product" JobID="ScreenJob" Status="Waiting" Version="1.1"
xmlns="http://www.CIP4.org/JDFSchema_1_1">
 <NodeInfo LastEnd="2000-12-24T06:02:42+01:00"/>
 (…)
 </JDF>
 </RFQ>
 </Request>
</PrintTalk>

Equivalent pure JDF Example
<JDF ID="ScreenTest" Type="Product" JobID="ScreenJob" Status="Waiting" Version="1.1"
xmlns="http://www.CIP4.org/JDFSchema_1_1">
 <NodeInfo LastEnd="2000-12-24T06:02:42+01:00">
 <BusinessInfo>
 <RFQ AgentID="Lara" RequestDate=”2002-04-05T1700-0800” Expires="2002-04-15T1700-0800"
Estimate="false" AgentDisplayName="Lara Garcia-Daniels" Currency="EUR" BusinessID="RFQ_ID"/>
 </BusinessInfo>
 </NodeInfo>
 (…)
</JDF>

4.1.3 Specification of Delivery of End Products
A job may define one or more products and specify a set of deliveries of end products. To accomplish this, a node of
Type = Product is created to define each delivery mode to be made. A delivery contains a set of drops, which in turn
contain a set of drop items. Each drop has a common delivery address and each package contains the amount of an
individual Component or ComponentRef that is to be delivered to this address. Quote generation as defined in the
previous chapter includes the specification of delivery addresses. For more information, see section 6.2.4 Delivery.

4.1.4 Specification of Process Specifics for Product Intent Nodes
Product intent nodes are designed to represent a customer’s view of the product. In some instances, a knowledgeable
customer may want to specify production details that are only available in JDF process resources for a given
product. Examples include scanning or screening parameters. This customer will still have no knowledge or control
of the process workflow.

Individual JDF nodes can be inserted into a product intent node. These nodes will contain the requested process
resource definitions as input resource links. The Status attribute of these resources should be “Incomplete”. No
output resources should be defined. In other words the actual specification of the process workflow should be left
undefined. The application that sets up the actual workflow can then use these resource templates as a starting point
for defining the process. It is recommended to specify a ProcessGroup node that does not define the process
granularity. For details see ##ref 3.2.2.1. [RP156]The following example shows how an ellipse spot function is
requested within a simple product description. The JDF node in yellow highlight defines the screening parameters of
the product.

<?xml version='1.0' encoding='utf-8' ?>

Page 110

Page 110

<JDF ID="HDM20001106181236" Type="Product" JobID="HDM20001106181236"
Status="Waiting" Version="1.0">
<ResourcePool>
 <Component ID="Link0003" Class="Quantity" Amount="10000"
Status="Unavailable" DescriptiveName="complete 16-page Brochure"/>
 <LayoutIntent ID="Link0004" Class="Intent" Status="Available">
 <Dimensions Range="576 720~648 864" DataType="XYPairSpan"
Preferred="612 792"/>
 <Pages DataType="IntegerSpan" Preferred="16"/>
 </LayoutIntent>
 <MediaIntent ID="Link0005" Class="Intent" Status="Available"
PartIDKeys="Option">
 <FrontCoatings DataType="NameSpan" Preferred="None"/>
 <MediaIntent Option="1">
 <FrontCoatings DataType="NameSpan" Preferred="Glossy"/>
 </MediaIntent>
 <BackCoatings DataType="NameSpan" Preferred="None"/>
 </MediaIntent>
 </ResourcePool>
 <ResourceLinkPool>
 <ComponentLink rRef="Link0003" Usage="Output"/>
 <LayoutIntentLink rRef="Link0004" Usage="Input"/>
 <MediaIntentLink rRef="Link0005" Usage="Input"/>
 </ResourceLinkPool>
 <AuditPool>
 <Created Author="Rainer's JDFWriter 0.2000" TimeStamp="2003-11-
06T18:12:36+01:00"/>
 </AuditPool>
 <JDF ID="Link0006" Type=”ProcessGroup” Types="Screening" Status="Waiting">
 <ResourcePool>
 <ScreeningParams ID="ScreenID" Class="Parameter" Status="Incomplete">
 <ScreenSelector SpotFunction="Ellipse" ScreeningFamily="My favorite
screen"/>
 </ScreeningParams>
 </ResourcePool>
 <ResourceLinkPool>
 <ScreeningParamsLink rRef="ScreenID" Usage="Input"/>
 </ResourceLinkPool>
 </JDF>
</JDF>

4.2 Process Routing
A controller in a JDF workflow system has two tasks. The first is to determine which of the nodes in a JDF
document are executable, and the second is to route these nodes to a device that is capable of executing them. Both
of these procedures are explained in the sections that follow.

In a distributed environment with multiple controllers and devices, finding the right device or controller to
execute a specific node may be a non-trivial task. Systems with a centralized, smart master controller may want to
route jobs dynamically by sending them to the appropriate locations. Simple systems, on the other hand, may have a
static, well defined routing path. Such a system may, for example, pass the job from hot folder to hot folder. Both
of these extremes are valid examples of JDF systems that have no need for additional routing metadata.

In order to accommodate systems between these extremes, the NodeInfo element of a node contains optional Route
and TargetRoute attributes that let an agent define a static process route on a node-by-node basis.
JMF/QueueSubmissionParams/@ReturnURL takes precedence over NodeInfo/@TargetRoute of the JDF that is
processed. [RP157]If no Route or TargetRoute attribute is specified and if a controller has multiple options where to
route a job, it is up to the implementation to decide which route to use.

Page 111

Page 111

The controller or device reading the JDF job is responsible for processing the nodes. A device examines the job
and attempts to execute those nodes that it knows how to execute, whereas a controller routes the job to the next
controller or device that has the appropriate capabilities.

4.2.1 Determining Executable Nodes
In order to determine which node should be executed, the controller/device uses the following procedures:
1. First, it searches the JDF

document for node types it can
execute by comparing the Type
attribute of the node to its own
capabilities, and by determining
the Activation of the nodes. It
should also verify that the
Status of the node is either
Waiting or Ready. Devices may
opt to limit the scope of the node
search. The limitations should be
specified in the device capability
description by appropriately
setting
DeviceCap:ExecutionPolicy.

2. The controller/device may then
determine whether no resources
have a Status of Incomplete or a
SpawnStatus of SpawnedRW.
It should also determine whether
all of the input resources of the
respective nodes have a Status
of Available and that all
processes that are attached
through pipes are ready to
execute. A controller may
optionally skip these checks and
expect the lower level controller
or device that it controls to
perform this step and return with
an error if it fails.

3. Finally, if scheduling
information is provided in the
NodeInfo element, the specified
start and/or end time must be
taken into account by the
executing device. If no process
times are specified, it is up to the
device in charge of queue
handling to execute the process node.

The node will go through various stati during its life time as is described in the following diagram:

Page 112

Page 112

Figure 4.2 Life Cycle of a JDF node

4.2.2 Distributing Processing to Work Centers or Devices
JDF syntax supports two means of distributing processes to work centers or devices. Its first option is to use a
“smart” controller that has the ability to parse a JDF job and identify individual processes or process groups that
may be distributed to a particular work center or device. This smart controller may use spawning and merging
facilities to subdivide the job ticket and pass specific instructions to a work center or device.

The second option, which is applicable when the controller being used isn’t “smart,” is to employ a simple
controller implementation that routes the entire job to each workcenter or device, thus leaving it up to the recipient
to determine which processing it can accomplish. For this option to work, each JDF-capable device must be able to
identify process nodes it is capable of executing. Furthermore, each device must have sufficient JDF-handling
capabilities to identify processes that are ready to run.

4.2.3 Device / Controller Selection
The method used to determine which is the appropriate device or lower level controller to use to execute a given
node depends greatly on the implemented workflow being used. Although JDF provides a method for storing
routing information in the Route attribute of the NodeInfo element of a node, it does not prescribe any specific
routing methods. However, some of the tools available to figure out alternative workflows are described below.

Knowledge of the capabilities of lower level controllers/devices either may be hard-wired into the system or
gained using the KnownJDFServices message. Since JDF does not yet provide mechanisms to determine whether
a given device is capable of processing a node without actually performing a test run, a controller must either have a
priori knowledge of the detailed capabilities of devices that it controls or it must perform a test run to determine
whether a device is capable of executing a node. Furthermore, in addition to the explicit routing information in the
Route attribute of the NodeInfo element of a node, JDF may contain implicit routing information in the form of

Device implementation resources.

JMF defines the KnownControllers query to find controllers and the KnownDevices query to find devices that are
controlled by a controller. The information provided by these queries can be used by a controller to infer the appropriate
routing for a node. In a system that does not support messaging, this information must be provided outside of JDF.

4.3 Execution Model
JDF provides a range of options that help controllers tailor a processing system to the needs of the workflow and of the
job itself. The following sections explain the ways in which controllers execute processes using these various options.

The processing model of JDF is based on a producer/consumer model, which means that the sequencing of
events is controlled by the availability of input resources. As has been described, nodes act both as producers and
consumers of resources. When all necessary inputs are available in a given node, and not before, the process may
execute. The sequence of processing, therefore, is implied by the chain of resources in which the output resources
of one node become the input resources of a subsequent node.

JDF supports four kinds of process sequences: serial processing, overlapping processing, parallel processing,
and iterative processing. All four are described in the following sections.

4.3.1 Serial Processing
The simplest kind of process routing, known as serial processing, executes nodes sequentially and with no overlap.
In other words, no nodes are executed simultaneously. Once the process has acted upon the resource in some way,
the resource availability is described by the Status attribute of the resource, as described above. When the process
state is Ready or Waiting, the process can begin executing.

In a workflow using serial processing, the controller is responsible for comparing the actual amount available
with the specified amount in the corresponding PhysicalLink element to determine whether or not the input
resource can be considered available. If no amount is specified in the PhysicalLink, the process is assumed to
consume the entire resource.

Page 113

Page 113

Figure 4.3 Example of a simple process chain linked by resources

Figure 4.3 depicts a simple process chain that produces and consumes Quantity resources and uses an
implementation resource. The resources R1, R2, and R3 represent Quantity resources. Process P1 consumes
resource R1 and produces resource R2. R2 is then completely consumed by P2, which also requires the
implementation resource R4 for processing. Process P2 uses these two resources and produces resource R3. All of
this is accomplished along a linear time axis.

Table 4-2 shows the value of the Status attribute of each of the resources and processes used in Figure 4.3.
The time axis runs from left to right both in Figure 4.3 and in Table 4-2. Note that no process may execute until all
resources leading up to that process are in place. In other words, the job executes serially and sequentially. For
more information about the values of the Status attribute of resources, see Table 3-12. For more information about
the values of the Status attribute of processes, see Table 3-3.

Table 4-2 Examples of resource and process states in the case of simple process routing

Object Status before running P1 during running P1 after running P1,
before P2

during P2 after P2

resource R1 Available InUse Unavailable Unavailable Unavailable
resource R2 Unavailable Unavailable Available InUse Unavailable
resource R3 Unavailable Unavailable Unavailable Unavailable Available
resource R4 Available Available Available InUse Available
process P1 Waiting or Ready InProgress Completed Completed Completed
process P2 Waiting or Ready Waiting or Ready Waiting or Ready InProgress Completed

When the attribute Amount is used in connection with the quantifiable resources R1, R2, or R3 and their links, then
the controller must decide whether or not a resource is available by comparing the individual values. If the amounts
are used to define the availability, then the resource Status may be set to Available for all Quantity resources. Note
that when the value of the Status attribute of the resource is Unavailable, the resource is not available even if a
sufficient amount is specified.

If amounts are specified in the resource element, they represent the actual available amount. If they are not
specified, the actual amount is unknown, and it is assumed that the process will consume the entire resource.
Amounts of PhysicalLink elements must be specified for output resources that represent the intended production
amount. The specification of the Amount attribute for input resources is not required, although it can be specified.
If the controller cannot determine the amounts, this constitutes a JDF content error, which is logged by error
handling. This process is described in Section 4.6 Error Handling.

If a process in a serial processing run does not finish successfully, the final process status is designated as
aborted. In an aborted job, only a part of the intended production may be available. If this occurs, the actual
produced amount is logged into the audit pool by a resource audit element.

4.3.2 Partial Processing of Nodes with Partitioned Resources
JDF nodes themselves may not be partitioned, although the input and output resources may. If the input and output
ResourceLinks reference one or more individual partitions, the Node executes using only the referenced
Resources.

Page 114

Page 114

If multiple input resources are input to a process, the resource with the highest granularity defines the partitioning.
For instance, a ConventionalPrinting process may consume a non-partitioned ConventionalPrintingParams, and
a set of Ink and ExposedMedia(Plate) resources that are partitioned by Separation. The partition granularity
will be defined by the Ink and ExposedMedia(Plate) resources to be Separation. The Separation partition set
is defined by the superset of all defined partition key values. If the Separation key values of Ink were Black and
Varnish, and the the Separation key values of ExposedMedia(Plate) were Black, the resulting set is Black and
Varnish.

The partition keys of both input and output restrict the process. If the partition keys are not identical, both must be
applied to restrict the node. If the partition keys are non-overlapping, e.g. in an Imposition node, where a RunList
based input partition is mapped to a sheet based output partition, the application must explicitily calculate the result.
The following examples illustrate the restriction algorithms:

Input Partition 1 Input Partition 2 Output Partition Node Partition Description
SheetName=
”S1”

- - SheetName=
”S1”

If only the input is partitioned, the
node partition is defined by the
input.

SheetName=
”S1”
Separation=
”Cyan”

- - SheetName=
”S1”
Separation=
”Cyan”

If only the input is partitioned, the
node partition is defined by the
input.

SheetName=
”S1”
Separation=
”Cyan”

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Implicit”)

- SheetName=
”S1”
Separation=
Cyan”
+
SheetName=
”S1”
Separation=
”Black”

The first input is partitioned by
SheetName and Separation which
defines the partition key
granularity. The second input is
partitioned by Separation only but
has an implied SheetName and has
a larger but overlapping set of
separation values. The separation
value set is therefore defined by the
second key.

SheetName=
”S1”

- SheetName=
”S1”
Separation=
”Cyan”

SheetName=
”S1”
Separation=
”Cyan”

The input and output base
partitions are identical. The output
further restricts the partition.

SheetName=
”S1”

- SheetName=
”S2”
Separation=
”Cyan”

error Input and output are not
overlapping. This specifies the null
set.

SheetName=
”S1”
Separation=
”Magenta”

Separation=
”Cyan” +
Separation=
”Black”

- error This is an error and defines the null
set. The first input is partitioned by
SheetName and Separation which
defines the partition key
granularity. The second input is
partitioned by Separation only and
has a larger but non-overlapping set
of separation values. The
separation value set is therefore the
null set.

Page 115

Page 115

SheetName=
”S1”
Separation=
”Cyan”

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Explicit”)

- error The first input is partitioned by
SheetName and Separation which
defines the partition key
granularity. The second input is
partitioned by Separation only but
has no implied SheetName and
therefore has a non-overlapping set
of partition keys. The separation
value set is therefore defined by the
second key.

RunIndex=”0~7” - SheetName=
”s2”

special This specifies sheet s2, with all
PlacedObject elements with an Ord
in the range of 0 to 7. This special
case is important when RunList
entries occur multiply on different
imposition sheets.[RP158]

 [RP159]

4.3.3 Overlapping Processing Using Pipes
Whereas pipes themselves are identified in the resource that represents the pipe, pipe dynamics are declared in the
resource links that reference the pipe. This allows multiple nodes to access one pipe, each of them with its own pipe
buffering parameters.

In some situations, resource linking is a continuous process rather than a chronological one. In other words, one
process may require the output resources of another process before that process has completely finished producing
them. The ability to accomplish this kind of resource transfer is known as overlapping processing, and it is
accomplished with the use of a mechanism known as pipes. Pipes are considered to be active if any process linking to
the pipe simultaneously consumes or produces that pipe resource.

Any resource may be transformed into a pipe
resource. All that is required is that the PipeID attribute
be specified in the resource. Pipes of quantifiable
resources resemble reservoir tanks that hang between
processes. Processes connected to the pipe via output
links fill the tank with necessary resources, while
processes connected via input links deplete it (see Figure
4.4). The level is controlled by the PhysicalLink
attributes PipeResume, PipePause,
RemotePipeEndPause, and
RemotePipeEndResume (see Table 3-22). If none of
them are specified, any produced Quantity may be
immediately consumed by the consuming end of the
pipe. The unit of the buffers is defined by the Unit
attribute of the resource.

The two following diagrams show the ways in
which pipes mediate between the process producing the resource and the process consuming the resource. The
following optional attribute values are defined for pipes: PipePartIDKeys, PipePause, PipeResume,
RemotePipeEndPause, and RemotePipeEndResume. The latter two—RemotePipeEndPause and
RemotePipeEndResume—are use to control the level in context with pipe command messages which will be
described in Section 4.3.2.2 Dynamic Pipes. The specified value of each of these attributes in any given node
dictates the levels at which a pipe should resume or pause execution. Figure4.5 gives an example of a view on the
dynamics of a pipe resource. The available level of the pipe resource, represented as R2, and the availability status
of two entity resources, represented as R1 and R3, are changing along a consistent time line. Below the
progressions of these resources is the status of two processes—P1 and P2. P1 represents the process producing the

A pipe resource is simply an input to a process
that can be exhausted and may be replenished.
Examples may include rolls of paper feeding
into a press, ink well levels, fountain solution, or
even proofing stock loaded into a proofer.

Another type of pipe resource in every-day
use is a “hot-folder” or “watched file.” Hot folders
are used to automate functions such as
preflighting. When a file is saved to a hot-folder,
the system knows to automatically apply a
defined process to the new file. When the folder
is empty the processing stops.

Pipe Resources

Page 116

Page 116

pipe resource and P2 represents the process consuming that resource. The resource status of a active pipe (here R2)
is defined to be Status = InUse (see also Table 3-12).

Figure 4.4 Example of a Pipe resource linking two processes

Figure 4.4 is a view on the structure and Figure4.5 a view on the dynamics of the pipe example considered here. R1
represents an input resource for P1, which feeds into the intermediate pipe resource R2. Once the tank R2 is filled to
the predetermined level, it is used as the input resource for P2, which in turn produces output resource R3.

Resource linking through pipes is controlled through the specification of the PipePause and PipeResume
attributes. The intended amount of a resource must be specified in advance in the output link. Whenever the level
representing the available quantity of the pipe resource exceeds the PipePause level of the output link, the process
P1 is halted (Status = Stopped) so that the process does not overproduce. Once the level falls below the
PipeResume value, the process P1 resumes execution. P1 is completed when it has produced the intended amount.
Once P1 has performed its task, the resources still in the pipe are consumed by the subsequent process without level
control. In other words, after a process filling a pipe buffer has completed, pipe buffering becomes disabled.

Conversely, if the level representing the actual amount exceeds the PipeResume level of the input link, P2 can
start or resume execution. If it falls below the PipePause level, P2 is halted (Status = Stopped) unless the

Figure4.5 Example of status transitions in case of overlapping processing

amount Levels

input PipeResume
output PipeResume
output PipePause

0
R2

R1 Unavailable
Available

Time

R3 Unavailable
Available

P1 Waiting .or.
Ready

InProgress Completed

P2 Waiting .or.
Ready

InProgress
Completed

End Start

Stopped

R2 Unavailable
InUse

Page 117

Page 117

intended amount of the pipe resource R2 has already been produced. Then the PipePause level is ignored and the
pipe resource is completely consumed.

In the case of output links, the PipeResume value must be smaller than the PipePause value, whereas in the
case of input links, the PipeResume value must be greater than the PipePause value. If PipePause is specified for
an input or an output link and PipeResume is not specified, the related process may run into a deadlock state. In other
words, the process stops and cannot resume execution automatically. Once a process is stopped under these
circumstances it can only be resumed manually or by sending a pipe control message for resumption that allows
interconnected execution control (halting and resumption of processes by pipe control messages is described in Section
5.5.3 Pipe Control). If the attributes PipeResume or PipePause of links to pipe resources are not specified, the
controller is responsible when the linked processes start and stop in dependence of the level.

4.3.3.1 Pipes of Partitionable Resources
Pipes of partitionable resources may also define the granularity of the resources that are considered to be one part. To
accomplish this, the PipePartIDKeys attribute must be specified in the appropriate ResourceLink element. For
instance, a partitioned ImageSetting process may be defined for multiple sheet separations, but a complete set
containing all separations of both sides of a single sheet should be sent to the pressroom as one pipe request. In this
case, the value of the PartIDKeys attribute of the ExposedMedia resource would be SheetName Side Separation and
the value of the PipePartIDKeys attribute of the resource link to the pipe would be SheetName.

4.3.3.2 Dynamic Pipes
In addition to abstractly declaring pipe properties, JMF provides pipe messages that allow dynamic control of pipes.
Dynamic pipes can be used to model situations where the required amount of resources is not known beforehand but
becomes known during processing. An example of this behavior is a long press run where new plates are required
during a press run because of quality deterioration. The exact point in time where quality becomes unacceptable is
not predetermined and may even vary from separation to separation. Dynamic pipes provide the flexibility to adjust
to changing situations of this nature.

Dynamic pipes provide a PipeURL attribute that allows dynamic requests for a status change of the pipe while a
process is executing. Dynamic requests use JMF pipe control messages (see Section 5.5.3 Pipe Control) sent to
another controller whose URL address is specified by the PipeURL attribute of the respective resource link.
Depending on the values of the resource link's Usage attribute, the following actions are possible:

• Input – The consumer sends a PipePull message to its PipeURL in order to request additional resources or a
PipePause to halt production by the creator. The consumer sends a PipeClose message to the producer if
the consumer does not require any further resources.

• Output – The creator sends a PipePush message to its PipeURL in order to deliver additional resources or a
PipePause to halt consumption by the consumer.

When dynamic pipes are used—i.e., when the PipeURL attribute is specified—the pipe buffering parameters
RemotePipeEndResume and RemotePipeEndPause define the buffering parameters of the remote (controlled)
end. PipeResume and PipePause, meanwhile, define the buffering parameters of the local node as described in
Section 4.3.2. The buffering parameters of a non-dynamic pipe may control the process that contains the resource link,
whereas the buffering parameters of a dynamic pipe control the process at the other end of the pipe. The pipe control
messages described later in Section 5.5.3 Pipe Control are designed to establish communication between processes at
both ends of dynamic pipe, even if the corresponding processes are spawned separately.

The following table summarizes the actions to be taken when the buffer in a dynamic pipe reaches a certain level L:

J. 1 Actions generated when a dynamic-pipe buffer passes various levels

Controlling Pipe End Situation Message Description
Output (creator) L > RemotePipeEndResume PipePush Sufficient resources have been

produced by the creator and are ready
for delivery to the consumer.

Output (creator) L < RemotePipeEndPause PipePause The consumer has consumed to the
low water mark and must pause until a
sufficient amount of resources have
been produced.

Page 118

Page 118

Input (consumer) L < RemotePipeEndResume PipePull More resources are requested from the
creator and processing may continue
by the consumer.

Input (consumer) L > RemotePipeEndPause PipePause The creator has produced to the high
water mark and must wait until a
sufficient amount of resources have
been consumed.

Dynamic pipes are initially dormant, and must be activated by an explicit request. Dynamic pipe requests may be
initiated by both ends of the pipe. For example, a print process may notify an off-line finishing process when a
certain amount is ready by sending a PipePush message, or the printing process may request a new plate by
sending a PipePull message.

4.3.3.3 Comparison of Non-Dynamic and Dynamic Pipes
The resource link between non-dynamic pipes provides the buffering parameters for the process to which the link
belongs. Therefore, many processes can link to the same pipe resource. Furthermore, each process has its own
buffering parameters, whether it is a consumer or a producer. In order to control non-dynamic pipes, one master-
controller must control all processes linked to the pipe resource.
In contrast, dynamic pipes provide a URL address to control a process at the other pipe end. Then the buffering
parameters of the resource link control the process at the other end. In the case of dynamic pipes, no master-
controller is required in order to control the pipe. Control is accomplished by sending pipe messages. If pipe
resources are linked to multiple consumers or producers, such as two finishing lines that consume the output of one
press one palette at a time, it is up to implementation to ensure consistency of the processes.

When using pipe resources, it is recommended that scheduling data for the process be specified only in the
NodeInfo element of the parent node of the processes linked by pipe resources in order to avoid scheduling
deadlocks. In Figure4.5, for instance, the actual start and end time of the corresponding parent of P1 and P2 are
marked on the time axis.

4.3.4 Parallel Processing
While serial processing assumes that all resources will be produced and consumed in a linear fashion, and while
overlapping processing uses multiple processes that work together to use and create resources, there are times when
it makes sense to run more than one process simultaneously, creating a more multi-pronged workflow. This kind of
process routing is known as parallel processing. Subsections of jobs are spawned off so that nodes may be executed
individually and simultaneously by the appropriate devices. Once the processes are complete, the spawned nodes
are merged back into the original job. The output resources of the merged nodes become inputs for later processes.
For example, an insert may be produced independently of a cover, and both will be bound together later.

In parallel processing, processes can be run in a coordinated parallel fashion by using independent resources.
An independent resource is a resource that is not shared between multiple processes. Implementation resources, for
example, cannot be shared and are therefore always independent, and Consumable and Quantity resources can each
be split to function as independent resources. Individual partitions of partitionable resources are independent and
may be processed in parallel. Read-only resources, such as parameters, can be shared without any restrictions, and
can therefore be used in read-only mode for parallel processing. Process chains created using independent resources
are known as independent process chains.

Parallel processing can proceed in one of two ways. Either a controller may organize the JDF nodes in a way
that allows it to initiate parallel processing or it can use the spawning-and-merging mechanism to field out chunks of
the job to execute simultaneously. If a controller chooses the latter method, parent nodes that contain independent
process chains can be spawned off and processed independently. For example, in order to improve production
capacity, an agent may split consumable resources and create independent process chains in which each chain
consumes its own resource part. Afterwards, the agent can submit one of the created job parts to a subcontractor and
process the other part with its own facilities.

Page 119

Page 119

Parallel processing is used only to process multiple aspects of a job simultaneously; it is not used to process
multiple copies of a JDF job. In other words, a job must not be copied and sent to different controllers for parallel
processing. For more information about spawning of jobs, see Section 4.4 Spawning and Merging.

4.3.5 Iterative Processing
Some processes, especially in the prepress area of production, cannot be described as a serial or parallel set of process
steps. Instead, a set of interdependent processes is iterated in a non-deterministic order. These processes are known as
iterative processes. For example, an advertisement is laid out that requires a photographic image. During the layout
phase, changes must be made to the color settings of the image, which is the reinserted to the layout. Changes such as
these can be described in a high level fashion by defining a resource Status attribute of Draft. As long as an input
resource to a process has a status of Draft, the Status of the output resource must not be Available.

The ResourceLink that links to a draft input resource must include a DraftOK attribute to state that a draft
input resource is acceptable for a process. Thus a prepress layout process can be abstractly defined to work on draft
resources until an acceptable output has been achieved, but the output PDL file must not be used for printing until it
is Available and no longer designated as a Draft.

Iterative processes may be set up in a formal fashion using dynamic pipes to convey parameter change requests
or in an informal way that assumes that the operators of the various processes have an informal communication
channel. Both are described in greater detail below.

4.3.5.1 Informal Iterative Processing
Informal iterative processing does not require a complete redefinition of the required resources at every iteration.
This kind of processing is generally used in a creative workflow, where a job is defined and gets refined in a series
of steps until it is completed. The information about the changes is transferred through channels that bypass JDF.
Nonetheless, the description of these processes in JDF is useful for accounting purposes, as the status of each
process may be monitored individually.

The ResourceLink elements for informal processing contain an additional DraftOK attribute, but in all other
ways they are identical to the ResourceLink elements used in simple sequential processing. Furthermore, the nodes
run through the same set of phases as they would in sequential processing. Nodes are designated only as Stopped
and not as Completed after being processed for an iterative cycle. They are marked as completed after their output
resources lose their Status of Draft.

4.3.5.2 Formal Iterative Processing
In formal iterative processing, all ResourceLink elements between interacting processes are dynamic pipes. Every
request for a new resource is initiated by a PipePush or PipePull message that contains at least one Resource
element with the updated parameters. This resource is used by the process, and the resulting new output resource
can be consumed by the requesting process. The Status of Draft can be removed from a resource by sending the
creator a PipeClose message that has the optional UpdatedStatus attribute set to Available. A node can only
reach a Status of Completed if it has no remaining draft resources. Another method to remove the draft status is to
define a node for an Approval process that accepts draft resources as inputs and has non-draft resources representing
the same entities as outputs.

4.3.6 Approval, QualityControl[RP160] and Verification
In many cases, it is desirable to ensure that an executed process or set of processes have been executed completely
and/or correctly. In the graphic arts industry this is verified by generating approvals and signing them. JDF allows
modeling of the approval process and modeling of the verification processes by allowing an optional
ApprovalSuccess input resource in any process.
The Approval, QualityControl and Verification processes accept any resource as input and output that resource
along with ApprovalSuccess resource if approved. An ApprovalSuccess resource may only be set as
Available if it has been signed by an authorized person. For hard copy proofing, a combined process (e.g., ending
with the ImageSetting, ##ref ConventionalPrinting, or DigitalPrinting process) generates the hard proof
which is input to a separate Approval process. For soft proofing, a combined process (ending with Approval
process) generates the soft proof which is approved by that Approval process.

Page 120

Page 120

JDF provides a ##ref QualityControl process to verify that the output of a process fulfills certain quality criteria.
This differs from the ##ref Verification process, which verifies the completeness of a given set of resources.

[RP161]Spawning and Merging
JDF spawning is the process of extracting a JDF subnode from a job and creating a new, complete JDF document
that contains all of the information needed to process the subnode in the original job. Merging is the process of
recombining the information from a spawned job part with the original JDF job, even after both documents have
evolved independently. By using the mechanism for spawning and merging different parts of a job, it is possible to
submit job parts to distributed controllers, devices, other work areas, or other work centers.

The JDF spawning-and-merging mechanism can be applied recursively, which means that subjobs that have
already been spawned may in turn spawn other sub-subjobs, and so on. This does not mean, however, that a node
may be respawned. If a node is spawned a second time, the previously submitted version must first be deleted and
the spawning procedure must be applied again to the original node.

No matter how many job parts have been spawned, however, merging is realized by copying nodes back to their
original location and synchronizing the appropriate resources. Therefore, each spawning must be logged in the job
by the agent performing the actions that result in a spawned job. Furthermore, in order to avoid inconsistent JDF
states after merging, each merging should be logged, or the appropriate spawn audit must be removed from the
AuditPool element.

Figure 4.6, shows, schematically, the spawning and merging of a subjob, designated as P.b. The following three
phases are defined on a the demonstrated time scale:

1. The first phase occurs before the subjob is spawned off.
2. The second phase occurs during the spawn phase, when the spawned subjob is executed separately.
3. The third phase occurs after the spawned job has been merged back into the original job.

Page 121

Page 121

Figure 4.6 The spawning and merging mechanism and its phases

The three phases of the job part are bordered by the spawning point and the merging point. On a job scale, denoted
as spawning depth in Figure 4.6, one job ticket exists during the phases before and after spawning, and the following
two job tickets exist during the spawning phase: The job with the parent (P) of the original job part (P.b', also
denoted as a subjob) that has been spawned; and the spawned job (P.bs) itself.

This section provides examples that outline the various ways in which spawning and merging can be applied.
The six following cases are considered in the next six sections:

1. Standard spawning and merging.
2. Spawning and merging with resource copying.
3. Parallel spawning and merging of partitioned resources.
4. Nested spawning and merging in reverse sequence.
5. Spawning and merging of independent job tickets.
6. Simultaneous spawning and merging of multiple nodes.

JDF can support any combination of the cases described, but these six represent a cross-section of likely scenarios.
Case one is the simplest of all of the cases and is required in every instance of spawning and merging, regardless of
the circumstances surrounding the process. Each subsequent case requires additional processing that builds upon the
processing described in the cases that precede it.

4.4.1 Case 1: Standard Spawning and Merging
The actions described in this case must be applied in every spawning and merging process. All cases described in
this chapter, as well as any other that may be invented, begin with these procedures.

Spawning
When spawning a JDF subnode, the JDF elements CustomerInfo and NodeInfo elements of the spawned job may
be created and/or filled with the appropriate information (for details, see Sections 3.4 Customer Information and 3.5
Node Information). All resources that are referenced in the spawned node and its subnodes are located in the
ResourcePool containers of the nodes in which they reside.

To indicate that a process has been spawned, the Status attribute of the original JDF node must be set to the
value Spawned (see Table 3-3). The Status attribute of the spawned node remains unchanged.

A unique SpawnID attribute should be set in the spawned node and a copy of its value should be set in the
NewSpawnID of the newly created Spawned audit. This simplifies bookkeeping of audits and merging in case a
node is multiply spawned, either due to error conditions or in parallel with individual partitions. The value of
SpawnID should also be appended to the SpawnIDs list of all spawned resources.

In order to identify all of the ancestors of job that has been spawned, an AncestorPool element is included in
the root node every spawned job. This element contains an Ancestor element that identifies every parent,
grandparent, great-grandparent, and so on of the spawned subnode. In this way, the family tree of every spawned
node is tracked in an ordered sequence that allows an unbroken trace back through all predecessors. Consequently,
the elements that comprise the AncestorPool of a spawned job must be copied into the AncestorPool element of
the newly spawned job before the ancestor information of the previously spawned job is appended to the
AncestorPool element of the newly spawned job. The last Ancestor element in each AncestorPool is the parent,
the second-to-last the grandparent, and so on. The following code is an example of a family tree:

<AncestorPool>
 <Ancestor NodeID="p_01" FileName=“file://grandparent.jdf”/>
 <Ancestor NodeID="p_02” FileName=“file://parent.jdf”/>
</AncestorPool>

The complete ancestor information is required in order to merge back semi-finished jobs with nested spawns. If the
last spawn is always merged first (LIFO) then knowing the direct parent is sufficient, as each parent will in turn
know its own parent back to the original and a complete ancestor line may be inferred.

Page 122

Page 122

When a job is spawned, the action must be logged in the parent node of the spawned node in the original job.
This is accomplished by creating a Spawned element with the jRef attribute set to the ID of the spawned JDF node.
This Spawned element must be appended to the AuditPool container of the original parent node. If no AuditPool
container exists in the parent node, one must be created for the purpose.

After a node has been spawned, it is legal although not necessary, to remove all contents of the spawned node in
the original node except for the required attributes ID, Status, and Type. It is not, however, possible to undo the
spawning operation without accessing the spawned node once the contents of the spawned node have been removed.

An Agent that receives a JDF Node that has been spawned individually and thus has no Part element in the
AncestorPool may modify any elements except for Resources that were spawned Read/Only.[RP162]

Merging
After processing, the spawned job must be merged back to its original location. Before this can occur, however,
duplicate information contained in any elements that are not required for further processing (such as CustomerInfo
or NodeInfo) may optionally be deleted by the agent executing the spawning and merging. Once this has been
accomplished, the spawned node is copied to the location of the original node, completely overwriting the original
node. The Status of the original node is then overwritten with the result.

To complete the merging process, the merging agent must add a Merged audit to the AuditPool (see Section
3.10 AuditPool). The MergeID of the Merged audit should be set to the value of the SpawnID attribute of the
merged node. Furthermore, the AncestorPool container with all child elements must be removed and the value
SpawnID of should be removed from the SpawnIDs attribute of the appropriate resources.

4.4.2 Case 2: Spawning and Merging with Resource Copying
Figure 4.7, shown below, represents an example of a job that requires that resources be copied during spawning. In
this job, the nodes B1 and B2 are linked to the same resource, which is localized in the resource pool of an ancestor
node, denoted as node A. This node is the parent node.

Figure 4.7 JDF node structure that requires resource copying during spawning and merging

When node B1 is spawned, its resources must also be duplicated. To accomplish this, the affected resources must be
copied to the spawned job and purged during merging, a process that is described below.

4.4.2.1 Spawning of Resources with Inter-Resource Links
Resources may be linked to a node by three mechanisms:

• Explicit links defined by a ResourceLink in the ResourceLinkPool of the node.
• Implicit links defined by the rRefs attribute of linked Resources. Implicit links are recursive.
• Implicit links defined by the rRefs attribute of the AuditPool, CustomerInfo or NodeInfo element of the node.

A spawning or merging agent must resolve all of these links by copying any non-local resources into the local
ResourcePool.

Page 123

Page 123

Spawning
Spawning begins as it did in Case 1. The affected resources must then be copied to the resource pool of the spawned
job. The copied resources retains the same ID values as the original resources. These resources can be spawned for
read-only access, which allows multiple simultaneous spawning of one resource, or for read/write access, in which case
a resource may only be spawned one time. The read/write spawning of a resource locks the resource in the original file
in order to avoid conflicts that result from simultaneous modification or reading and modification of a resource. The
SpawnStatus attribute of the original resource must be set to SpawnedRW (which stands for “spawned read/write ”) or
SpawnedRO (which stands for “spawned read-only ”) to indicate that the resource is spawned. In other words, a copy
of the resource is spawned together with the spawned job. Read/write access effectively locks the original resources,
just as if the attribute Locked = true1 were present. If a resource is spawned as read-only, it is not a good idea to
modify the original resource that remains in the parent job ticket as this may lead to inconsistencies. The Locked
attribute of spawned resources that are copied read-only should also be set true. Furthermore, the value of the ID
attribute of each copied resource must be appended to the appropriate rRefsROCopied or rRefsRWCopied values of
the Spawned element that resides in the AuditPool of the parent node.

Merging
Merging begins as it did in Case 1. Then, if resources have been copied for spawning, they must be purged after merging.
Read-only resources may simply be deleted in the spawned node before merging. If the original resource and the spawned
resource are not identical, however, a JDF content error should be logged by a Notification element of Class = Error (see
Section 4.6 Error Handling). Read/write resources must be copied into their original location, completely overwriting the
original resource. The ID attributes of the overwritten resources must be specified in the rRefsOverwritten attribute of
the Merged element. The Merged element is then inserted into the AuditPool container of the parent during the usual
merging procedure, which is shown as the return point in the spawning diagram.

4.4.3 Case 3: Parallel Spawning and Merging of Partitioned Resources
In many cases, it is desirable to define a parallel workflow for partitioned resources. This is modeled by spawning a
node that defines the process for each part that is to be processed individually.

Spawning
Spawning begins as it did in Case 1 or Case 2. Then the spawning agent must loop over all ResourceLinks and
ensure that the appropriate Part element or elements exist in any resources in the spawned ticket, where only the
individual parts are required. This is accomplished either by adding Part elements if none exist in ResourceLinks
of the parent node or by modifying the copies of existing Part elements. Part elements must be included in all
ResourceLinks that point to resources that are spawned with write access. Part elements may be included in
ResourceLinks that point to resources that are spawned with read only access, e.g. Physical resources where only a
part is provided to a process as input. In addition, copies of the Part elements are appended to the Spawned audit
element. The Status of any partitioned resource is defined individually for each partition. The Status of the parent
node is set to “Pool” and a StatusPool is generated with the appropriate information. The PartStatus that describes
the newly spawned node is set to “Spawned”.
Exactly one Part element that contains the partition keys of this Spawn and all partition keys of previous spawns
must be present in the AncestorPool of the spawned JDF node.[RP163]

The spawning procedure described in this section can be performed iteratively for multiple parts, effectively
generating one Spawned audit element and one PartStatus in the StatusPool per part. The Spawned and
Merged audit elements are not placed in the parent node of the node to be spawned, but rather in the node itself.

An Agent that receives a JDF Node that has been spawned in parallel and thus has a Part element in the
AncestorPool must not modify any elements except for

• Resources that were spawned Read/Write and

• adding Audit elements.

Synchronizing multiple NodeInfo, CustomerInfo elements or newly inserted sub JDF nodes in spawned JDF nodes
is not required or supported.[RP164]

1 Usually resources become locked (Locked = true) if they are referenced by audit elements (see also Section 3.10
AuditPool).

Page 124

Page 124

Merging
After an individual partitioned spawned node has been processed, it is merged back to the parent as was described in
Case 1. In addition, a copy of the Part elements of the corresponding Spawned audit is appended to the Merged
element and any read/write resources are merged into their appropriate parts. The Status of the spawned node is
copied into the appropriate PartStatus in the StatusPool.
An example of partitioned Spawning and Merging can be found in K.3 Spawning and Merging.

4.4.4 Case 4: Nested Spawning and Merging in Reverse Sequence
Figure 4.8 shows an example of nested spawning and merging in reverse sequence. Process A spawns node B, and node
B spawns node C. Even if B is merged back to A for any reason before C is merged back to B, C still contains the
information of its grandparent in the AncestorPool element. In this way, C can trace back its ancestors and find the
localization of its parent, node B, in node A even though the spawned job, with B as root node, has already been deleted.

Time

Job A Job B

Correctly nested

JDF-node: A
Status="Waiting"

JDF-node: B
Status="Spawned"

JDF-node: B
Status="Waiting"
Ancestors := (A)

JDF-node: C
Status="Spawned"

JDF-node: C
Status="Waiting"
Ancestors := (A, B)

Spawning Depth

Job C

Spawning Diagrams

Time

Job A Job B

Reversely nested

Job C

Figure 4.8 Example for a JDF node structure with nested spawning

4.4.5 Case 5: Spawning and Merging of Independent Jobs
Note that Spawning and Merging of Independent Jobs is under development and subject to major changes in a
future release of this specification.

It is useful to spawn and merge independent jobs in situations where the execution of separate, independent small
jobs is not efficient in a commercial sense. Business cards for individual customers that are printed on one set of
sheets and subsequently cut are an example of this kind of situation. In cases such as these, small jobs can be
collected in order to form a big job that may then be executed as a whole. This allows job aspects such as
production, equipment load, and balancing of implementation resources to be performed more efficiently.

Note that production devices will generally require their resources to unambiguously define the production
details. Thus a JDF Agent must prepare the resources in a way that the exact positioning of the contents of

Page 125

Page 125

individual small jobs is specified. It is therefore recommended to use the procedure that is described in this section
for Product intent nodes only.

In this example, diagrammed in Figure 4.9, nodes C and E represent small jobs of identical type. Node bigF
represents a big job, which may exist already or which may have been created for the purposes of this spawning-
and-merging process. Once nodes C and E are gathered beneath node bigF, as described below, a big job may then
be executed as a whole for the sake of efficiency. When the big job is executed, the small jobs are effectively
executed simultaneously. Nodes A, B, and D are provided to demonstrate that spawned nodes in this example may
be related to other nodes in various ways.

Time

Nodes A, B, C

independent job X

Spawning Diagram

Time

Nodes D, E

JDF-node: B
Status=" Waiting "

JDF-node: D
Status="Waiting"

JDF-node: E
Status="Spawned"
Type="XYZ"

JDF-node: bigF
Status="Waiting"
Type="XYZ"
AuditPool:
 Merged (C, Indep.="true")
 Merged(E, Indep.="true")

JDF-node: C
Status="Spawned"
Type="XYZ"

JDF-node: C
Status="Waiting"
Type="XYZ"
Activity="Inactive"

JDF-node: E
Status="Waiting "
Type="XYZ"
Activity="Inactive"

JDF-node: A
Status=" Waiting "

Node bigF

small Job X

small Job Y

independent job Y big job bigZ

execution phase

Figure 4.9 Example of the spawning and merging of independent jobs

Spawning
Spawning begins as it did in Case 1 or Case 2. Then, the process to be spawned (job C in Figure 4.9) is copied into a
newly created, or already existing, big job (big job bigZ in Figure 4.9). The process type of the root node of the big job
must be identical to that of the spawned processes. The Activation state of the spawned processes is set to Inactive, and an
AncestorPool element is added to the inactive spawned job to define the ancestry (as was described above). A Merged
element containing information about the spawned independent jobs and when they have been received is added to the big
job.

In the original jobs, the Status of the process is designated as Spawned, and a Spawned element with the optional
attribute jRefDestination specified is added to the parent of the original job. The attribute jRefDestination contains the
ID of the big job beneath which the spawned process has been placed. The changes in the parent are the equivalent of
those described in Case 1, except for the specification of the attribute jRefDestination in the Spawned element.

Where necessary, resource instances must be copied and logged as in Case 2 by appending the IDs to the
appropriate attribute (rRefsROCopied or rRefsRWCopied) of the Spawned element in the parent of the original
job. This is required in single spawning and merging. Furthermore, the ResourceLink elements of the spawned
process must be copied to the ResourceLinkPool of the active, big process node. In this way, the input resources
and the resources to be produced are linked to the big job.

Page 126

Page 126

Merging
For each of the spawned small jobs, the return procedure is performed as it was in the preceding cases. Once the
process explained in Case 1 is performed, the completed job is copied back to its original location and the attribute
Activation is restored by setting it to the activation of the big-job node after completion.

Eventually, copied resources must be purged and handled just as they were in Case 2. Then, the merging must
be logged by appending the Merged element to the AuditPool container of the parent of the original node. In
independent spawning and merging, the attribute jRefSource must be specified in the appropriate Merged element.

If the big job is retained, a Spawned element with the attribute Independent = true must be appended to the
AuditPool of the big job. For instance, saving the finished big job may be desirable if the audit information
contained in the big job should be available for an individual invoicing. Finally, the newly created big JDF should
be deleted to avoid the double existence of nodes.

4.4.6 Case 6: Simultaneous Spawning and Merging of Multiple Nodes
It is not possible to explicitly spawn multiple nodes simultaneously. The nodes must be grouped into a single
ProcessGroup node, and this node can then be spawned and merged as described in the previous sections.

4.5 Node and Resource IDs
All nodes and resources must contain a unique identifier, not only because it is important to be able to identify
individual components of a job, but because JDF uses these IDs for internal linking purposes. Each agent that
creates resources and subnodes or that performs spawning and merging is responsible for providing IDs that are
unique in the scope of the file, taking into account all of the phases of a job’s life cycle.

IDs come in two flavors: pure and composite. A pure ID is an ID that does not contain the character period “.”
A composite ID is made up of pure IDs delimited by periods. For example:

pureID :: = ID –{'.'}
compositeID :: = pureID ['.'pureID]+
ID :: = pureID | compositeID

IDs are used differently under different circumstances. Several different circumstances are described below.

In case of no spawning — If an agent inserts new elements requiring IDs into an original job, then the agent
assigns pure IDs to the new elements and must guarantee their uniqueness.

In case of single spawning — If an agent inserts new elements into a spawned job, then the agent creates
composite IDs by using the ID of the root node and appending a unique pure ID delimited by a period. For
example:

• ID of spawned root node: ID = "Job_01234.Proc1"
• ID used for new element: ID = " Job_01234.Proc1.newpureID"

In case of independent spawning — The agent that merges the independent jobs beneath a big job inserts a
unique, pure ID (delimited by a period) in front of all IDs of each small job it receives. That means that the agent
must replace all IDs of each job it receives whenever it encounters an ID collision. If an agent inserts new
elements into a spawned job, then the agent creates composite IDs by using the ID of the respective root node of
the small job and appends unique pureID, delimited by a period. For example:

• ID of the big job with node ID = “A”
• Receives small job A1 with some IDs: ID = “A” ID = “A.A” ID = “A.B” where the first is the ID of the root node.
• Receives small job A2 with some IDs: ID = “A” ID = “A.A” ID = “anything” …
• The agent creates locally unique pure IDs: ID = “A1” and ID = “A2” each prepended to all IDs of each received

small job; the IDs of the small job A1 become: ID = “A1.A” ID = “A1.A.A” ID = “A1.A.B” and the IDs of the
small job A2 become: ID = “A2.A” ID = “A2.A.A” ID = “A2.anything”. All IDs in the big job are unique.

• The agent creates a new element added to the small job A1 with ID: ID = “A1.A.C”. Here the agent must
resolve the possible conflict if it would append the pure ID = “A” to the root ID = “A1.A”. That means the
agent has to check the uniqueness of each created ID.

Page 127

Page 127

• Before merging the jobs back to its original location the agent must remove the prepended pure IDs of all IDs,
here “A1”, “A2” respectively. Then the newly created element will be merged back with the ID = “A.C”.

4.6 Error Handling
Error handling is an implementation-dependent feature of JDF-based systems. The AuditPool element provides a
container where errors that occur during the execution of a JDF may be logged using Notification elements.
Notification elements may also be sent in JMF Signal messages. The content of the Notification element is
described in Table 3-32. Further details about error handling are provided in the next four sections.

4.6.1 Classification of Notifications
Notification elements are classified by the attribute Class. Every workflow implementation must associate a class
with all events on an event-by-event basis. The following list shows the possible values for Class:

• Event Indicates a pure event which occurred due to a certain operation-related action, for
example, machine events, operator activities, etc. This class is used for messaging.

• Information Indicates not an error, but rather any information about a process that cannot be expressed
by the other classes, for example, the beginning of execution.

• Warning Indicates that a minor error has occurred and an automatic fix was applied. Execution
continues. The node’s Status is unchanged. Appears in situations such as A4-Letter
substitutions, when toner is low, or when unknown extensions are encountered in a required
resource

• Error Indicates that an error has occurred that requires user interaction. Execution cannot
continue until the problem has been fixed. The node’s Status is Stopped. This value
appears in situations such as when resources are missing, when major incompatibilities are
detected, or when the toner is empty.

• Fatal Execution must be aborted. The node’s Status is Aborted. This value is seen with most
protocol errors or when major device malfunction has occurred.

4.6.2 Event Description
A description of the event is given by a generic Comment element, which is required for the notification classes
Information, Warning, Error, or Fatal. For example, after a process is aborted, error information describing a
device error may be logged in the Comment element of the Notification element. If phase times are logged, the
PhaseTime element that logged the transition to the Aborted state may also contain a local Comment element that
describes the cause of the process abortion. PhaseTime and Notification elements are optional subelements of the
AuditPool, which is described in Section 3.10.

4.6.3 Error Logging in the JDF File
A JDF-compliant controller/agent should log an error by inserting a Notification element in the AuditPool of the
node that generated the error. The NodeInfo element may contain NotificationFilter elements to define the
notification events (or, more specifically, errors) that should be logged.

4.6.4 Error Handling via Messaging (JMF)
A JMF Signal message with a Notification element in the message body should be sent through all persistent
channels that subscribed events of class error. How to subscribe error events via JMF, see Sections 5.2.2.3
Persistent Channels and 5.5.1.1 Events. Note that this is different from the NotificationFilter elements of the
NodeInfo element, which is defined for logging events by Notification elements to the AuditPool.

4.7 Test Running
In JDF, the notion of a test run is similar to the press notion of preflight. The goal is to detect JDF content errors
and inconsistencies in a job before the job is executed.

Page 128

Page 128

The ability to perform a test run may be built into individual devices or controllers. Alternatively, a controller
implementation may perform test runs on behalf of its devices. A test run may be routed through all of the different
devices and controllers in a workflow, just as if the test run were a standard execution run. For the routing of jobs
and nodes through different devices and controllers for a test, the spawning and merging mechanism may also be
applied. The devices/controllers receiving a job read it and analyze WITHOUT initiating execution. Rather, they
investigate the content of the node they would execute. A device/controller with agent capabilities may record
results into the audit pool associated with a given process.
During test running, the requirements of the processes specified are compared to the capabilities of the devices
targeted. A device or controller explicitly tests whether the inputs that have been specified as required are actually
the inputs that are required, and that none are missing or in error. For example, an input requirement may be a URL
that, when a test run is performed, is found to point to an item that no longer exists in that location. Test running is
meant to prevent errors as a result of that kind of misinformation. It is particularly useful when running expensive
or time-consuming jobs.

It is also possible to test run specific parts of a workflow, or even individual nodes. An agent may request a test
of certain nodes by setting the JDF attribute Activation to TestRun (see Table 3-3), which is inherited by all
descendent nodes that are not inactive (Activation = Inactive). If a device or controller2 detects an error in a node a
Notification element containing a textual description should be appended to the AuditPool element of the node in
which the error occurred, and, if messaging is supported, the error should be also communicated to the connected
listeners via messaging (for more information see Section 5.4 Error and Event Messages). If an error has been
detected, the agent can modify the job in order to correct the error. Once a test run has been completed successfully,
the device/controller with agent capabilities changes the Status attribute of the tested node to Ready. If a test run
fails, the device/controller is required to record the process status as FailedTestRun. After the test run has finished,
the agent should log the result by appending a ProcessRun element to the AuditPool element. For more
information about audits, see Section 3.10 AuditPool.

In principle, execution and test runs may be run simultaneously. For example, one job part may be executed
while another part requests only a test. JDF also defines an Activation value of TestRunAndGo that requests a test
run and, upon successful completion, automatically initiates processing.

4.7.1 Resource Status During Testrun
In order to test run a complete set of nodes, it is sometimes necessary to imply the Status of resources that are
produced by prior nodes. Successful test running does not set the Status attribute of a resource to Available unless
the resource actually is available. Nodes that require an output resource of a node that has completed test running
for purposes of test running may assume that these resources have a Status of Available for the purpose of test
running as long as the producing node has a Status of Ready.

2 Note that only devices and controllers with agent capabilities can write in a JDF document.

Page 129

Page 129

Figure 4.10 Parameter Space in device Capabilities3

4.8 Describing [RP165]Capabilities with JDF
While the JDF schema describes the structure of all JDF, it does not provide for a way to allow a specific JDF
Device to provide details on how it subsets (or extends) the JDF language. This ability is provided by the JDF
Capabilities. With it, a JDF Device may describe details on supported processes, resources, attributes, and attribute
values (and details about constraints and their interaction).

A JDF Device’s capabilities are described as a space of allowed resource parameter values within JDF. A Device in
this context is assumed to execute one or more JDF nodes. Its capabilities are defined by the space of acceptable
JDF resources for the product intent or process described by the node. An individual JDF job description can be
compared to the capabilities of a JDF device by looping over all resource parameters of a JDF node that is to be
executed by a device. The job can be executed as specified (attributes can be ignored if the SettingsPolicy is
BestEffort) if all job parameter values are within the ranges specified by the capabilities. If the capabilities describe
product intent, the job is executable as specified when all product intent ranges overlap with the capabilities
description.

Details of the elements needed for capability description are specified in Section 7.3 - Capability Definitions.

It is assumed that Device elements that describe capabilities will be transported in JMF KnownDevices
messages. It is not recommended to specify the capabilities of a Device that is linked to a process to specify that it
should execute the given process.

A capabilities description can also provide information necessary for the construction of a user interface to allow
entry of the values to use for a JDF. This includes specifying the NMTOKEN, enumeration, or string values that are
supported, hints for how to group features on the UI, and feature macro definitions (allowing multiple JDF controls
to be presented as a single user control).

[RP166]

3 Note that the restriction to three dimensions is for graphical demonstration purposes only.

Page 130

Page 130

Chapter 5 JDF Messaging with the Job Messaging Format
Introduction
A workflow system is a dynamic set of interacting processes, devices and MIS systems. For the workflow to run
efficiently, these processes and devices must communicate and interact in a well defined manner. Messaging is a
simple but powerful way to establish this kind of dynamic
interaction. The JDF-based Job Messaging Format (JMF) provides a
wide range of capabilities to facilitate interaction between the various
aspects of a workflow, from simple unidirectional notification
through the issuing of direct commands. This chapter outlines the
way in which JMF, accomplishes these interactions. The following
list of use cases is considered:

• System setup

• Dynamic status and error tracking for jobs and devices

• Pipe control

• Device setup and job changes

• Queue handling and job submission

• Device Capability description

Both Controllers and Devices may support JMF. This support requires hosting by a Web server. JMF messages are
most often encoded in pure XML, without an additional MIME/Multipart wrapper. Only controllers that support
JDF job submission via the message channel must support MIME for messages.

5.1 JMF Root
JMF and JDF have an inherently different structure. In order to allow immediate identification of messages, JMF
uses the unique name JMF as its own root-element name.

The root element of the XML fragment that encodes a message, like the root element of a JDF fragment, contains a
series of predictable attributes and instances of Message elements. These contents are defined in the tables that
follow, and are illustrated in Figure 5.1. Message elements are abstract, as is indicated by the dashed line surrounding
the Message element in Figure 5.1.

Table 5-1 Contents of the JMF root

Name Data Type Description
DeviceID ? string Identifies the recipient device or controller. The envelope of the

message contains the URL address of the controller that receives the
message via HTTP. Therefore, if DeviceID does not specify a
recipient, that controller is assumed to be the recipient.

SenderID string String that identifies the sender device, controller or agent.
TimeStamp dateTime Time stamp that identifies when the message was created.
Version
Modified in JDF 1.2

string JMF version. The current version is “1.2”.
Note that Version was optional but is required in JDF 1.2 and
beyond.[RP167]

xmlns ?
New in JDF 1.1

URI JDF supports use of XML namespaces. The namespace must be
declared. For details on using namespaces in XML, see
http://www.w3.org/TR/REC-xml-names/.

Message + element Abstract message element(s).

In order to automate aspects of your
production with out JDF, your technical
staff must become proficient in each of
the command languages that each of
your devices employ. By only buying
JDF-enabled devices that use JMF as
their control language, you only have
to learn one new device command
language … eventually, the only one
your MIS staff will need.

J M F = R O I

Page 131

Page 131

The following table describes the contents of the abstract Message element. All messages contain an ID and a
Type attribute.

Table 5-2 Contents of the abstract Message element

Name Data Type Description
ID ID Identifies the message.
Time ? dateTime Time at which the message was generated. This attribute is only

required if this time is different from the time specified in the
TimeStamp attribute of the JMF element.

Type NMTOKEN Name that identifies the message type. Message types are described in
Sections 5.5 and 5.6.

The following figure depicts the basic messaging structure and the message families.

Figure 5.1 Contents of a JMF root element and the message families

Page 132

Page 132

5.2 JMF Semantics
JMF encodes messages of several types. The first part of this section describes message elements that contain and convey
content, while the second describes the way in which these element types can be used to establish communication.

5.2.1 Message Families
A message contains one or more of the following five high level elements, referred to as message families, in the
root node. These families are Query, Command, Response, Acknowledge, and Signal. An explanation of each
family is provided in the following sections, along with an encoding example.

5.2.1.1 Query
A Query is a message that retrieves information from a controller without changing the state of that controller. A
query is sent to a controller. After a Query is sent, a Response is returned. If the Query included a Subscription,
Signals are sent to the designated URL until a StopPersistentChannel Command is sent.

Figure 5.2 Interaction of Messages with a subscription

It contains an ID attribute and a Type attribute, which it inherits from the abstract message type described in Table 5-2
Contents of the abstract Message element. JMF supports a number of well defined query types, and each query type
can contain additional descriptive elements, which are described in Sections 5.5 and 5.6. The following table shows
the content of a Query message element.

The terminology used for message families contradicts common usage but will be retained for backwards
compatibility. The Response actually functions as an Acknowledgement that a Command will be acted upon,
while the Acknowledge could more properly be named Completion or Result. The naming was defined to be
consistent with HTTP naming conventions so that a Response is always transported on an HTTP response.

Response & Acknowledgement

Page 133

Page 133

Table 5-3 Contents of the Query message element

Name Data Type Description
QueryTypeObj * element Abstract element that is a placeholder for any descriptive elements that

provide details required for the query. The element type of
QueryTypeObj is defined by the Type attribute of the abstract
Message element.

Subscription ? element If specified creates a persistent channel. For the structure of a
Subscription element, see Section 5.2.2.3 Persistent Channels.

The following is an example of a query message:
<JMF TimeStamp="2000-07-25T11:38:23.3+02:00" SenderID="Controller-1">
xmlns="http://www.CIP4.org/JDFSchema_1_1"
 <Query Type="KnownJDFServices" ID="M007"/>
</JMF>

5.2.1.2 Response
A Response to a Query or a Command is always a direct answer of a Query or a Command. A response is
returned from a controller to the controller that put the query/command. Responses are not acknowledged
themselves.

A command response indicates that the command has been received and interpreted. The response of
commands with short latency also includes the information about the execution. Commands with long latency may
additionally generate a separate Acknowledge message (see Section 5.2.1.5 Acknowledge) to broadcast the
execution of the command. Command responses should comprise a Notification element that describes the return
status in text. Responses contain an attribute called refID, which identifies the initiating query or command. The
following table shows the content of a Response message.

Table 5-4 Contents of the Response message element

Name Data Type Description
Acknowledged ? boolean Used only in responses to command messages. Indicates whether the

command will be acknowledged separately. If true, an Acknowledge
message will be supplied after command execution. If false, no
Acknowledge message will be supplied. Default = false

refID NMTOKEN Copy of the ID attribute of the initiating query or command message
to which the response refers.

ReturnCode ? integer Describes the result. 0 indicates success. For all other possible codes
see Appendix I. Default = 0

Subscribed ? boolean If a Subscription element has been supplied by the corresponding
query, this attribute indicates whether the subscription has been
refused or accepted. If true, the requested subscription is accepted. If
false, the subscription is refused because the controller does not
support persistent channels. For details, see Section 5.2.2.3 Persistent
Channels. Default = true

Notification ? element Additional information including textual description of the return
code. The Notification element should be provided if the
ReturnCode is greater than 0, which indicates that an error has
occurred, or if the initiating message is a command.

ResponseTypeObj * element Abstract element that is a placeholder for any descriptive elements that
provide details queried for or details about command execution.

An example of a response on a command is provided in the Section 5.2.1.4 Command. The encoding example for
the query, shown above, might generate the following response:

Page 134

Page 134

<JMF TimeStamp="2000-07-25T11:38:25+02:00" SenderID="RIP-1">
 <Response Type="KnownJDFServices" ID="M107" refID="M007">
 <JDFService Type="Rendering"/>
 <JDFService Type="Imposition"/>
 <JDFService Type="Trapping"/>
 </Response>
</JMF>

5.2.1.3 Signal
A signal message, which is syntactically equivalent to a combination of a Query message and a Response
message, is a unidirectional message sent on any event to other controllers. This kind of message is used to
automatically broadcast some status changes.

Controllers can get signal messages in one of three ways. The first way is to subscribe for them with an
initiating query transmitted via a message channel that includes a Subscription element. The second way is to
subscribe for them with an initiating query defined in the NodeInfo element of a JDF node that also includes a
Subscription element (see JMF elements in Table 3-8). The first query is transmitted separately via a mechanism
such as HTTP, whereas the second is read together with the corresponding JDF node. Once the subscription has
been established, signals are sent to the subscribing controllers via persistent channels. In both cases, however, the
Signal message contains a refID attribute that refers to the persistent channel. The value of the refID attribute
identifies the persistent channel that initiated the Signal.

The third way in which a controller may receive a signal is to have the signal channels hard-wired, for example,
by a tool such as a list of controller-URLs read from an initialization file. For example, signals may be generated
independently when a service is started, or when subcontrollers that are newly connected to a network want to
inform other controllers about their capabilities. Hard-wired signals, however, must not have a refID attribute. If no
refID is specified, the corresponding query parameters must be specified instead.

Table 5-5 Contents of the Signal message element

Name Data Type Description
LastRepeat ? boolean If true, the persistent channel is being closed by the controller and no

further messages will be generated that fulfill the persistent channel
criteria. If false, further signals will be sent. For further details, see
Section 5.2.2.3 Persistent Channels. Default = false

refID ? NMTOKEN Identifies the initiating query message that subscribed this signal
message. Hard-wired signals must not contain a refID attribute.

Notification ? element Textual description of the signal. The Notification element should be
provided if the severity of the event that caused this signal is greater
than warning, or if pure events have been subscribed. For details
about subscribing pure events see Section 5.5.1.1 Events.

QueryTypeObj ? element If no refID is specified, the corresponding query parameters must be
specified instead by providing this element.
This element is an abstract element and a placeholder for any
descriptive elements that provide details for the virtual Query, which,
if sent, would convey the same ResponseTypeObj elements. The
element type of QueryTypeObj is defined by the Type attribute of
the abstract Message element.

ResponseTypeObj * element Abstract element that is a placeholder for any descriptive elements that
provide details subscribed. These element types are the same as in the
Response message element.

Trigger ? element Describes the trigger event which caused this signal. The Trigger
element recalls some information provided during the subscription of
the signal messages. For details on subscribing signals see Section
5.2.2.3 Persistent Channels.

The following table describes the structure of the Trigger element.

Page 135

Page 135

Table 5-6 Contents of the Trigger element

Name Data Type Description
RepeatStep ? integer Recalls the RepeatStep attribute specified during subscription of the

signal. For details see Table 5-12.
RepeatTime ? number Recalls the RepeatTime attribute specified during subscription of the

signal. For details see Table 5-12.
ChangedAttribute * element If a change of an attribute triggered this signal, this element describes

the attribute that changed.
Added ? element A pool that contains the description of trigger events caused by the

adding of elements like services, controllers, devices, or messages.
Removed ? element A pool that contains the description of trigger events caused by the

removal of elements like services, controllers, devices, or messages.

The following describes the structure of the ChangedAttribute element referenced in the table above.

Table 5-7 Contents of the ChangedAttribute element

Name Data Type Description
AttributeName NMTOKEN Name of the attribute that changed.
ElementID ? NMTOKEN ID of the element that changed. Used only in conjunction with a

change of a certain resource or node which cannot uniquely be
addressed by the other attributes of this element. Default = none.

ElementType NMTOKEN Name of the element which contains the changed attribute.
OldValue string Old value. The string has to be cast to the appropriate data type that

depends on the attribute's data type.
NewValue string New value of the attribute.

The following describes the structure of the Added element referenced in Table 5-6.

Table 5-8 Contents of the Added element

Name Data Type Description
AddedElement * element If the appending of an element like a service, controller, device, or

message triggered this signal, this element describes which service,
controller, device, or message etc. has been added.
This is an abstract element. It is a placeholder for a ResponseTypeObj
like NotificationDef, a JDFController, a Device, a JDFService, or a
MessageService.
For details on these elements see Section 5.5.1 Controller Registration
and Communication Messages.

The following describes the structure of the Removed element referenced in Table 5-6.

Table 5-9 Contents of the Removed element

Name Data Type Description
RemovedElement * element If the removal of an element like a service, controller, device, or

message triggered this signal, this element describes which service,
controller, device, or message etc. has been removed.
This is an abstract element. It is a placeholder for a ResponseTypeObj
like NotificationDef, a JDFController, a Device, a JDFService, or a
MessageService.
For details on these elements see Section 5.5.1 Controller Registration
and Communication Messages.

Page 136

Page 136

The following is an example of a signal message:
<JMF TimeStamp="2000-07-25T12:28:01+02:00" SenderID="Press 45">
 <Signal Type="Status" ID="s123">
 <StatusQuParams JobID=”42” JobPartID=”66”/>
 <DeviceInfo DeviceStatus=”Setup”/>
 </Signal>
</JMF>

5.2.1.4 Command
A command is syntactically equivalent to a Query, but rather than simply retrieving information, it also causes a
state change in the target device. The following table contains the contents of a Command message. A Response
is returned immediately after a Command. If the Command included an AcknowledgeURL, and the Command
was going to take a while, the device controller may elect to return the Response with Acknowledge = true, and
send an Acknowledge to the AcknowledgeURL when the Command completes.

Table 5-10 Contents of the Command message element

Name Data Type Description
AcknowledgeURL ? URL URL of the recipient of any Acknowledge. If specified, the

command requests for a Acknowledge message depending on the
value of AcknowledgeType.

AcknowledgeType ?
New in JDF 1.1

enumerations Defines the actions that should be acknowledged. This is necessary
mainly for device-machine pairs where the machine is not accessible
online.
Received: The Command has been received and understood, e.g. by an
operator.
Applied: The Command has been applied to the machine, e.g. by an
operator.
Completed: The Command has been executed. The default.

CommandTypeObj * element Abstract element that is a placeholder for any descriptive elements that
provide details of the command.

The following example demonstrates how a ResumeQueueEntry command may cause a job in a queue to begin executing:
<JMF DeviceID="A3 Printer" TimeStamp="2000-07-25T12:32:48+02:00" SenderID="MIS master A">
 <Command ID="M009" Type="ResumeQueueEntry">
 <QueueEntryDef QueueEntryID="job-0032"/>
 </Command>
</JMF>
The following example shows a possible response to the command example above:
<JMF … SenderID="A3 Printer">
 <Response ID="M109" Type="ResumeQueueEntry" refID="M009">
 <Queue DeviceID="A3 Printer”>
 <QueueEntry QueueEntryID="job-0032" Status=”Running” JobID=”job-0032”/>
 </Queue>
 </Response>
</JMF>

5.2.1.5 Acknowledge
An Acknowledge message is an asynchronous answer to a Command issued by a controller. Each Acknowledge
message is unidirectional and syntactically equivalent to a command Response, and the refID attribute of each
refers to the initiating command. Acknowledge messages are generated if commands with long latency have been
executed in order to inform the command sender about the results. Acknowledge messages are only generated if
the initiating command has specified the attribute AcknowledgeURL.

Page 137

Page 137

Figure 5.3 Interaction of Command and Acknowledge Messages

They are announced in the Response message to the command by the setting the attribute Acknowledged = true.

Table 5-11 Contents of the Acknowledge message element

Name Data Type Description
AcknowledgeType ?
New in JDF 1.1

enumerations Defines the context of this message. This is necessary mainly for
device-machine pairs where the machine is not accessible online.
Received – The initiating Command has been received and
understood, e.g. by an operator.
Applied – The initiating Command has been applied to the machine,
e.g. by an operator.
Completed – The initiating Command has been executed. The
default..

Notification ?
Modified in JDF 1.1A

element Textual description of the command execution.

refID NMTOKEN Identifies the initiating command message the acknowledge refers to.
ReturnCode ? integer Describes the result. 0 indicates success. For all other possible codes

see Appendix I. Default = 0
ResponseTypeObj * element Abstract element that is a placeholder for any descriptive elements that

provide details about command execution.
Delayed Acknowledge messages contain the same
ResponseTypeObj elements as direct Response messages.

The following is an example of an Acknowledge message:

<JMF … >
 <Acknowledge ID="M109" Type="PipePush" refID="M010">
 <JobPhase … />
 </Acknowledge>
</JMF>

5.2.2 JMF Handshaking
JMF can seek to establish communication between system components in several ways. This section describes the
actions and appropriate reactions in a communication using JMF.

5.2.2.1 Single Query/Command Response Communication
The handshaking mechanisms for queries and commands are equivalent. The initiating controller sends a Query or
Command message to the target controller. The target parses the Query or Command and immediately issues an
appropriate Response message. If a Command with long latency is issued, an additional Acknowledge message
may be sent to acknowledge when the command has been executed.

Page 138

Page 138

5.2.2.2 Signal
JMF signal messages are “fire and forget.” In other words, no acknowledgment is sent by the receiver besides the
standard protocol HTTP response that is sent when a communication link is sought.

5.2.2.3 Persistent Channels
Queries may be made persistent by including a Subscription element that defines the persistent channel-receiving
end (see also Figure 5.1). The responding controller should initially send a Response to the subscribing controller.
Then the responding controller should send Signal messages whenever the condition specified by one of the
attributes in the following table is true. This is referred to as a persistent channel. The refID attribute of the
Signal is defined by the ID attribute of the Query. In other words, the refID of the signal identifies the persistent
channel. Any Query may be set up as a persistent channel, although in some cases this may not make sense.

Table 5-12 Contents of the Subscription element

Name Data Type Description
RepeatStep ? integer Requests an update signal whenever the Amount associated with the

query is an integer multiple of RepeatStep.
Default = 0, which means no repeat. Then it is up to the sending
controller to generate Signals.

RepeatTime ? number Requests an update signal every RepeatTime seconds. If defined, the
Signal is generated periodically independent of any other trigger
conditions. Default = no repeat

URL URL URL of the persistent channel receiving end.
ObservationTarget * element Requests an updating Signal message whenever the value of one of

the attributes specified in ObservationTarget changes.

Table 5-13 Contents of the ObservationTarget element

Name Data Type Description
ElementType ? NMTOKEN Name of the element that contains attributes that may change.

Defaults to the abstract ResponseTypeObj of the message.
Attributes ? NMTOKENS Requests an update signal whenever the value of one of the attributes

specified by Attributes is modified. A value of “*” denotes a message
request for any attribute change which is the default.

ElementIDs ? NMTOKENS IDs of the elements that contain attributes that may change. Used only
in conjunction with a query of the state change of a certain resource or
node which cannot uniquely be addressed by the other attributes of
this element. Default = none.

PartIDKeys ? enumerations Partition keys of the elements that contain attributes that may change.
Default = none, i.e. the root attribute must change. The special value
“*” denotes a change in any partition.

If a persistent signal channel has been set up and the device knows that this is the last time that the condition for
signaling will be true, it should set the LastRepeat flag of the corresponding Signal message to true. In general,
this will happen for a Status query, as when the job that has been tracked is completed. It may also happen when a
device is shut down and will, therefore, not send any further updates. If a controller that does not support persistent
channels is queried to set up a persistent channel, it must answer the query with a Response, set Subscribed to
“false”, and set the ReturnCode to “111”.

Multiple attributes of a Subscription element are combined as a boolean OR operation of these attributes. For instance,
if RepeatStep and ObservationTarget are both specified, messages fulfilling either of the requirements are requested. If
the subscription element contains only a URL, it is up to the emitting controller to define when to emit messages.

Creating Persistent Channels in a JDF Node
The NodeInfo element of a JDF node may contain JMF elements that contains a set of queries (not commands) that
define persistent channels. Parsing a JDF that contains a JMF with a Subscription element is equivalent to
receiving the messages that are specified in the JMF node. If the parsing controller cannot handle the request, it may

Page 139

Page 139

generate a Response with ReturnCode = “111” and Subscribed = “false”, accompanied by a Notification
element describing the rejection. It is not required to emit the Response, e.g., if the agent parses a Resource
request but has no access to the device information.

Deleting Persistent Channels
A persistent channel may be deleted by sending a StopPersistentChannel command, as described in Section
5.5.1.7 StopPersistentChannel.

5.3 JMF Messaging Levels
A JDF-conforming controller may opt to support one of
the following messaging compliance levels offered by
JMF:

• No messaging (Level 0) Controllers have the
option of supporting no messaging at all. For
this level, JDF includes Audit records for each
process that allow the results of the process to
be recorded.

• Notification (Level 1) Most controllers will
choose to support some level of messaging
capability. Notification is the most basic level of support. Devices that support notification provide
unidirectional messaging by sending Signal messages. Notification messages inform the controller when
they begin and complete execution of some process within a job. They may also provide notice of some
error conditions. Setup of the notification channel can be defined in a JDF node or hard-wired. In order to
set up notification messages via a NodeInfo element, the controller must be able to read JMF query
elements from a JDF document.

• Query support (Level 2) The next level of communication supports queries. Controllers that support
queries respond to requests from other controllers by communicating their status using such tools as
current JobID attributes, queued JobID attributes, or current job progress. Queries require bi-directional
communication capabilities.

• Command support (Level 3) This level of support provides controllers with the ability to process
commands. The controller can receive commands, for instance, to interrupt the current job, to restart a job,
or to change the status of jobs in a queue.

• Submission support (Level 4) Finally, controllers may accept JDF jobs via an HTTP post request to the
messaging channel. In this case, the messaging channel must support MIME/Multipart/Related documents.
For more details on submission, see Section 5.6.3.8 SubmissionMethods.

Each messaging level encompasses all of the lower messaging levels.

5.4 Error and Event Messages
If a command or a query message is not successfully handled, a processor must reply with a standardized response
that may contain a Notification element. Notification elements, described in detail in Section 3.10.1.2 Notification,
convey a textual description. The information contained in the Notification element may be used by a user interface
to visualize errors.

The response messages Response and Acknowledge contain a ReturnCode attribute. ReturnCode defaults
to 0, which indicates that the response is successful. In case of success and in responses to commands an
informational Notification element (Class = “Information”) may be provided. In case of a warning, error or fatal
error, the ReturnCode is greater than 0 and indicates the kind of error committed. In this case, a Notification
element should be provided. Error codes are defined in Appendix I. The following example uses a Notification
element to describe an error:
<JMF … >
 <Response ID="M109" Type="ResumeQueueEntry" refID="M009" ReturnCode="5">
 <Notification Class="Error" Type=”Error”>
 <Comment>StartJob unsuccessful – Device does not handle commands</Comment>

As part of your strategic equipment purchasing
procedures and requirements, consider what the
JDF Messaging Levels are desired, and what the
minimum level of conformance will be for your
new equipment purchases.

What’s your JMF SOP?

Page 140

Page 140

 <Error ErrorID=”1234”/>
 </Notification>
 …
 </Response>
</JMF>

5.4.1 Pure Event Messages
Notification elements are also used to signal usual events due to any activities of a device, operator, etc., e.g., scanning
a bar code. Such pure events can be subscribed to by the Events message described in Section 5.5.1.1 Events. These
Signals always have a Type=”Notification”:
<JMF … >
 <Signal ID="S1" Type="Notification" ReturnCode="0">
 <Notification Class="Event" Type=”Barcode”>
 <Comment>Palette completed</Comment>
 <Barcode Code=”99923AAA123”/>
 </Notification>
 </Signal>
</JMF>

5.5 Standard Messages
The previous sections in this chapter provide a description of the overall structure of JMF messages. This section
contains a list of the standard messages that are defined within the JDF framework. It is not required that every
JDF-compliant application support every one of the signals and queries described in this list. It is, however, possible
to discover which messages are supported in a workflow. A controller responds to the KnownMessages query by
publishing a list of all the messages it supports (see Section 5.5.1.3 KnownDevices, below).

At the beginning of each section there is a table that lists all of the message types in that category. These tables
contain three columns. The first is entitled “Message Type,” and it lists the names of each message type. The second
column is entitled “Family.” The values in this column describe the kind of message that is applicable in the
circumstance being illustrated. The following abbreviations are used to describe the values:

Q: Query
C: Command
R: Response
S: Signal

More than one of these values may be valid simultaneously. If that is the case, then all applicable letters are
included in the column. Additionally, there are a few special circumstances indicated by particular combinations of
these letters. The letters “QR” or “CR” indicate that all Query and Command messages cause a Response
message to be returned. If the message may occur as a Signal, either from a subscription or independently, the
“Family” field in the table also contains the letter “S”. Finally, the third column provides a description of each
element.

At the beginning of each section describing the contents and function of the message types listed in the tables
described above is a table containing the instantiation (i.e., the type) of all of the abstract subelements applicable to
the message being described. Each table contains an entry that describes the details of the query or command as
well as an additional entry that describes the details of the corresponding response. The tables resemble the
following template:

Table 5-14 Messaging table template

Object Type Element name Description
Abstract subelement of the
query or command:

Name and type of the subelement that defines
specifics of the query or command, followed by a
cardinality symbol.

Short description of the
subelement(s), if applicable.

Abstract subelement of the
response to a query or
command:

Name and type of subelement that contains specific
information about the response to the query or
command followed by cardinality symbol.

Short description of the
subelement(s), if applicable.

Page 141

Page 141

The name of the abstract subelement of a Query element is QueryTypeObj, the name of the abstract subelement of
a Command element is CommandTypeObj, and the name of the abstract subelement of a Response as well as an
Acknowledge element is ResponseTypeObj.

5.5.1 Controller Registration and Communication Messages
The message types of the following table are defined in order to exchange metadata about controller or device
abilities and for general communication.

Table 5-15 Process registration and communication messages

Message type Family Description
Events QRS Used to subscribe pure events occurring randomly like scanning of a bar

code, activation of function keys at a console, error messages, etc.
KnownControllers QRS Returns a list of JMF-capable controllers.
KnownDevices QRS Returns information about the devices that are controlled by a controller.
KnownJDFServices QRS Returns a list of services (JDF Node Types) that are defined in the JDF

specification.
KnownMessages QRS Returns a list of all messages that are supported by the controller.
RepeatMessages QR Returns a set of previously sent messages that have been stored by the

controller.
StopPersistentChannel CR Closes a persistent channel.

5.5.1.1 Events
Table 5-16 Contents of the Events message

Object Type Element name Description
QueryTypeObj NotificationFilter ? Refines the list of events queried.
ResponseTypeObj NotificationDef * List of Notification types that match NotificationFilter.

The Events message type is intended to be used to query for supported event messages and to subscribe for
randomly occurring events of a device or controller. These events are described in Section 4.6.1 Classification of
Notifications and can only be transmitted via Signal messages. If the query contains a Subscription element, a
NotificationFilter element is combined by a logical AND operation with the Subscription element for selective
subscriptions. An empty Events message (without a Subscription and NotificationFilter element) can be used to
query for all events, which are supported by a device or controller.

The controller that subscribes for Events messages receives Signal messages that convey only Notification
elements containing information about the event. The event type and values of these messages may then be
provided by specifying a Type attribute and an abstract NotificationDetails element in the Notification element, as
described in Section 3.10.1.2 Notification. Possible NotificationDetails elements are defined in Appendix J
NotificationDetails. Example of a subscription of Events and the response:

<JMF … >
 <Query Type="Events" ID="M170">
 <Subscription URL="http://www.anycompany.com/MIS/JMF/JobTracker"/>
 <NotificationFilter Classes ="Event Warning Error Fatal"/>
 </Query>
</JMF>
<JMF … >
 <Response ID="M1001" refID="M170" Type="Events">
 <NotificationDef Classes=”Warning Error Fatal” Type=”Error”/>
 <NotificationDef Classes="Event" Type=”FCNKey”/>
 <NotificationDef Classes="Event Error" Type=”Barcode”/>
 <NotificationDef Classes="Event" Type=”SystemTimeSet”/>
 <NotificationDef Classes="Event" Type=”anycompany:PrivateEvent_1”/>

Page 142

Page 142

 <NotificationDef Classes="Event" Type=”anycompany:PrivateEvent_2”/>
 <Response/>
</JMF>

Structure of the NotificationFilter Element
Table 5-17 Contents of the NotificationFilter element

Name Data Type Description
DeviceID ? string ID of the device whose messages are queried/subscribed. May be

specified for device selection if the controller controls more than
one device.

JobID ? string JobID of the job whose messages are queried/subscribed.
JobPartID ? string JobPartID of the job whose messages are queried/subscribed.
QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job whose messages are queried/subscribed.
If QueueEntryID is specified, JobID and JobPartID and Part are
ignored. If none of QueueEntryID, JobID or QueueEntryID are
specified, NotificationFilter applies to all jobs that are executed by
the receiver.

Types ? NMTOKENS Possible notification type names are defined in Appendix J
NotificationDetails. Matching notification types are
returned/subscribed. Defaults to all supported notification types.

Classes ? enumerations Defines the set of notification classes to be queried/subscribed for.
Possible values are:
Event
Information
Warning
Error
Fatal
Default = all.
If both Classes and Types are a list, the NotificationFilter defines
an OR of all permutations.

Part * element Part elements that describe the partition of the job whose messages
are queried/subscribed.

Structure of the NotificationDef Element
Table 5-18 Contents of the NotificationDef element

Name Data Type Description
Classes enumerations Possible values are:

Event
Information
Warning
Error
Fatal
For details, see Section 4.6.1 Classification of Notifications.

Type NMTOKEN Notification type, that is the name of the element derived from the
abstract NotificationDetails element. For a list of predefined names
see Appendix J NotificationDetails.

Page 143

Page 143

5.5.1.2 KnownControllers
Table 5-19 Contents of the KnownControllers message

Object Type Element name Description
QueryTypeObj - -
ResponseTypeObj JDFController * Known controllers.

The KnownControllers query requests information about the controllers and devices that are known to the
controller and may be directly accessed by JMF messaging. KnownControllers is designed to define a registration
server. A processor that needs information about its system environment can query a registration server for a list of
known controllers. This list can subsequently be iterated using the other process registration queries in this section.
The URL of the master registration server must be defined using a method outside of JDF.

JDFController

Table 5-20 Contents of the JDFController element

Name Data Type Description
URL URL URL of the controller. If Protocol =”File”, this specifies a

directory where the messages should be deposited.
Protocol ? NMTOKENS List of Transport protocols that the controller supports.

Predefined values are:
HTTP: standard HTTP Post – Response pairs. This is the protocol
defined for JDF 1.1 and below.
HTTPS: standard HTTP Post – Response pairs with an additional
SSL wrapper.
File: The JMF should be serialized as a file on a network file
system.
SOAP: The JMF is packaged in a standard SOAP (version?)
envelope.

The following is an example of a response to a KnownControllers query:
<Response ID="M1" refID="Q1" Type="KnownControllers">
 <JDFController URL=“http://www.anycompany.com/controller" DescriptiveName="Printer
Controller"/>
 …
</Response>

5.5.1.3 KnownDevices
Table 5-21 Contents of the KnownDevices message

Object Type Element name Description
QueryTypeObj DeviceFilter ? Refines the list of devices queried. Only devices that

match the DeviceFilter are listed. The default is to
return a list of all known devices.

ResponseTypeObj
Modified in JDF 1.1A

DeviceList ? The list of known devices.1

The KnownDevices query requests information about the devices that are controlled by a controller. If a high level
controller controls lower level controllers, it should also list the devices that are controlled by these. The response is

1 This was Device* prior to version 1.1 a. It was changed due to inconsistencies of the inheritance model in the JDF
schema.

Page 144

Page 144

a list of Device resources (see Section 7.2.45 Device) controlled by the controller that receives the query, as
demonstrated in the following example:

<Response ID="M1" refID="Q1" Type="KnownDevices">
 <DeviceList>
 <DeviceInfo DeviceStatus=”Unknown”>
 <Device DeviceID="Joe SpeedMaster" DeviceType="Heidelberg SM102/6 rev. 47" />
 </DeviceInfo>
 </DeviceList>
 …
</Response>

Structure of the DeviceFilter Element
The DeviceFilter element refines the list of devices that should be returned. Only devices that match all parameters
of one of the Device resources specified in the DeviceFilter element are included.

Table 5-22 Contents of the DeviceFilter element

Name Data Type Description
DeviceDetails ?
New in JDF 1.1

enumeration Refines the level of provided information about the device. Possible values
are:
None – Default value.
Brief – Provide all available device information except for Device elements.
Modules – ModuleStatus elements should be provided without module
specific status details and without module specific employee information.
Details – Provide maximum available device information excluding device
capability descriptions. Includes Device elements which represent details of
the device.
Capability – Provide Device elements with DeviceCap subelements which
represent details of the capabilities of the device.
Full – Provide maximum available device information including device
capability descriptions. Includes Device elements which represent details of
the device.

Device * element Only devices that match the attribute values specified in one of these Device
resources are included. Devices match the criteria if the attribute values
specified here in the Device resource match the equivalent attribute values of
the known devices. Unspecified attributes always match. If Device is not
specified, all known Devices are returned. As this is a filter, only information
that can be used to identify a device must be specified. This precludes use of
DeviceCap and IconList in this Device. [RP168]

Structure of the DeviceList Element
The DeviceList element contains a list of information about devices that are returned.
New in JDF 1.1 a

Table 5-23 Contents of the DeviceList element

Name Data Type Description
DeviceInfo * element List of information about known devices as requested by the DeviceFilter

element. For details of the DeviceInfo element, see Table 5-44 Contents of
the DeviceInfo element in the message description 5.5.2.3 Status.

Page 145

Page 145

5.5.1.4 KnownJDFServices
Table 5-24 Contents of the KnownJDFServices message

Object Type Element name Description
QueryTypeObj - -
ResponseTypeObj JDFService * Processes that the controller or device can

execute.

The KnownJDFServices query returns a list of services that are defined in the JDF specification, such as
ConventionalPrinting, RIPping, or EndSheetGluing. It allows a controller to publish the services that the
devices it controls are capable of providing. The response is a list of JDFService elements, one for each supported
process type.

JDFService
JDFService elements define the node types that can be processed by the controller. A JDF processor should be
capable of processing Combined nodes of any of the individual JDFService elements that are specified. It is
therefore not necessary to define every permutation of allowed combinations. It need not be able to process
individual nodes with a type defined in the Types attribute of a Combined JDFService element.

Table 5-25 Contents of the JDFService element

Name Data Type Description
CombinedMethod ?
New in JDF 1.1

enumeration Specifies how the processes specified in Types may be specified. One
of:
Combined – The list of processes in Types must be specified as a
Combined process.
ProcessGroup – The list of processes in Types must be specified as a
ProcessGroup of individual processes.
CombinedProcessGroup – The list of processes in Types may be
specified either as a Combined process or as a ProcessGroup of
individual processes.
None – No support for Combined or ProcessGroup. Only the
individual process type defined in Types is supported. The default.

Type NMTOKEN JDF Type attribute of the supported process. Extension types may be
specified by stating the namespace in the value.

TypeOrder ?
New in JDF 1.1

enumeration Ordering restriction for combined nodes.
Fixed – The order of process types specified in the Types attribute is
ordered and each type can be specified only once, e.g. ,Cutting,
Folding; order does matter. The default.
Unordered – The order of process types specified in the Types
attribute is unordered and each type can be specified only once, e.g.,
DigitalPrinting, Screening, Trapping; order does not matter.
Unrestricted – The order of process types specified in the Types
attribute is unordered and each type can be specified multiply, e.g.,
Cutting, Folding, where the device can do both processes, in any order
and multiple times.

Types ? NMTOKENS If Type = Combined, or Type = ProcessGroup this attribute
represents the list of combined processes. If any of the Services are in
a namespace other than JDF, the namespace prefix should be included
in this list. For details, see Section 3.2.3

The following is an example of a response to a KnownJDFServices query:

<Response ID="M1" refID="Q1" Type="KnownJDFServices">

Page 146

Page 146

 <JDFService Type="Rendering" />
 <JDFService Type="Folding" />
 <JDFService Type="Combined" Types="Gathering Stitching"/>
 <JDFService Type="AnyCompaniesNamespace:MyFolding" />
 …
</Response>

5.5.1.5 KnownMessages
Table 5-26 Contents of the KnownMessages message

Object Type Element name Description
QueryTypeObj KnownMsgQuParams ? Refines the query for known messages. If not specified,

list all supported message types.
ResponseTypeObj MessageService * Specifies the supported messages.

The KnownMessages query returns a list of all message types that are supported by the controller.

KnownMsgQuParams
The flags of the KnownMsgQuParams element filter out the types of messages that should be included in the
response list. Multiple flags are allowed.

Table 5-27 Contents of the KnownMsgQuParams element

Name Data Type Description
Exact ?
New in JDF 1.1

boolean Requests an exact description of the known messages. If true, the
response should also return the requested DevCaps of the messages.
Default = false

ListCommands ? boolean Lists all supported command types.
Default = true

ListQueries ? boolean Lists all supported query types.
Default = true

ListSignals ? boolean Lists all supported signal types.
Default = true

Persistent ? boolean If true, only lists messages that may use persistent channels. If false,
ignores the ability to use persistent channels.
Default = false

MessageService
The response is a list of MessageService elements, one for each supported message type. The flags of the
MessageService response element are set in each MessageService entry. They define the supported usage of the
message by the controller. Note that no Response attribute is included in the list, since the capability to process one
of the other message families implies the capability to generate an appropriate Response. Multiple flags are allowed.

Table 5-28 Contents of the MessageService element

Name Data Type Description
Acknowledge ?
New in JDF 1.1

boolean If true the device supports asynchronous Acknowledge answers to this
message.
Default = false

Command ? boolean If true the message is supported as a command.
Default = false

Persistent ? boolean If true the message is supported as a persistent channel.
Default = false

Query ? boolean If true the message is supported as a query.

Page 147

Page 147

Name Data Type Description
Default = false

Signal ? boolean If true the message is supported as a signal.
Default = false

Type NMTOKEN Type of the supported message. Extension types may be specified by
stating the namespace in the value.

DevCaps *
New in JDF 1.1

element Specifies the restrictions of the parameter space of the supported
messages. For details on using DevCaps, see 7.3.3 Structure of the
DevCaps Subelement.

The following is an example of a response to a KnownMessages query:
<Response ID="M1" refID="Q1" Type="KnownMessages">
 <MessageService Type="KnownMessages" Query="true"/>
 <MessageService Type="Status" Query="true" Signal="true" Persistent="true">
 …
</Response>

5.5.1.6 RepeatMessages
Table 5-29 Contents of the RepeatMessages message

Object Type Element name Description
QueryTypeObj MsgFilter ? A filter for the messages to be repeated. For details, see

Section 5.5.1.1 Events.
ResponseTypeObj Message * The recent messages queried.

The RepeatMessages query returns a list of messages that have been previously sent by the controller. The
optional MsgFilter element allows the list to be filtered. The list of JMF messages that fulfill the filter criteria may
be sorted by time, with the most recent listed first. This specification places no requirements on the size of the
message buffer of a controller that supports RepeatMessages.

Structure of the MsgFilter Element
Table 5-30 Contents of the MsgFilter element

Name Data Type Description
After ? dateTime Messages sent only after a certain time.
Before ? dateTime Messages sent only before a certain time.
Count ? integer Maximum number of messages, most recent first.
DeviceID ? string ID of the device whose messages are required.
Family ? enumeration Message family. Possible values are:

Acknowledge
Response
Signal
All – Default value. Response, Signal, and Acknowledge
messages are queried.

JobID ?
New in JDF 1.2

string JobID of the job whose messages are queried/subscribed.

JobPartID ?
New in JDF 1.2

string JobPartID of the job whose messages are queried/subscribed.

MessageRefID ? NMTOKEN The refID attribute must match the value of MessageRefID.
MessageID ? NMTOKEN The ID attribute must match the value of MessageID.

Page 148

Page 148

Name Data Type Description
After ? dateTime Messages sent only after a certain time.
Before ? dateTime Messages sent only before a certain time.
Count ? integer Maximum number of messages, most recent first.
DeviceID ? string ID of the device whose messages are required.
Family ? enumeration Message family. Possible values are:

Acknowledge
Response
Signal
All – Default value. Response, Signal, and Acknowledge
messages are queried.

MessageType ? NMTOKEN Type attribute of the requested messages.
QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job whose messages are queried/subscribed.
If QueueEntryID is specified, JobID and JobPartID are ignored.
If none of QueueEntryID, JobID or QueueEntryID are specified,
MsgFilter applies to all jobs that are executed by the receiver.

ReceiverURL ? URL URL for which the messages are intended.
Part * element Part of the job whose messages are queried/subscribed.

If the returned list is incomplete because the parameters supplied in the MsgFilter element cannot be fulfilled by the
application, the ReturnCode may be 108 (empty list) or 109 (incomplete list) and should be flagged as a warning.

The following is an example of a response to a RepeatMessages query. Note the nesting of Response messages,
where the first layer is the response to the RepeatMessages query and its contents are the repeated messages.

<JMF TimeStamp="2000-06-14T12:11+02:00" … >
 <Response … >
 <Response Time="2000-06-14T11:00+02:00" … />
 <Response Time="2000-06-14T10:50+02:00" … />
 <Signal Time="2000-06-14T08:20+02:00" … />
 <Signal Time="2000-06-14T03:01+02:00" … />
 …
 </Response>
</JMF>

5.5.1.7 StopPersistentChannel
Table 5-31 Contents of the StopPersistentChannel message

Object Type Element name Description
CommandTypeObj StopPersChParams Specifies the persistent channel and the message

types to be unsubscribed.
ResponseTypeObj - -

The StopPersistentChannel command unregisters a listening controller from a persistent channel. No more
messages are sent to the controller once the command has been issued. A certain subset of signals may be addressed
for unsubscription by specifying a StopPersChParams element.

Structure of the StopPersChParams Element
If the optional attributes are not specified, those attributes default to match anything. Therefore it may be possible to
cancel the persistent channel for messages belonging to a certain type of message or to a certain job.

Page 149

Page 149

Table 5-32 Contents of the StopPersChParams element

Name Data Type Description
ChannelID ? NMTOKEN ChannelID of the persistent channel to be deleted. If the channel has been

created with a Query message, the ChannelID specifies the ID of the Query
message (identical to the refID of the Response message).

MessageType ? NMTOKEN Only messages with a matching message type are suppressed. Message types
are specified in the Type attribute of each Message element. Defaults to all
message types.

DeviceID ? string Only messages from devices or controllers with a matching DeviceID attribute
are suppressed.

JobID ? string Only messages with a matching JobID attribute are suppressed.
JobPartID ? string Only messages with a matching JobPartID attribute are suppressed.
QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job whose messages are suppressed. If
QueueEntryID is specified, JobID and JobPartID are ignored. If
none of QueueEntryID, JobID or QueueEntryID are specified,
StopPersChParams applies to all jobs that are executed by the
receiver.

URL URL URL of the receiving controller. This must be identical to the URL that was
used to create the persistent channel. If no ChannelID is specified, all
persistent channels to this URL are deleted.

Part * element Part elements that describe the partition of the job whose messages
are supressed.

5.5.2 Device/Operator Status and Job Progress Messages
JDF Messaging provides methods to trace the status of individual devices and resources and additional job-
dependent job-tracking data.. The status of a job is described by the Status elements of that job.

Devices are uniquely identified by a name—that is, by the attribute DeviceID of the Device resource (see
Section7.2.45 Device)—while controllers are uniquely identified by their URL. In other words, controllers are
implicitly identified as a result of the fact that they are responding to a message. One controller may control multiple
devices. The following queries and commands are defined for status and progress tracking:

Table 5-33 Status and progress messages

Message type Family Description
Occupation QRS Queries the occupation of an employee.
Resource QRSC Queries and/or modifies JDF resources that are used by a device, such

as device settings, or by a job. This message can also be used to query
the level of consumables in a device.

Status QRS Queries the general status of a device, controller or job.
Track QRS Queries the location of a given job or job part.

5.5.2.1 Occupation
Table 5-34 Contents of the Occupation message

Object Type Element name Description
QueryTypeObj EmployeeDef * Defines the employees queried.
ResponseTypeObj Occupation * The occupation status of the employees.

Occupation queries the occupation status of an employee. No job context is required to issue an Occupation message.

Page 150

Page 150

Structure of the EmployeeDef Element
The Occupation query may be focused to certain employees specifying a EmployeeDef element. If no
EmployeeDef element is specified, a list of all known employees is returned.

Table 5-35 Contents of the EmployeeDef element

Name Data Type Description
PersonalID ? string PersonalID of the employee being tracked.

Structure of the Occupation Element
The response returns a list of Occupation elements for the queried employees. These elements consist of one entry
for every job that is currently being executed. The list format accommodates both employees that service multiple
jobs or job parts in parallel and multiple employees working on one job.

Table 5-36 Contents of the Occupation element

Name Data Type Description
Busy ? number Busy state of the employee in percentage. A value of 100,

the default, means that the employee is fully occupied with
this task. The sum of all Busy values should not exceed 100.

Device * element Devices that the employee is currently assigned to.
JobID ? string JobID of the JDF node that the employee is assigned to. If no

JobID is specified but devices are, the employee is
performing tasks not related to a job.

JobPartID ? string Job part ID of the JDF node that is currently being executed.
QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job that is currently being executed. If
QueueEntryID is specified, JobID and JobPartID are ignored. If
none of QueueEntryID, JobID or QueueEntryID are specified,
Occupation applies to all jobs that are executed by the employee.

Employee element Description of the employee being tracked.
Part * element Part elements that describe the partition of the that is being

executed.

The following is an example of response to an Occupation query:

<Response ID="M1" refID="Q1" Type="Occupation">
 <!—Two jobs on one device with one operator-->
 <Occupation JobID="J1" Busy="30">
 <Employee PersonalID="P1234"/>
 <Device Name="Joe"/>
 </Occupation>
 <Occupation JobID="J2" Busy="70">
 <Employee PersonalID="P1234"/>
 <Device Name="Joe"/>
 </Occupation>
 <!—Another operator on job j2 -->
 <Occupation JobID="J2" Busy="50">
 <Employee PersonalID="P4321"/>
 <Device Name="Joe"/>
 </Occupation>
 <!—No Job context -->
 <Occupation Busy="0">
 <Device Name="John"/>
 <Employee PersonalID="P5678"/>
 </Occupation>
</Response>

Page 151

Page 151

5.5.2.2 Resource
The Resource message can be used as a command or a query to modify or to query JDF resources. In both cases
(query and command), it is possible to address either global device resources, such as device settings, or job-specific
resources. The query simply retrieves information about the resources without modifying them, while the command
modifies those settings within the resource that are specified. Settings that are not specified remain unchanged.

Structure of the Resource Query Message
Table 5-37 Contents of the Resource query message

Object Type Element Name Description
QueryTypeObj ResourceQuParams ? Specifies the resources queried.
ResponseTypeObj ResourceInfo * Contains the amount data of resources and, if

requested, the resources itself.

The Resource query may be made selective by specifying a ResourceQuParams element. The presence of the
JobID attribute determines whether global device resources or job-related resources are returned. If no
ResourceQuParams element is specified, only the global device resources are returned.

The query response returns a list of ResourceInfo elements that contains the queried information concerning
the resources. If the list is empty because the selective query parameters of the ResourceQuParams lead to a null
selection of the known device/job resources, then the ReturnCode may be 103 (JobID unknown), 104 (JobPartID
unknown) or 108 (empty list) and should be flagged as a warning.

Structure of the ResourceQuParams Element
Table 5-38 Contents of the ResourceQuParams element

Name Data Type Description
Classes ? enumerations List of the resource classes to be queried. For example, in order to

query the actual level of consumables in a device outside of any job
context, specify Classes = Consumable in the query without a JobID
attribute. For possible resource class names, see the Class attribute in
Table 3-12. Default = any class.

Exact ? boolean Requests an exact description of the JDF resource. If true, the
response should also return the requested JDF resource. Default =
false

JobID ? string Job ID of the JDF node that is being queried. If no JobID is specified,
global device settings are queried.

JobPartID ? string Job part ID of the JDF node that is being queried.
Location ? string Identifies the location of a resource, such as paper tray, ink container,

or thread holder. The name is the same name used in the Partition-key
Location of distributed resources (see also Section 3.9.2.6 Locations
of Physical Resources). Default = all locations

ProcessUsage ? string Selects a resource in which the value of the ProcessUsage attribute
of the resource link (see Table 3-18) matches the token specified here
in this attribute.
Only necessary if a resource name is used more than once by one
node. For example, the Component output resources of a
ConventionalPrinting process can be distinguished by specifying
ProcessUsage = Good and ProcessUsage = Waste, respectively.
The ResourceName, Usage and ProcessUsage attributes are
combined by a logical AND conjunction to select the resource to be
queried.

Page 152

Page 152

Name Data Type Description
QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job that is currently being queried. If
QueueEntryID is specified, JobID and JobPartID are ignored. If
none of QueueEntryID, JobID or QueueEntryID are specified,
ResourceQuParams applies to all jobs that are executed by the
device.

ResourceName ? NMTOKEN Name of the resource being queried. For possible resource names, see
titles in Chapter 7 Resources.

Usage ? enumeration Input – The resource is an input.
Output – The resource is an output.
Selects a resource in which the value of the Usage attribute of the
resource link (see Table 3-18) matches the token specified here in this
attribute. Only necessary if a resource name is used both as input and
output by one node.

Part * element Part elements that describe the partition of the job whose messages
are queried.

Structure of the Resource Command Message
Table 5-39 Contents of the Resource command message

Object Type Element name Description
CommandTypeObj ResourceCmdParams Specifies the resources to be modified.
ResponseTypeObj ResourceInfo * Contains information about the resources and the resources

after modification.

The Resource command may be used to modify either global device settings or a running job. It may be made
selective by specifying the optional attributes in the ResourceCmdParams element. The presence of the JobID
attribute determines whether global device resources or job-related resources are modified.

The response contains a list of ResourceInfo elements with all resources and private extensions of the device
after the changes have been applied. The type of the resource that is given as a response depends on the type of the
resource given in the command.

If the resource command was successful, the value of the ReturnCode attribute is 0. If it is not successful, the
value of ReturnCode may be one of those that have been described above in the section about the Resource query
message, 200 (invalid resource parameters), or 201 (insufficient resource parameters). Partial application of the
resource should also be flagged as a warning. If the value of ReturnCode is larger than 0, the controller that issued
the command can evaluate the returned resource in order to find the setting that could not be applied.

Page 153

Page 153

Structure of the ResourceCmdParams Element
Table 5-40 Contents of the ResourceCmdParams element

Name Data Type Description
Activation ?
New in JDF 1.1

enumeration Describes the activation status of the uploaded resource. Allows for a
range of activity, including deactivation and testrunning. Possible
values, in order of involvement from least to most active, are:
Held – Used for uploading a resource that requires operator
intervention before being applied.
TestRun – Used for a test run check by the controller or a device. This
does not imply that the update should be automatically applied when
the check is completed.
TestRunAndGo – Similar to TestRun, but requests a subsequent
automatic update of the resource if the testrun has been completed
successfully.
Active – Default value. The update must be applied immediately.
Note that the Inactive value defined in JDF::Activation is not a valid
value in this list.

Exact ? boolean Requests an exact description of the JDF resource. If true, the
response should also return the requested JDF-resource. Default =
false

JobID ? string Job ID of the JDF node that is being modified. If no JobID is
specified, global device settings are modified.

JobPartID ? string Job part ID of the JDF node that is being modified.
QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job that is currently being modified. If
QueueEntryID is specified, JobID and JobPartID are ignored. If
none of QueueEntryID, JobID or QueueEntryID are specified,
ResourceCmdParams applies to all jobs that are executed by the
device.

ResourceName ? NMTOKEN Name of the resource whose production amount will be modified. For
possible resource names see titles in Chapter 7 Resources.
Default = any name

ProcessUsage ? NMTOKEN Selects a resource in which the value of the ProcessUsage attribute
of the resource link (see Table 3-18) matches the token specified here
in this attribute.
Only necessary if a resource name is used more than once by one
node. For example, the Component output resources of a
ConventionalPrinting process can be distinguished by specifying
ProcessUsage = Good and ProcessUsage = Waste, respectively.
The ResourceName and ProcessUsage attributes are combined
by a logical AND conjunction to select the resource to be queried.

ProductionAmount ? number New amount of resource production. This value replaces the Amount
in the output resource link of the resource specified by the
ResourceName attribute.

UpdateIDs ?
New in JDF 1.1

NMTOKENS The UpdateID attributes of one or more ResourceUpdate that are
defined in resources known to the recipient. The data type is
NMTOKENS and not IDREFS because no matching IDs exist within
this message. The order of tokens in defines the order in which the
updates are applied.

Page 154

Page 154

Name Data Type Description
Part * element Part elements that describe the partition of the job whose resources

are being modified.
Resource * element Resources to be uploaded to the controller. They completely replace

the original resources with the same ID.
The resources to be modified are identified by their ID values, which
means that the ID attributes must be known to the controller that
issued the Resource command.

Structure of the ResourceInfo Element
Table 5-41 Contents of the ResourceInfo element

Name Data Type Description
Amount ? number Intended amount for consumption or production of a resource in a job

context. This corresponds to the value of the Amount attribute in the
corresponding resource link of the resource were it to be written now.
[RP169]

AvailableAmount ? number Device-specific amount of the Consumable resource that is available in
the device.

CumulativeAmount ? number Reflects the current accumulated amount of the resource that has been
consumed (input) or produced (output) by the process.
This corresponds to the value of the CumulativeAmount attribute in the
corresponding resource link of the resource were it to be written now.
[RP170]

Level ? enumeration This attribute is device dependent. A device may specify the level status
that describes a low or empty consumable level. Possible values are:
Empty – Specification is left to the device manufacturer.
Low – Specification is left to the device manufacturer.
OK – Default value.

Location ? string Device-specific string to identify the location of a given consumable,
such as paper tray, ink container, or thread holder. The name is the same
name used in the Partition-key Location of distributed resources (see
also Section 3.9.2.6 Locations of Physical Resources).
Default = all locations

ResourceName ? NMTOKEN Name of the resource if Exact = false in the query. Only one of
Resource or ResourceName must be specified.

ProcessUsage ? NMTOKEN Selects a resource in which the value of the ProcessUsage attribute of
the resource link (see Table 3-18) matches the token specified here in
this attribute.
Only necessary if a resource name is used more than once by one node.
For example, the Component output resources of a
ConventionalPrinting process can be distinguished by specifying
ProcessUsage = Good and ProcessUsage = Waste, respectively.
The ResourceName and ProcessUsage attributes are combined by a
logical AND conjunction to select the resource to be queried.

Unit ? string Unit of the amount attributes.
In a job-context it is strongly discouraged to specify a unit other than the
unit defined in the respective JDF resource, although this may be
necessary due to technical considerations, such as when ink is specified
in weight (g) and ink measurement is specified in volume (liter).

Page 155

Page 155

Name Data Type Description
CostCenter ? element Cost center to which the resource consumption is allocated.
Resource ? element JDF description of the resource.

The following is an example for retrieving settings:
<Query ID="Q1" Type="Resource">
 <ResourceQuParams Classes="Consumable" Exact="true"/>
</Query>

The following is a possible response to the query above:
<Response ID="M1" refID="Q1" Type="Resource">
 <ResourceInfo Location="Paper Tray 1" AvailableAmount="2120" >
 <Media>
 ... <!-- Media resource defined in JDF -->
 </Media>
 </ResourceInfo>
 <ResourceInfo Location="Ink1" AvailableAmount="0" Unit="l" Level="Empty">
 <Ink>
 ... <!-- Ink description resource defined in JDF -->
 </Ink>
 </ResourceInfo>
</Response>

The following is an example for modifying the production amount of a specific job to produce brochures:

<Command ID="C1" Type="Resource">
 <ResourceCmdParams JobID="MakeBrochure 012" ResourceName="Component"
ProductionAmount="7500"/>
</Command>

The following is a possible response to the resource command above:

<Response ID="M2" refID="C1" Type="Resource">
 <ResourceInfo Amount="7500" ResourceName="Component"/>
</Response>

5.5.2.3 Status
Table 5-42 Contents of the Status message

Object Type Element name Description
QueryTypeObj StatusQuParams Refines the query to include various aspects of the device

and job states.
ResponseTypeObj DeviceInfo Describes the actual device status.
 Queue ? Provides information about the queue and all its entries.

This element will only be provided if the device has
queue capabilities. The Queue element is described in
Section 5.6.4 Queue-Handling Elements.

The Status message queries the general status of a device or a controller and the status of jobs associated with this
device or controller. No job context is required to issue a Status message. The response contains one DeviceInfo
element, which contains the device specific information and which may contain other JobPhase elements that in
turn contain the job specific information. The response also provides a Queue element when commanded to do so.

Structure of the StatusQuParams Element
The various aspects of the device, queue, and job states may be refined by the StatusQuParams element. This
element contains three groups of parameters. The first group serves to refine the device-specific status information
queried. The parameters EmployeeInfo and ModuleDetails belong to this group. The second group serves to

Page 156

Page 156

refine the job specific status information. These are JobDetails, JobID, and JobPartID. And the third determines
simply whether a queue element should be appended. This is specified by the attribute QueueInfo.

In order to focus on the status of a certain job, the job must be uniquely identified using the JobID attribute. It
may be necessary to define a process or a part of a job as the query target under certain circumstances, such as when a
job is processed in parallel. This is accomplished using the JobPartID attribute of the StatusQuParams element. A
value of JobDetails = Full requests a complete JDF description of a snapshot of the specified job or job part.

If the specified job or job part is unknown, the value of the ReturnCode attribute is 103 or 104 (for error codes,
see Appendix I).

Table 5-43 Contents of the StatusQuParams element

Name Data Type Description
DeviceDetails ? enumeration Refines the provided status information about the device. Possible values

are:
None – Default value.
Brief – Provide all available device information except for Device
elements.
Modules – ModuleStatus elements should be provided without module
specific status details and without module specific employee
information.
Details – Provide maximum available device information excluding
device capability descriptions. Includes Device elements which
represent details of the device.
Capability – Provide Device elements with DeviceCap subelements
which represent details of the capabilities of the device.
Full – Provide maximum available device information including device
capability descriptions.. Includes Device elements which represent
details of the device.

EmployeeInfo ? boolean If true, Employee elements may be provided in the response. Those
elements describe the employees which are associated to the device
independent on any job. Default = false.

JobDetails ? enumeration Refines the provided status information about the jobs associated with
the device. Each higher entry includes the values specified in the lower
entries. Possible values are:
None – Default value. Specify only JobID, JobPartID and Amount
and/or PercentCompleted.
MIS – Provide business with the relevant information contained in the
CostCenter element and the DeadLine, DeviceStatus, Status,
StatusDetails, and the various Counter attributes.
Brief – Provide all available status information except for JDF.
Full – Provide maximum available status information. Includes an
actual JDF which represents a snapshot of the current job state.

JobID ? string Job ID of the JDF node whose status is being queried. Defaults to list all
known jobs.

JobPartID ? string JobPart ID of the JDF node whose status is being queried.
QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job that is currently being queried. If
QueueEntryID is specified, JobID and JobPartID are ignored. If
none of QueueEntryID, JobID or QueueEntryID are specified,
StatusQuParams applies to all jobs that are executed by the
device.

Page 157

Page 157

Name Data Type Description
QueueInfo ? boolean If true, a Queue element may be provided. This is analogous to a

QueueStatus query (see Section 5.6.3.6 QueueStatus). Default = false.
Part * element Part elements that describe the partition of the job whose status is

queried.

Structure of the DeviceInfo Element
The response returns a DeviceInfo element for the queried device.

Table 5-44 Contents of the DeviceInfo element

Name Data Type Description
Condition ?
New in JDF 1.2

enumeration The condition of a device. If not specified it it may implied from the
values of DeviceStatus and StatusDetails.
OK:
Problem:
Failure:

CounterUnit ? string The unit of the ProductionCounter, the TotalProductionCounter
and nominator unit of Speed.
The default unit is the default unit defined by JDF for the output
resource of the node executed by the device. For example, in case
of a sheet printer, it is the number of sheets; in case of a web printer,
it is the length of printed web in meters.

DeviceStatus enumeration The status of a device. Possible values are:
Unknown – No device is known or the device cannot provide a
DeviceStatus.
Idle – No job is being processed and the device is accepting new
jobs.
Down – No job is being processed and the device currently cannot
execute a job. The device may be broken, switched off, etc.
Setup – The device is currently being set up. This state is allowed to
occur also during the execution of a job.
Running – The device is currently executing a job.
Cleanup – The device is currently being cleaned. This state is
allowed to occur also during the execution of a job.
Stopped – The device has been stopped, but running may be
resumed later. This status may indicate any kind of break, including
a pause, maintenance, or a breakdown, as long as execution has not
been aborted.

HourCounter ? duration The total integrated time (life time) of device operation in hours.
Default = unknown.

PowerOnTime ? dateTime Date and time when the device was switched on.
Defaults = unknown.

ProductionCounter ? number The current machine production counter. This counter can be reset.
Typically, it starts counting at power-on time. The reset of this
counter may be signaled by an Events message of Type =
CounterReset (see Appendix J NotificationDetails). Default =
unknown.

Speed ? number The current machine speed. Speed is defined in the same units as
P d ti C t

Page 158

Page 158

Name Data Type Description
ProductionCounter / hour. Default = unknown.

StatusDetails ? string String that defines the device state more specifically. For a list of
supported values, see Appendix G.

TotalProductionCounter ? number The current total machine production counter. Default = unknown.
Device ? element A Device resource that describes details of the device.
Employee * element Employee resources that describe which employees are currently

working at the device.
JobPhase * element Describes the actual status of jobs in the device. For details on

using JobPhase elements, see Table 5-45.
ModuleStatus * element Status of individual modules. For details on using ModuleStatus

elements, see Table 5-46.

Structure of the JobPhase Element
A Status response may provide JobPhase elements. The JobPhase element represents the actual state of a job. The
JobPhase element is an analogue to the PhaseTime audit element described in Section 3.10.1.3 PhaseTime. The main
difference between a JobPhase element and a PhaseTime audit element is that a JobPhase message element reflects
[RP171]a snapshot of the current job status whereas the PhaseTime audit reflects a time span bordered by two (sub-)status
transitions.

For exact information about the job phase a JobPhase element may embed a copy of the current state of the
job described as JDF. If an actual JDF is not supported by the controller, the same rules apply for the Status
response as those which apply for the Consumable response.

Table 5-45 Contents of the JobPhase element

Name Data Type Description
Activation ?
New in JDF 1.1

enumeration The activation of the JDF node. Possible values are the same as the possible
values of a JDF node’s Activation attribute:
For details, see Table 3-3 Contents of a JDF node.

Amount ? number Produced amount. If Waste is also specified, the value is without waste. The
unit is specified in the CounterUnit attribute of the parent element
DeviceInfo.

CostType ? enumeration Whether or not this JobPhase is chargeable to the customer or not. One of:
Chargeable
Nonchargeable
If not specified, the cost type is unknown.[RP172]

DeadLine ? enumeration Scheduling state of the job. Possible values are:
InTime – The job or job part will probably not miss the deadline.
Warning – The job or job part could miss the deadline.
Late – The job or job part will miss the deadline.
Default = InTime
For more details on scheduling, see Section 3.5 Node Information.

JobID ? string Job ID of the JDF node the JobPhase belongs to.
JobPartID ? string Job part ID of the JDF node the JobPhase belongs to.
PercentCompleted ? number Node processing progress in % completed.
QueueEntryID ? string If the job was submitted to a Queue, and the QueueEntryID is known, this

attribute should be provided.

Page 159

Page 159

Name Data Type Description
RestTime ?
New in JDF 1.1

duration Estimated duration required for finishing of this job.

Speed ? number The current job speed. Speed is defined in the same units as
ProductionCounter / hour. Defaults to the speed specified in the DeviceInfo
element.

StartTime ?
New in JDF 1.1

dateTime Time when the job has been started.

Status enumeration The status of the JDF node. Possible values are the same as the possible values
of a JDF node’s Status attribute:
For details, see Table 3-3 Contents of a JDF node.

StatusDetails ? string String that defines the job state more specifically. For a list of supported
values, see Appendix G.

CumulativeAmount ?
New in JDF 1.1

number Amount that will be produced when this job phase is 100% completed. The
unit is specified in the CounterUnit attribute of the parent element
DeviceInfo.

Waste ?
New in JDF 1.1

number Produced amount of waste. The unit is specified in the CounterUnit attribute
of the parent element DeviceInfo.

WorkType ? enumeration Definition of the work type for this JobPhase, i.e. whether or not this
JobPhase relates to originally planned work, an alteration or rework. One of
Original: Standard work that was originally planned for the job
Alteration: Work done to accommodate change made to the job at the request of
the customer
Rework: Work done due to unforeseen problem with original work (bad plate,
resource damaged, etc.)
If not specified, the billing type is undefined.

WorkTypeDetails
?

string Definition of the details of the work type for this JobPhase, i.e. why the work
was done.
For WorkType=”Alteration”, values may include
CustomerRequest: The customer requested change(s) requiring the work.
InternalChange: Change was made for production efficiency or other internal
reason.
For WorkType=”Rework”, values may include
ResourceDamaged: A resource needs to be created again to account for a
damaged resource (damaged plate, etc.)
EquipmentMalfunction: Equipment used to produce the resource malfunctioned,
resource must be created again.
UserError: Incorrect operation of equipment or incorrect creation of resource
requires creating the resource again.
If not specified, the work type details are unknown.[RP173]

CostCenter ? element The cost center that the job is currently being charged to. Defaults to the cost
center specified in the DeviceInfo element.

JDF ? element Complete JDF node that represents a snapshot of the job that is currently being
processed.

Part *
Modified in JDF 1.1

element Describes which parts of a job are currently being processed.

Page 160

Page 160

Structure of the ModuleStatus Element
The ModuleStatus element is identical to the ModulePhase element of the PhaseTime audit element (see Table
3-35), except that the attributes Start and End are missing. These attributes specify the time interval in the audit
pendant ModulePhase and the DeviceID attribute, which is unnecessary here. The ModuleStatus element is
described in the following table.

Table 5-46 Contents of the ModuleStatus element

Name Data Type Description
DeviceStatus enumeration Status of the module. Possible values are:

Unknown – The module status is unknown.
Idle – The module is not used. An example is a color print module that is
inactive during a black-and-white print.
Down – The module cannot be used. It may be broken, switched off etc.
Setup – The module is currently being set up.
Running – The module is currently executing.
Cleanup – The module is currently being cleaned.
Stopped – The module has been stopped, but running may be resumed later.
This status may indicate any kind of break, including a pause, maintenance,
or a breakdown, as long as running can be easily resumed.

ModuleIndex IntegerRange-
List

0-based indices of the module or modules. If multiple module types are
available on one machine, indices must also be unique.

ModuleType NMTOKEN Module description. The allowed values depend on the type of device that
is described. The predefined values are listed in Appendix H.

StatusDetails ? string Description of the module status phase that provides details beyond the
enumerative values given by the DeviceStatus attribute. For a list of
supported values, see Appendix G.

Employee * element Links to Employee resources that are working at this module (the module
is specified by the attributes ModuleIndex and ModuleType).

The following is an example of a response to a Status query. The device in this example holds one job and
executes another job that is currently printed duplex each side on four-color modules for the front and three-color
modules for the back, with one idle:

<Response ID="M1" refID="Q1" Type="Status">
 <DeviceInfo JobID="678" JobPartID="01" DeviceStatus="Running" StatusDetails="Waste">
 <JobPhase Amount="2560" DeadLine="InTime" JobID="678" JobPartID="01"
PercentCompleted="52" QueueEntryID="Job-05" Status="InProgress"
StatusDetails="Waste"/>
 <JobPhase Amount="0" DeadLine="Warning" JobID="679" JobPartID="01"
PercentCompleted="0" QueueEntryID="Job-06" Status="Ready"/>
 <ModuleStatus ModuleIndex="0~3 6~8" ModuleType="PrintModule"
DeviceStatus="Running"/>
 <ModuleStatus ModuleIndex="4" ModuleType="PrintModule" DeviceStatus="Idle"/>
 <ModuleStatus ModuleIndex="5" ModuleType="PerfectingModule"
DeviceStatus="Running"/>
 </DeviceInfo>
</Response>

5.5.2.4 Track
Table 5-47 Contents of the Track message

Object Type Element name Description
QueryTypeObj TrackFilter ? Refines the Track query.

Page 161

Page 161

ResponseTypeObj TrackResult * Details of the tracked jobs

The Track query requests information about the location of Jobs that are known by a controller. If a high level
controller controls lower level controllers, it should also list the jobs that are controlled by these. The response is a
list of TrackResult elements.

Structure of the TrackFilter Element
The TrackFilter element refines the list of TrackResults that should be returned. Only jobs that match all
parameters specified are included.

Table 5-48 Contents of the TrackFilter element

Name Data Type Description
JobID ? string Job ID of the JDF node that is being tracked. Defaults to list

JobPhase elements of all known nodes.
JobPartID ? string JobPart ID of the JDF node that is being tracked.
QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job that is currently being tracked. If
QueueEntryID is specified, JobID and JobPartID are ignored. If
none of QueueEntryID, JobID or QueueEntryID are specified,
TrackFilter applies to all jobs that are executed by the device.

Status ? enumerations The status of the jobs being tracked. Possible values are a
combination of any of the possible values of a JDF node’s Status
attribute. Default = all. Possible values are:
Waiting
Ready
FailedTestRun
Setup
InProgress
Cleanup
Spawned
Stopped
Completed
Aborted
For details, see Table 3-3 Contents of a JDF node.

Part * element Part elements that describe the partition of the job that is being
tracked.

Structure of the TrackResult Element
One TrackResult is returned for each known job or spawned job part. TrackResult elements contain information
about the location of distributed jobs.

Table 5-49 Contents of the TrackResult element

Name Data Type Description
JobID string Job ID of the JDF node that is being tracked.
JobPartID ? string JobPart ID of the highest level node of the JDF node that is being

tracked.
QueueEntryID ?
New in JDF 1.2

string QueueEntryID of the job that is currently being tracked.

URL URL URL of the controller that owns this job.
IsDevice boolean If true, the controller that emitted this message is the device that has

access to the job and may be queried for details of the job.

Page 162

Page 162

Name Data Type Description
JobID string Job ID of the JDF node that is being tracked.
JobPartID ? string JobPart ID of the highest level node of the JDF node that is being

tracked.
Part * element Part elements that describe the partition of the job that is currently

being tracked.

The following is an example of a response on a Track message:
<Response ID="M1" refID="Q1" Type="Track">
 <TrackResult URL=“http://www.anycompany.com/controller" JobID=”1”
JobPartID=”42” IsDevice=”true”/>
 …
</Response>

5.5.3 Pipe Control
JDF Messaging provides methods to control dynamic pipes. Dynamic pipes are described in detail in Section 4.3.2
Partial Processing of Nodes with Partitioned Resources
JDF nodes themselves may not be partitioned, although the input and output resources may. If the input and output
ResourceLinks reference one or more individual partitions, the Node executes using only the referenced
Resources.
If multiple input resources are input to a process, the resource with the highest granularity defines the partitioning.
For instance, a ConventionalPrinting process may consume a non-partitioned ConventionalPrintingParams, and a set
of Ink and ExposedMedia(Plate) resources that are partitioned by Separation. The partition granularity will be
defined by the Ink and ExposedMedia(Plate) resources to be Separation. The Separation partition set is defined by
the superset of all defined partition key values. If the Separation key values of Ink were Black and Varnish, and the
the Separation key values of ExposedMedia(Plate) were Black, the resulting set is Black and Varnish.

The partition keys of both input and output restrict the process. If the partition keys are not identical, both must be
applied to restrict the node. If the partition keys are non-overlapping, e.g. in an Imposition node, where a RunList
based input partition is mapped to a sheet based output partition, the application must explicitily calculate the result.
The following examples illustrate the restriction algorithms:

Input Partition 1 Input Partition 2 Output Partition Node Partition Description
SheetName=
”S1”

- - SheetName=
”S1”

If only the input is
partitioned, the node
partition is defined by
the input.

SheetName=
”S1”
Separation=
”Cyan”

- - SheetName=
”S1”
Separation=
”Cyan”

If only the input is
partitioned, the node
partition is defined by
the input.

Page 163

Page 163

SheetName=
”S1”
Separation=
”Cyan”

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Implicit”)

- SheetName=
”S1”
Separation=
Cyan”
+
SheetName=
”S1”
Separation=
”Black”

The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only but
has an implied
SheetName and has a
larger but overlapping
set of separation
values. The separation
value set is therefore
defined by the second
key.

SheetName=
”S1”

- SheetName=
”S1”
Separation=
”Cyan”

SheetName=
”S1”
Separation=
”Cyan”

The input and output
base partitions are
identical. The output
further restricts the
partition.

SheetName=
”S1”

- SheetName=
”S2”
Separation=
”Cyan”

error Input and output are
not overlapping. This
specifies the null set.

SheetName=
”S1”
Separation=
”Magenta”

Separation=
”Cyan” +
Separation=
”Black”

- error This is an error and
defines the null set.
The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only and
has a larger but non-
overlapping set of
separation values. The
separation value set is
therefore the null set.

Page 164

Page 164

SheetName=
”S1”
Separation=
”Cyan”

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Explicit”)

- error The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only but has
no implied SheetName
and therefore has a
non-overlapping set of
partition keys. The
separation value set is
therefore defined by
the second key.

RunIndex=”0~7” - SheetName=
”s2”

special This specifies sheet s2,
with all PlacedObject
elements with an Ord
in the range of 0 to 7.
This special case is
important when
RunList entries occur
multiply on different
imposition sheets.

Overlapping Processing Using Pipes.

Table 5-50 Dynamic pipe messages

Message type Family Description
PipeClose CR Closes a pipe because no further resources are required. This is

typically used to terminate the producing process.
PipePull CR Requests a new resource from a pipe.
PipePush CR Notifies that a new resource is available in a pipe.
PipePause CR Pauses a process if no further resources can be consumed or produced.

5.5.3.1 PipeClose
Table 5-51 Contents of the PipeClose message

Object Type Element name Description
CommandTypeObj PipeParams Describes the pipe resource. The PipeParams

element is described in Section 5.5.3.2 PipePull.
ResponseTypeObj JobPhase The status of the responding process. The JobPhase

element is defined in Table 5-45.

The PipeClose message notifies the process at the other end of a dynamic pipe that the sender of this message
needs no further resources or will produce no further resources through the pipe. The PipeClose command response
is equivalent to the PipePull and PipePush command responses described below.

5.5.3.2 PipePull
Table 5-52 Contents of the PipePull message

Object Type Element name Description
CommandTypeObj PipeParams Describes the requested pipe resource.

Page 165

Page 165

ResponseTypeObj JobPhase The status of the responding process. The JobPhase
element is defined in Table 5-45.

The PipePull message requests resources that are described in a JDF dynamic pipe (see Sections 3.7.3 Pipe
Resources and 4.3.2 Partial Processing of Nodes with Partitioned Resources
JDF nodes themselves may not be partitioned, although the input and output resources may. If the input and output
ResourceLinks reference one or more individual partitions, the Node executes using only the referenced
Resources.
If multiple input resources are input to a process, the resource with the highest granularity defines the partitioning.
For instance, a ConventionalPrinting process may consume a non-partitioned ConventionalPrintingParams, and a set
of Ink and ExposedMedia(Plate) resources that are partitioned by Separation. The partition granularity will be
defined by the Ink and ExposedMedia(Plate) resources to be Separation. The Separation partition set is defined by
the superset of all defined partition key values. If the Separation key values of Ink were Black and Varnish, and the
the Separation key values of ExposedMedia(Plate) were Black, the resulting set is Black and Varnish.

The partition keys of both input and output restrict the process. If the partition keys are not identical, both must be
applied to restrict the node. If the partition keys are non-overlapping, e.g. in an Imposition node, where a RunList
based input partition is mapped to a sheet based output partition, the application must explicitily calculate the result.
The following examples illustrate the restriction algorithms:

Input Partition 1 Input Partition 2 Output Partition Node Partition Description
SheetName=
”S1”

- - SheetName=
”S1”

If only the input is
partitioned, the node
partition is defined by
the input.

SheetName=
”S1”
Separation=
”Cyan”

- - SheetName=
”S1”
Separation=
”Cyan”

If only the input is
partitioned, the node
partition is defined by
the input.

SheetName=
”S1”
Separation=
”Cyan”

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Implicit”)

- SheetName=
”S1”
Separation=
Cyan”
+
SheetName=
”S1”
Separation=
”Black”

The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only but
has an implied
SheetName and has a
larger but overlapping
set of separation
values. The separation
value set is therefore
defined by the second
key.

SheetName=
”S1”

- SheetName=
”S1”
Separation=
”Cyan”

SheetName=
”S1”
Separation=
”Cyan”

The input and output
base partitions are
identical. The output
further restricts the
partition.

Page 166

Page 166

SheetName=
”S1”

- SheetName=
”S2”
Separation=
”Cyan”

error Input and output are
not overlapping. This
specifies the null set.

SheetName=
”S1”
Separation=
”Magenta”

Separation=
”Cyan” +
Separation=
”Black”

- error This is an error and
defines the null set.
The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only and
has a larger but non-
overlapping set of
separation values. The
separation value set is
therefore the null set.

SheetName=
”S1”
Separation=
”Cyan”

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Explicit”)

- error The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only but has
no implied SheetName
and therefore has a
non-overlapping set of
partition keys. The
separation value set is
therefore defined by
the second key.

RunIndex=”0~7” - SheetName=
”s2”

special This specifies sheet s2,
with all PlacedObject
elements with an Ord
in the range of 0 to 7.
This special case is
important when
RunList entries occur
multiply on different
imposition sheets.

Overlapping Processing Using Pipes). PipePull messages are the JMF equivalent of a dynamic input resource link.
Figure 5.4, below, depicts the mode of operation of a PipePull message.

The PipePull command response returns a ReturnCode of 0 if the command has been accepted by the
receiving controller. If not successful the ReturnCode may be one of the codes presented in Appendix I. The
response may contain a Notification element. The JobPhase element (see Section 5.5.2.3 Status) returned should
provide only the Status attribute that describes the job status of the responding process after receiving the
command.

Page 167

Page 167

Figure 5.4 Mechanism of a PipePull message

Structure of the PipeParams Element
The PipeParams element is also used by the messages PipeClose, PipePush, and PipePause.

The URL where an optional Acknowledge should be sent when the pipe command has been executed may be
defined in the initiating command message by the attribute AcknowledgeURL. The Acknowledge is sent for the
following commands:
• for PipeClose: when the process has been finished,
• for PipePull: when the resource is available,
• for PipePush: when the resource has been accepted, and
• for PipePause: when the process has been stopped.

Table 5-53 Contents of the PipeParams element

Name Data Type Description
PipeID string PipeID of the JDF resource that defines the dynamic pipe.
Status ? enumeration Process status after the request. Possible values are defined in Table 3-3.

Default = InProgress
Resource * element Updated input resources to be used by the process that receives the pipe

command: PipePull (the receiver creates the pipe resource), PipePush
(the receiver consumes the pipe resource), and PipePause (the receiver
only updates the inputs).
The resource to be updated is identified by the ID, that means the ID
attribute must be known to the controller that issued the pipe command.
Possible commands are: PipePull, PipePush, or PipePause. In case
of the PipeClose command, the resources are ignored.

Page 168

Page 168

Name Data Type Description
ResourceLink ? element Updated resource link to the pipe resource: PipePull (it is an output

link), PipePush (it is an input link), and PipePause (depends on the
pipe end). This resource link may be used by the process that links to the
pipe resource.
The attributes rRef and Usage of a resource link must not be modified
by the agent that sends the Pipe message because thes attributes are used
by the JMF receiver to identify the ResourceLink that is to be modified.
For details see Section 3.7.4 ResourceUpdate Elements. In the context
of dynamic pipes these two attributes have no meaning.
In case of the PipeClose command, the resource link is ignored.

UpdatedStatus ? enumeration This value represents the actual status of the pipe resource and may be
used by the receiving process for process termination control. For
details see Section Formal Iterative Processing.
For possible values of the resource Status attribute see Table 3-12.

5.5.3.3 PipePush
J. 2 Contents of the PipePush message

Object Type Element name Description
CommandTypeObj PipeParams Describes the produced pipe resource. The PipeParams

element is described in Section 5.5.3.2 PipePull.
ResponseTypeObj JobPhase The status of the responding process. The JobPhase

element is defined in Table 5-45.

The PipePush message notifies the availability of pipe resources that are described in a JDF dynamic pipe (see
Sections 3.7.3 Pipe Resources and 4.3.2 Partial Processing of Nodes with Partitioned Resources
JDF nodes themselves may not be partitioned, although the input and output resources may. If the input and output
ResourceLinks reference one or more individual partitions, the Node executes using only the referenced
Resources.
If multiple input resources are input to a process, the resource with the highest granularity defines the partitioning.
For instance, a ConventionalPrinting process may consume a non-partitioned ConventionalPrintingParams, and a set
of Ink and ExposedMedia(Plate) resources that are partitioned by Separation. The partition granularity will be
defined by the Ink and ExposedMedia(Plate) resources to be Separation. The Separation partition set is defined by
the superset of all defined partition key values. If the Separation key values of Ink were Black and Varnish, and the
the Separation key values of ExposedMedia(Plate) were Black, the resulting set is Black and Varnish.

The partition keys of both input and output restrict the process. If the partition keys are not identical, both must be
applied to restrict the node. If the partition keys are non-overlapping, e.g. in an Imposition node, where a RunList
based input partition is mapped to a sheet based output partition, the application must explicitily calculate the result.
The following examples illustrate the restriction algorithms:

Input Partition 1 Input Partition 2 Output Partition Node Partition Description
SheetName=
”S1”

- - SheetName=
”S1”

If only the input is
partitioned, the node
partition is defined by
the input.

SheetName=
”S1”
Separation=
”Cyan”

- - SheetName=
”S1”
Separation=
”Cyan”

If only the input is
partitioned, the node
partition is defined by
the input.

Page 169

Page 169

SheetName=
”S1”
Separation=
”Cyan”

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Implicit”)

- SheetName=
”S1”
Separation=
Cyan”
+
SheetName=
”S1”
Separation=
”Black”

The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only but
has an implied
SheetName and has a
larger but overlapping
set of separation
values. The separation
value set is therefore
defined by the second
key.

SheetName=
”S1”

- SheetName=
”S1”
Separation=
”Cyan”

SheetName=
”S1”
Separation=
”Cyan”

The input and output
base partitions are
identical. The output
further restricts the
partition.

SheetName=
”S1”

- SheetName=
”S2”
Separation=
”Cyan”

error Input and output are
not overlapping. This
specifies the null set.

SheetName=
”S1”
Separation=
”Magenta”

Separation=
”Cyan” +
Separation=
”Black”

- error This is an error and
defines the null set.
The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only and
has a larger but non-
overlapping set of
separation values. The
separation value set is
therefore the null set.

Page 170

Page 170

SheetName=
”S1”
Separation=
”Cyan”

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Explicit”)

- error The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only but has
no implied SheetName
and therefore has a
non-overlapping set of
partition keys. The
separation value set is
therefore defined by
the second key.

RunIndex=”0~7” - SheetName=
”s2”

special This specifies sheet s2,
with all PlacedObject
elements with an Ord
in the range of 0 to 7.
This special case is
important when
RunList entries occur
multiply on different
imposition sheets.

Overlapping Processing Using Pipes). PipePush messages are the JMF equivalent of a dynamic output resource
link. Figure 5.5 depicts the mode of operation of a PipePush message. The PipePush command response is
equivalent to the PipePull command response described above.

Figure 5.5 Mechanism of a PipePush message

5.5.3.4 PipePause
Table 5-54 Contents of the PipePause message

Object Type Element name Description
CommandTypeObj PipeParams Describes the pipe resource. The PipeParams element

is described in Section 5.5.3.2 PipePull.

Page 171

Page 171

ResponseTypeObj JobPhase The status of the responding process. The JobPhase
element is defined in Table 5-45.

The PipePause message pauses execution of a process that is at the other end of a dynamic pipe. The PipePause
command response is equivalent to the PipePull command response described above.

5.6 Queue Support
In JMF, a device is assumed to have one input queue that accepts submitted jobs. If a real device supports multiple
queues, it is represented by multiple logical devices in JDF. The simple case of a device with no queue can be
mapped to a queue with two Status states: Waiting and Full. JMF supports simple handling of priority queues. The
following assumptions are made:

• Queues support priority. Priority may only be changed for waiting jobs. A queue may round priorities to
the number of supported priorities, which may be one, indicating no priority handling.

• Priority is described by an integer from 0 to 100. Priority 100 defines a job that should pause a job that is
in progress and commence immediately. If a device does not support the pausing of running jobs, it should
queue a priority-100 job before the last pending priority-100 job.

• A controller may control multiple devices/queues.

• Queue entries can be unambiguously identified by a QueueEntryID.

Some conventions used in the following sections have already been introduced in Section 5.5 Standard Messages.
This affects the message families and the descriptive tables at the beginning of each message section that describe
the type objects related to the corresponding message. The type objects are QueryTypeObj, CommandTypeObj,
and ResponseTypeObj (see also Figure 5.1).

5.6.1 Queue Entry ID Generation
Queue entries are accessed using a QueueEntryID attribute, which is generated by the controller of the queue when
the job is submitted. This attribute must uniquely identify an entry within the scope of one queue. An
implementation is free to choose the algorithm that generates QueueEntryIDs.

5.6.2 Queue Entry Handling Commands
Queue-entry handling is provided so that the state of individual jobs within a queue can be changed. Job
submission, queue-entry grouping, priorities, and hold/resume of entries are all supported. The individual
commands are defined in the table and explained in greater detail in the sections that follow.

Table 5-55 QueueEntry handling messages

Message type Family Description
AbortQueueEntry
Modified in JDF 1.2

CR If a job is already running, it is aborted and removed. If it is not already
running, it is removed from the queue

HoldQueueEntry CR The entry remains in queue but is never executed.
RemoveQueueEntry CR A job is removed from the queue.
RepeatQueueEntry
New in JDF 1.2

CR Creates a new QueueEntry from an already existing QueueEntry and
submits it to the queue in order to be executed.

RequestQueueEntry
New in JDF 1.2

CR A new job is requested by the device.

ResubmitQueueEntry CR Replaces a queue entry without affecting the entry’s parameters. The
command is used, for example, for late changes to a submitted JDF.

Page 172

Page 172

Message type Family Description
ResumeQueueEntry CR A held job is resumed. The job is requeued at the position defined by its

current priority. Submission time is set to the current time stamp.
SetQueueEntryPosition CR Queues a job behind a given position n, where n represents a numerical

value. 0 = pole position. Priority is set to the priority of the job at
position n.

SetQueueEntryPriority CR Sets the priority of a queued job to a new value. This does not apply to
jobs that are already running.

SubmitQueueEntry CR A job is submitted to a queue in order to be executed.

5.6.2.1 AbortQueueEntry
Table 5-56 Contents of the AbortQueueEntry message

Object Type Element name Description
CommandTypeObj
Modified in JDF1.2

QueueEntryDef
QueueFilter ?

Defines the queue entry.
Defines a filter for the returned Queue element in the
RepeatQueueEntry message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the elements listed above, see Section 5.6.4.

Once this command is issued, the entry specified by QueueEntryDef is removed from the queue. If the device on
which the entry is running has already commenced processing, the entry is aborted. In this case the Audits and
Status of the JDF that is being processed should be appropriately filled and the JDF should be delivered to the URL
as specified by NodeInfo:TargetRoute.

5.6.2.2 HoldQueueEntry
Table 5-57 Contents of the HoldQueueEntry message

Object Type Element name Description
CommandTypeObj
Modified in JDF1.2

QueueEntryDef
QueueFilter ?

Defines the queue entry.
Defines a filter for the returned Queue element in the
HoldQueueEntry message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the elements listed above, see Section 5.6.4.

The entry specified by QueueEntryDef remains in the queue but is never executed. If its Status is “Waiting”, its
Status is set to “Held”. If its Status is “Running”, its Status is set to “Suspended”. The HoldQueueEntry
command has no effect on jobs with a Status other than “Waiting” or “Running”.

5.6.2.3 RepeatQueueEntry
Added in JDF1.2

Table 5-58 Contents of the RepeatQueueEntry message

Object Type Element name Description
CommandTypeObj

RepeatQueueEntryParams
QueueFilter ?

Defines the parameters of the repeated job.
Defines a filter for the returned Queue element in the
RepeatQueueEntry message.

ResponseTypeObj QueueEntry Provides the queue entry of the repeated job.

Page 173

Page 173

 Queue Describes the state of the queue after the command has
been executed.

Definition of the QueueEntry and Queue elements, see Section 5.6.4.

The RepeatQueueEntry message creates a clone of an existing QueueEntry and submits it to a Queue. The
RepeatQueueEntryParams element provides the required parameters. It may be used to reexecute a QueueEntry
with any Status. The Agent that represents the Queue must assign a new QueueEntryID to the cloned
QueueEntry.

Structure of the RepeatQueueEntryParams Element
The RepeatQueueEntryParams may contain queue-ordering attributes equivalent to those used by the
SetQueueEntryPriority and SetQueueEntryPosition messages. The optional ReturnURL attribute specifies the
location where the modified JDF should be sent after the job is completed or aborted. The optional list of Part
elements refers to the output resource that is produced by the JDF node that is executed by the cloned QueueEntry.
For example if an ImageSetting process produces a partitioned set of plates, the following example message
would request only the yellow plate of the front surface of sheet1.
<Command Type="RepeatQueueEntry">
 <RepeatQueueEntryParams QueueEntryID=”AllPlates” Priority=”100”>
 <Part Sheet=”Sheet1” Surface=”Front” Separation=”Yellow”/>
 </RepeatQueueEntryParams>
</Command>

Table 5-59 Contents of the RepeatQueueEntryParams element

Name Data Type Description
Amount ? Number The Amount attribute identifies the Amount of the output resource to be

created by the JDF node that is executed by the cloned QueueEntry.
Hold ? boolean If true, the entry is submitted as held. Default = false
NextQueueEntryID ? string ID of the queue entry that should be ordered directly behind the entry.
PrevQueueEntryID ? string ID of the queue entry that should be ordered directly in front of the entry.
Priority ? integer Number from 0 to 100, where 0 = lowest priority and 100 = maximum

priority. Default = 1
QueueEntryID string ID of the queue entry that should be repeated.
ReturnURL ? URL URL where the JDF file should be sent when the job is completed or

aborted. If not specified, the JDF should be placed in the default output
hot folder of the queue controller.

WatchURL ? URL URL of the controller that should be notified when the status of the
QueueEntry changes. Specifying this URL is the equivalent of sending
a QueueEntryStatus query with a persistent channel and
ChangeAttribute = “*” to this URL.

Part * element The Part elements identify the parts of a partitioned output resource to
be created by the JDF node that is executed by the cloned QueueEntry.
The structure of the Part element is defined in Table 3-26 Contents of the
Part element. For details on partitioned resources, see Section 3.9.2.

5.6.2.4 RequestQueueEntry
Table 5-60 Contents of the RequestQueueEntry message

Object Type Element name Description
CommandTypeObj

RequestQueueEntryParam
s

Defines the specifics for the requested job.

Page 174

Page 174

ResponseTypeObj - The controller does not send any immediate response.
Any job submission is handled using the standard
SubmitQueueEntry message.

For the definition of the elements listed above see, Section 5.6.4.

This command requests a new queue entry from a potential submitting agent. The actual submission is still handled
by the standard queue entry handling parameters. Note that this command is emitted from the Device that is
represented by the queue to a controller or dispatcher and not to the queue, as is the case with the other queue
handling commands.

Structure of the RequestQueueEntryParams Element
Table 5-61 Contents of the RequestQueueEntryParams element

Name Data Type Description
Queue ? element Representation of the current status of the device’s Queue.

5.6.2.5 RemoveQueueEntry
Table 5-62 Contents of the RemoveQueueEntry message

Object Type Element name Description
CommandTypeObj
Modified in JDF1.2

QueueEntryDef
QueueFilter ?

Defines the queue entry.
Defines a filter for the returned Queue element in the
RemoveQueueEntry message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the elements listed above see, Section 5.6.4.

This command causes the entry specified by QueueEntryDef to be removed from the queue. It does not affect jobs
with a Status=”Running”, “Suspended” or “Stopped”. Use AbortQueueEntry to stop a running or stopped job.

5.6.2.6 ResubmitQueueEntry
Table 5-63 Contents of the ResubmitQueueEntry message

Object Type Element name Description
CommandTypeObj
Modified in JDF1.2

ResubmissionParams
QueueFilter ?

Defines the job resubmission.
Defines a filter for the returned Queue element in the
ResubmitQueueEntry message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the Queue element, see Section 5.6.4.

A job is resubmitted to a queue using the ResubmitQueueEntry message. This allows late changes to be made to a job
without affecting queue parameters and without exporting the internal structure of a queue. Resubmission overwrites the
job specified in the URL attribute of the ResubmissionParams element. The Status of the job mustbe “Waiting” or
“Held”. Job resubmission does not affect other queue parameters as specified, for example, resubmission does not affect
queue ordering.

Structure of the ResubmissionParams Element
Table 5-64 Contents of the ResubmissionParams element

Name Data Type Description
QueueEntryID string ID of the queue entry to be replaced.
URL ? URL Location of the JDF to be resubmitted. In the case of

/ l i / l d h l i b i h

Page 175

Page 175

Name Data Type Description
QueueEntryID string ID of the queue entry to be replaced.
Modified in JDF
1.2

MIME/Multipart/Related, the location may be either a URL or a CID.
Exactly one of URL or JDF must be specified.

JDF ?
Added in JDF
1.2

element JDF node that contains the parameters of the job to be resubmitted.
Exactly one of URL or JDF must be specified.

5.6.2.7 ResumeQueueEntry
Table 5-65 Contents of the ResumeQueueEntry message

Object Type Element name Description
CommandTypeObj
Modified in JDF1.2

QueueEntryDef
QueueFilter ?

Defines the queue entry.
Defines a filter for the returned Queue element in the
ResumeQueueEntry message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the elements listed above, see Section 5.6.4.

The hold status of the queue entry specified by QueueEntryDef is removed. A QueueEntry with Status=”Held”
gets a Status of “Waiting”. A QueueEntry with Status=”Suspended” gets a Status of “Stopped”.

5.6.2.8 SetQueueEntryPosition
Table 5-66 Contents of the SetQueueEntry message

Object Type Element name Description
CommandTypeObj
Modified in JDF1.2

QueueEntryPosParams
QueueFilter ?

Defines the queue entry.
Defines a filter for the returned Queue element in the
SetQueueEntryPosition message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the Queue element, see Section 5.6.4.

The position of the queue entry is modified. The QueueEntryPosParams element provides the required parameters.
The position of a queue entry must only be modified if Status=”Waiting” or Status=”Held”.

Structure of the QueueEntryPosParams Element
QueueEntryID specifies the queue entry to be moved. Jobs may either be set to a specific position within the queue
or positioned next to an existing queue entry. The priority of the entry matches the priority of the entry that
precedes it, after it has been repositioned. Only one of NextQueueEntryID, PrevQueueEntryID or Position may
be specified.

Table 5-67 Contents of the QueueEntryPosParams element

Name Data Type Description
NextQueueEntryID ? string ID of the queue entry that should be ordered directly behind the entry.
QueueEntryID string ID of a queue entry. The ID is generated by the queue owner.
PrevQueueEntryID ? string ID of the queue entry that should be ordered directly in front of the

entry.

Page 176

Page 176

Name Data Type Description
Position ? integer Position in the queue. 0 = pole position. Note that the position is

based on the queue before modification. Thus if a queue entry is
moved back in the queue, its final position is one lower than specified
in Position. Only QueueEntry elements are counted when
calculating the position of a QueueEntry.

5.6.2.9 SetQueueEntryPriority
Table 5-68 Contents of the SetQueueEntryPriority element

Object Type Element name Description
CommandTypeObj
Modified in JDF1.2

QueueEntryPriParams
QueueFilter ?

Defines the queue entry.
Defines a filter for the returned Queue element in the
SetQueueEntryPriority message.

ResponseTypeObj Queue Describes the state of the queue after the command has
been executed.

For the definition of the Queue element, see Section 5.6.4.

The priority of the queue entry is modified. The QueueEntryPriParams element provides the required parameters.

Structure of the QueueEntryPriParams Element
QueueEntryID, described in the table below, specifies the queue entry that has its priority modified.

Table 5-69 Contents of the QueueEntryPriParams element

Name Data Type Description
Priority integer Number from 0 to 100, where 0 = lowest priority and 100 = maximum

priority.
QueueEntryID string ID of a queue entry. The ID is generated by the queue owner.

5.6.2.10 SubmitQueueEntry
Table 5-70 Contents of the SubmitQueueEntry message

Object Type Element name Description
CommandTypeObj
Modified in JDF1.2

QueueSubmissionParams
QueueFilter ?

Defines the job submission.
Defines a filter for the returned Queue element in the
SubmitQueueEntry message.

ResponseTypeObj QueueEntry Provides the queue entry of the submitted job.
 Queue Describes the state of the queue after the command has

been executed.
Definition of the QueueEntry and Queue elements, see Section 5.6.4.

The SubmitQueueEntry message submits a job to a queue. The QueueSubmissionParams element provides the
required parameters.

Structure of the QueueSubmissionParams Element
The job submission may contain queue-ordering attributes equivalent to those used by the SetQueueEntryPriority
and SetQueueEntryPosition messages. The URL attribute specifies the location where the JDF file to be submitted
can be retrieved by the queue controller. The location type in the URL attribute (such as File, http or CID) defines
the submission method. The optional ReturnURL attribute specifies the location where the modified JDF should be
sent after the job is completed or aborted.

Page 177

Page 177

Table 5-71 Contents of the QueueSubmissionParams element

Name Data Type Description
Hold ? boolean If true, the entry is submitted as held. Default = false. If a JDF node that

is not executable due to resources being unavailable, it must be
submitted with Hold=”true”[RP174]

NextQueueEntryID ? string ID of the queue entry that should be ordered directly behind the entry.
PrevQueueEntryID ? string ID of the queue entry that should be ordered directly in front of the entry.
Priority ? integer Number from 0 to 100, where 0 = lowest priority and 100 = maximum

priority. Default = 1
ReturnURL ? URL URL where the JDF file should be sent when the job is completed or

aborted. If not specified, the JDF should be placed in the default output
hot folder of the queue controller.

URL ?
Modified in JDF 1.2

URL Location of the JDF to be submitted. In the case of
MIME/Multipart/Related, the location may be either a URL or a CID.
Exactly one of URL or JDF must be specified.

WatchURL ? URL URL of the controller that should be notified when the status of the
QueueEntry changes. Specifying this URL is the equivalent of sending
a QueueEntryStatus query with a persistent channel and
ChangeAttribute = “*” to this URL.

JDF ?
Added in JDF 1.2

element JDF node that contains the parameters of the job to be submitted.
Exactly one of URL or JDF must be specified.

Inline JDF Submission
The following example declares job submission with an inline JDF.

<Command Type="SubmitQueueEntry" >
 <QueueSubmissionParams>
 <JDF ID=”id” Status=”Waiting”>
 (…)
 </JDF>
 </QueueSubmissionParams>
</Command>

File Submission
If the URL defines a file, the controller may retrieve the file at the location specified in the URL attribute.

The following example declares a file on the network:

<Command Type="SubmitQueueEntry" >
 <QueueSubmissionParams URL="File:///c:/AnyDirectory/job1.jdf"/>
</Command>

HTTP External JDF Submission
The following example declares an intranet or Internet location. In this example, the queue controller can retrieve
the file with a standard HTTP get command. Note that the job itself may be a MIME/Multipart entity. It may also
be dynamically generated by a CGI script or another such tool.

<Command Type="SubmitQueueEntry" >
 <QueueSubmissionParams URL="http://JobServer.JDF.COM?job1"/>
</Command>

HTTP MIME/Multipart/Related Submission
If a message controller is capable of decoding MIME, it is legal to submit a MIME/Multipart/Related message. The
first section of the multipart MIME document must be the JMF submission command. Internal links are defined

Page 178

Page 178

using the Content-ID (CID) label in MIME. The second section must be the JDF job. Subsequent sections are the
linked entities, such as the preview images shown in the following example:
MIME-Version: 1.0
Content-Type: multipart/Related; boundary=unique-boundary

--unique-boundary
Content-type: text/xml
…
<JMF TimeStamp="2000-06-12T08:56+02:00" SenderID="JobCreator P_01">
<Command ID="Cmd-0234" Type="SubmitQueueEntry"">
<QueueSubmissionParams URL="CID:JDF1/>
</Command>
</JMF>
…

--unique-boundary
Content-type: text/xml
Content-ID: <JDF1>

<JDF … >

--unique-boundary
Content-type: image/png
Content-ID: <Yellow-PNG-Page1>

png image of a separation may be here

--unique-boundary--

5.6.3 Global Queue Handling
Whereas the commands in the preceding section change the state of an individual queue entry, the commands in this
section modify the state of an entire queue. Note that entries that are executing in a device are not affected by the
global queue-handling commands and must be accessed individually. An individual queue can be selected by
specifying the target device/queue in the DeviceID attribute of the JMF root. If no DeviceID is specified, the
commands or queries are applied to all devices/queues that are controlled by the controller that received the
message. The following individual messages are defined:

Table 5-72 Global queue-handling commands

Message type Family Description
CloseQueue CR The queue is closed. No jobs may be accepted by the queue.
FlushQueue CR All entries in the queue are removed.
HoldQueue CR The queue is held. No jobs within the queue may be executed.
OpenQueue CR The queue is opened. Jobs may be accepted.
QueueEntryStatus QRS Returns a QueueEntry element.
QueueStatus QRS Returns the Queue elements that describe a queue or set of queues.
ResumeQueue CR The queue is activated and queue entries may be executed.
SubmissionMethods QR Queries a list of supported submission methods to the queue.

5.6.3.1 CloseQueue
Table 5-73 Contents of the CloseQueue message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueFilter ? Defines a filter for the returned Queue element in the
FlushQueue message.

ResponseTypeObj Queue Describes the state of the queue after the command has been executed.
For the definition of the Queue element, see Section 5.6.4.

Page 179

Page 179

The queue is closed. No further queue entries are accepted by the queue. The status of entries that are already in the
queue remains unchanged and prior entries may be executed.

5.6.3.2 FlushQueue
Table 5-74 Contents of the FlushQueue message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueFilter ? Defines a filter for the returned Queue element in the
FlushQueue message.

ResponseTypeObj Queue Describes the state of the queue after the command has been executed.
For the definition of the Queue element, see Section 5.6.4.

All queue entries in the queue are removed. Only pending (Status=”Waiting” and Status=”Held” queue entries are
be removed.

5.6.3.3 HoldQueue
Table 5-75 Contents of the HoldQueue message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueFilter ? Defines a filter for the returned Queue element in the
HoldQueue message.

ResponseTypeObj Queue Describes the state of the queue after the command has been executed.
For the definition of the Queue element, see Section 5.6.4.

The queue is held. No new entries may be executed. Note that the status of a held entry prior to HoldQueue is retained
so that held jobs should remain held after a ResumeQueue. New entries may, however, may still be submitted to a held
queue. HoldQueue only has effect on jobs that have not commenced processing. QueueEntries that are already running
must be suspended individually.

5.6.3.4 OpenQueue
Table 5-76 Contents of the OpenQueue message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueFilter ? Defines a filter for the returned Queue element in the
OpenQueue message.

ResponseTypeObj Queue Describes the state of the queue after the command has been executed.
For the definition of the Queue element, see Section 5.6.4.

The queue is opened and new queue entries may be accepted by the queue. A held queue remains held. The
OpenQueue command is the opposite of a CloseQueue command.

5.6.3.5 QueueEntryStatus
Table 5-77 Contents of the QueueEntryStatus message

Object Type Element name Description
QueryTypeObj
Modified in JDF 1.1A

QueueEntryDefList Defines the addressed queue entries. Note that this
element was QueueEntryDef * prior to JDF1.1A.

ResponseTypeObj QueueEntry * Describes the status of the queried queue entries.
For the definition of the elements above see Section 5.6.4.

Page 180

Page 180

The QueueEntryStatus message returns queue entry descriptions. The QueueEntryDef elements specify the
queue entries to be queried. If no QueueEntryDef element is specified, the query returns a list of QueueEntry
elements, one for each entry in the queue. If no QueueEntryDef is specified and the query defines a persistent
channel, a Signal is emitted for any entry whose status changes. This includes changes as a result of modifications
of the queue status, such as hold or resume.

Structure of the QueueEntryDefList Element
New in JDF 1.1A
The QueryTypeObj of QueueEntryStatus has been modified from QueueEntryDef* to QueueEntryDefList
because of a type collision in the XML Schema. QueueEntryDef had been used both as a QueryTypeObj and as a.
CommandTypeObj.

Table 5-78 Contents of the QueueEntryDefList element

Name Data Type Description
QueueEntryDef * element Defines the addressed queue entries.

5.6.3.6 QueueStatus
Table 5-79 Contents of the QueueStatus message

Object Type Element name Description
QueryTypeObj
Modified in JDF 1.2

QueueFilter ? Defines a filter for the QueueStatus message.

ResponseTypeObj Queue Describes the status of the queue.
For the definition of the Queue element, see Section 5.6.4.

Returns a queue description.

5.6.3.7 ResumeQueue
Table 5-80 Contents of the ResumeQueue message

Object Type Element name Description
CommandTypeObj
Modified in JDF 1.2

QueueFilter ? Defines a filter for the ResumeQueue message.

ResponseTypeObj Queue Describes the state of the queue after the command has been executed.
For the definition of the Queue element, see Section 5.6.4.

The queue is activated and queue entries may be executed. The ResumeQueue command is the opposite of a
HoldQueue command.

5.6.3.8 SubmissionMethods
Table 5-81 Contents of the SubmissionMethods message

Object Type Element name Description
QueryTypeObj -
ResponseTypeObj SubmissionMethods ? Describes the submission methods supported by the queue.

The SubmissionMethods message returns the submission methods that are supported by a queue controller.

Structure of the SubmissionMethods Element
The response element may contain multiple attributes, as defined below. If an attribute is not specified, the
corresponding submission method is not supported.

Page 181

Page 181

Table 5-82 Contents of the SubmissionMethods element

Name Data Type Description
File ? boolean Can retrieve a JDF from a File specified in the URL Default = false
HotFolder ? URL URL specification of a hot folder location. Default = no hot folder
HttpGet ? boolean Can retrieve a JDF via HTTP get commands. Default = false
JDFInline ?
New in JDF 1.2

boolean Accepts JMF with an inline JDF element within the
QueueSubmissionParams element of the SubmitQueueEntry message.

MIME ? boolean Accepts MIME/Multipart/Related submission messages via a message post.
Default = false

The following is an example of a response to a SubmissionMethods query:

<Response ID="M1" refID="Q1" Type="SubmissionMethods"/>
 <SubmissionMethods File="true"
 HotFolder="File://MyDevice/HotFolder" HttpGet="true" MIME="false"/>
</Response>

5.6.4 Queue-Handling Elements
In this section elements used by queue-handling commands are defined. The following table shows the resulting
status of a queue in dependence on global queue commands CloseQueue/OpenQueue and HoldQueue/ResumeQueue
as well as the load of queue and its processor. The first command pair determines the logical state of the first
column "Closed" and the second of the column "Held". The queue is held if the queue manager doesn't send
existing entries to the queue's processor.

Table 5-83 Definition of the Queue Status Attribute values

Closed Held Queue Full Processor Full Status
Yes Yes Any Any Blocked
Yes No Any Any Closed
No Yes Any Any Held
No No Any No Waiting
No No No Yes Running
No No Yes Yes Full

Page 182

Page 182

Figure 5.6 Effects of the global queue messages on the queue Status

Structure of the QueueFilter Element
New in JDF1.2
The QueueFilter element defines a filter for all messages that return a queue. Only elements that are requested by
the are included in the Queue element that is returned by the QueueStatus message.

Table 5-84 Contents of the QueueStatusParams element

Name Data Type Description
QueueEntryDet
ails ?

enumeration Refines the level of provided information about the Queue. Possible values
are:
None – Do not fill in the QueueEntry elements into the Queue.
Brief – Provide all available QueueEntry information except for the
associated JobPhase element.
JobPhase –Provide all available QueueEntry information including the
associated JobPhase element
JDF - Provide all available QueueEntry information including the
associated JobPhase element and the associated JDF element in the
JobPhase element.
Full – Provide maximum available device information including device
capability descriptions. Includes Device elements which represent details of
the device.

StatusList ? enumerations Only QueueEntry elements with a Status matching one of the entries in
StatusList should be added. For a list of allowed values, see Table 5-86
Contents of the QueueEntry element. The special value of “All” denotes that
the complete Queue must be returned. Default=”All”.

Page 183

Page 183

Structure of the Queue Element
The attributes in the following table are defined for Queue message elements. Queue elements represent the queue
of a device including QueueEntry elements that represent both pending and running queue entries.

Table 5-85 Contents of the Queue element

Name Data Type Description
Status Enumeration Status of the queue. Possible values are:

Blocked – Queue is completely inactive. No entries may be added and no
entries are executed. The queue is closed and held. The queue requires an
interaction like OpenQueue or ResumeQueue to reactivate it.
Closed – Queue entries that are in the queue are executed, but no new entries
may be submitted. The lock must be removed explicitly by the OpenQueue
command.
Full – Queue entries that are in the queue are executed but no new entries
may be submitted. The lock is removed by the queue controller as soon as it
is able to do so.
Running – A process is executing. Entries may be submitted and will be
executed when they reach their turn in the queue.
Waiting – Queue accepts new entries and has free resources to immediately
commence processing.
Held – Entries may be submitted but will not be executed until the queue is
resumed by the ResumeQueue command.

DeviceID String Identifies the queue/device.
Device * Element The devices that execute entries in this queue.
QueueEntry *
Modified in JDF
1.2

element Queue entry elements (see Table 5-86 , below). The entries are ordered in
the sequence they have been or will be executed, beginning with the
completed entries, followed by the running entries which are then followed
by the waiting entries. The Queue will display a list of all QueueEntries
that are still accessible on the device using the queue entry handling
messages that are defined in Table 5-55 QueueEntry handling messages.

Example of a Queue message element:
<Queue Status="Running" DeviceID="Q12345">
 <QueueEntry QueueEntryId="111-0" Priority="1" Status="Completed" JobId="111"
JobPartId="0"/>
 <QueueEntry QueueEntryId="111-1" Priority="1" Status="Running" JobId="111"
JobPartId="1"/>
 <QueueEntry QueueEntryId="111-2" Priority="1" Status="Waiting" JobId="111"
JobPartId="2"/>
 <QueueEntry QueueEntryId="112-1" Priority="55" Status="Held" JobId="112"
JobPartId="1"/>
</Queue>

Structure of the QueueEntry Element[RP175]
Table 5-86 Contents of the QueueEntry element

Name Data Type Description
DeviceID ? string Identification of the Device that the QueueEntry will be or was

executed on. If not specified, it defaults to the default device of the
queue.[RP176]

EndTime ?
New in JDF 1.2

dateTime Time when the job has been ended.

JobID ?
Modified in JDF 1.1

string The Job ID of the JDF process.

Page 184

Page 184

Name Data Type Description
JobPartID ? string The JobPartID of the JDF process.
Priority ? integer Priority of the QueueEntry. Values are 0-100. 0 = lowest priority,

while 100 = highest priority. Default = 1
QueueEntryID string ID of a QueueEntry. This ID is generated by the queue owner.
StartTime ?
New in JDF 1.1

dateTime Time when the job has been started.

Status
Modified in JDF
1.1A
Modified in JDF 1.2

enumeration Status of the individual entry. Possible values are:
Running – The queue entry is running.
Waiting – The queue entry is waiting and will be executed when
resources are available.
Held – The queue entry is held and will not execute until resumed.
Removed – The queue entry has been removed. This status can only
be sent when a persistent channel watches a queue and the queue
entry is removed.
Suspended –The queue entry was running and has been held. It will
not continue to execute until resumed.
Stopped – Execution of the queue entry has been stopped. If a queue
enty is Stopped, running may be resumed later. This status may
indicate a break, a pause, maintenance, or a breakdown—in short,
any pause that does not lead the job to be aborted. Execution of a
Stopped QueueEntry may resume at any time. The transition from
Stopped to Running is controlled by the Device.
Completed – Indicates that the queue entry has been executed
correctly, and is finished.
Aborted – Indicates that the process executing the node has been
aborted, which means that execution will not be resumed again.

SubmissionTime ? dateTime Time when the entry was submitted to the queue.
JobPhase ? element Description of the current status of the Job that is associated with the

QueueEntry.

Structure of the QueueEntryDef Element
The element specifies a queue entry and is used to refer to a certain queue entry.

Table 5-87 Contents of the QueueEntryDef element

Name Data Type Description
QueueEntryID string ID of the queue entry. The ID is generated by the queue owner.

Structure of the QueueFilter Element
New in JDF1.2
The QueueFilter element defines a filter for all messages that return a queue. Only elements that are requested by
the are included in the Queue element that is returned by the queue-handling message. The QueueFilter element is
also used to specify the QueueEntrys to be removed by the FlushQueue message.

Table 5-88 Contents of the QueueFilter element

Name Data Type Description
MaxEntries ? Integer Maximum number of QueueEntries to provide in the Queue element. If not

specified, fill in all matching QueueEntries.
OlderThan ? dateTime Only QueueEntrys with a SubmissionTime older than or equal to this

dateTime are provided in the Queue element or removed by the
FlushQueue message.

Page 185

Page 185

NewerThan ? dateTime Only QueueEntrys with a SubmissionTime newer than or equal to this
dateTime are provided in the Queue element or removed by the
FlushQueue message.

QueueEntryDet
ails ?

Enumeration Refines the level of provided information about the Queue. Possible values
are:
None – Do not fill in the QueueEntry elements into the Queue.
Brief – Provide all available QueueEntry information except for the
associated JobPhase element. The default.
JobPhase –Provide all available QueueEntry information including the
associated JobPhase element
JDF - Provide all available QueueEntry information including the
associated JobPhase element and the associated JDF element in the
JobPhase element.
Full – Provide maximum available information including device capability
descriptions. Includes Device elements which represent details of the device.

StatusList ? Enumerations Only QueueEntry elements with a Status matching one of the entries in
StatusList should be added. For a list of allowed values, see Table 5-86
Contents of the QueueEntry element. The special value of “All” denotes that
the complete Queue must be returned. Default=”All”.

QueueEntryDef
*

element Defines an explicit list of queue entries.

Device ? element Filter of the Device that queue entries returned should be targeted for.
QueueEntry/@DeviceID must match QueueFilter/Device/@DeviceID for the
QueueEntry to be returned in the queue.[RP177]

5.7 Extending Messages
This specification defines a set of predefined messages for general usage. Extensions to existing messages and
additional message types may be defined using the standard extension rules described in JDF Extensibility. Note,
the generic content of Section 3.1.1 Generic Contents of JDF Elements is also valid for JMF elements. It is not
allowed to define message extensions which duplicate the functionality of messaging types, messaging elements, or
message attributes that are already defined in this specification.

For example the content of the Type attribute may be specified with a prefix that identifies the organization that
defined the extension. The prefix and name should be separated by a single colon (‘:’). Any additional attributes
and elements are allowed, and internal elements may be declared with explicit namespaces. The official namespace
of JMF elements is xmlns="http://www.CIP4.org/JDFSchema_1_1". This namespace is identical to that defined for
JDF in JDF Extensibility. An example is provided:

<JMF … xmlns="http://www.CIP4.org/JDFSchema_1_1" xmlns:Circus="Circus Schema URI">
 <Query Type="Circus:IsClownHappy" ID="Q1">
 <Circus:ClownParams Gender="male"/>
 </Query>
</JMF>

The response will also have the “Circus:” namespace identifier. All Circus elements are explicitly declared.

<JMF … xmlns="http://www.CIP4.org/JDFSchema_1_1" xmlns:Circus="Circus Schema URI">
 <Response ID="M1" refID="Q1" Type="Circus:IsClownHappy">
 <Circus:Clown name="Joe" happy="true">
 <Circus:Clown name="John" happy="false">
 </Response>
</JMF>

Page 186

Page 186

5.7.1 IfraTrack Support
The extending mechanism can be used to implement compatibility with other XML-based messaging standards, for
example
version 3.0
of IfraTrack.
The Type
attribute is
set to the
appropriate
namespace,
and the
foreign message is included, as demonstrated in the following example:

<JMF … xmlns="http://www.CIP4.org/JDFSchema_1_1" xmlns:IFRA="IfraTrack URI">
 <Query ID="Q1" Type="IFRA:IMF">
 <IMF xmlns="IfraTrack URI">
 Whatever you want (may be multiple top level elements)
 </IMF>
 </Query>
</JMF>

The legal response would be:

<JMF … xmlns="http://www.CIP4.org/JDFSchema_1_1" xmlns:IFRA="IfraTrack URI">
 <Response ID="M1" refID="Q1" Type="IFRA:IMF">
 <IMF xmlns="IfraTrack URI">
 The appropriate IFRA response(s)
 </IMF>
 </Response>
</JMF>

Note that the application is free to select the appropriate response types in order to fulfill its local (IfraTrack)
protocol requirements if it uses its own namespace. In the examples above the default namespace associated with
the IMF query and response elements has been overwritten by the Ifra-namespace. Additional information on using
IfraTrack and JDF is in Appendix E Modeling IfraTrack in JDF.

IfraTrack is a specification for the interchange of status and management information
between local and global production management systems in newspaper production.
For more information on IfraTrack, including a case study paper, please see
http://www.ifra.com/WebSite/news.nsf/(StructuredSearchAll)?OpenAgent&IFRATRACK

More on I f raTrack

Page 187

Page 187

Chapter 6 Processes
The following chapter describes the processes that are defined in detail for JDF.

6.1 Process Template
Processes are defined by their input and output
resources, therefore, all relevant resource information is
provided in tables for each process. Furthermore,
although they are not listed for each process, additional,
optional input resources as defined in the following table
as well as any implementation resources are implied for
all processes defined in this chapter.

Input Resources
Name Description
Resource Represents any input resource. If an optional resource is not specified in a JDF

instance, the JDF Consumer may make its own assumption regarding attributes
and subelements of the resource. Specification defined attribute defaults cannot
be guaranteed.

Res1 (usage1) A resource of type Res1 with the ProcessUsage attribute usage1
Res1 (usage2) A resource of type Res1 with the ProcessUsage attribute usage2
ApprovalSuccess * Any number of ApprovalSuccess resources may be appended to processes

in order to model proofing and verification requirements. This is implied and
not specified explicitly in the tables in the following section. For more
information on the Approval process, see Section 6.2.1.

Implementation * Abstract resource that is a placeholder for any implementation resource
(examples are Employee, Device) that is associated with processing this
node.

Preview *
Added in JDF1.1A

Any number of previews may be associated with a process and used for display
purposes.

Output Resources
Name Description
Resource Represents any output resource.

6.2 General Processes

6.2.1 Approval
The Approval process can take place at various steps in a workflow. For example, a resource, such as a printed
sheet or a finished book, is used as the input to be approved, and an ApprovalSuccess (given, for example, by a
customer or foreman) is produced. Combining the Approval process with any other process can be used to
represent a request for a receipt.
Resources will most often have a Status=”Draft” before the Approval and a Status=”Available” after a successful
Approval. [RP178]

Chapter 6 and Chapter 7 is “the list of ingredients”
in the JDF “cookbook.” The following processes
and resources are fairly exhaustive. You can
choose to use only what fits your workflow.

The JDF Cookbook

Page 188

Page 188

Input Resources
Name Description
ApprovalParams Details of the approval process.
Resource * The resources to be proofed. The input will most often be a resource of class

Handling or Quantity. When the input Resource of an Approval process is a
Bytemap, it is assumed that it will be displayed on a viewing device.[RP179]

Output Resources
Name Description
ApprovalSuccess Result of any proofing process given, for example, by a customer or foreman.

Note that ApprovalSuccess resources are only available on success.
Resource * (Accepted) Represents the input resources that have been accepted for further processing by

the approval process as output resources. This is typically used to transfer the
resource Status of Draft to Available (see also Formal Iterative Processing).

Resource * (Rejected) Represents the input resources that have been rejected for further processing by the
approval process as output resources. This may be used to define additional
processing for rejected resources.

6.2.2 Buffer
New in JDF 1.1
The Buffer process is used to buffer a resource for a certain time period. This can be buffering of a complete
resource or of a partial resource, e.g., in a pipe. The quantity of the input and output of resources should be equal.
Waiting for printed material to dry before finishing is an example of the Buffer process.

Input Resources
Name Description
BufferParams The parameters, e.g. times and locations of the Buffer process.
Resource The physical resources to be buffered. These may be any resource whose class

is Consumable, Handling or Quantity.

Output Resources
Name Description
Resource The same resource after buffering. The resource must have a class of

Consumable, Handling, or Quantity.

6.2.3 Combine
The Combine process is used to combine multiple physical resources or logical resources, e.g., RunLists of the
same content to form one resource. The quantity of the input and output of resources should be equal. The ordering
of the input ResourceLinks must be honored.

Input Resources
Name Description
Resource + The resources to be combined.

Output Resources
Name Description
Resource Result of combining. The resource formed as a result of the Combine process.

Page 189

Page 189

6.2.4 Delivery
This process can be used to describe the delivery of a physical resource to or from a location. This delivery may be
internal—meaning within the company—or to an external company or customer. The CustomerInfo element of the
JDF node can also be used if the delivery to is to be made to only one customer. Note that a delivery receipt can be
requested by combining the Delivery process with an Approval process.

Input Resources
Name Description
DeliveryParams Necessary information about the physical [RP180]item or items to be delivered is

stored here.
Resource ?
deprecated in JDF 1.2

Any resource delivered to a location. This can be a physical resource or a
Parameter resource that is delivered electronically. In JDF 1.2 and beyond the
delivered resources are defined as refElements in elements of
DeliveryParams/Drop/DropItem.[RP181]

Output Resources
Name Description
Resource +
Modified in JDF 1.2

Any resources delivered from a location. These must be physical
resources.[RP182]

6.2.5 ManualLabor
New in JDF 1.1
This process can be used to describe any process where resources are handled manually. The ManualLabor
process is designed to monitor any type of non-automated labor from an MIS system.

Input Resources
Name Description
Resource * Resources that are required to create the output Resource.
ManualLaborParams Details on the ManualLabor process.

Output Resources
Name Description
Resource The resource that was created by manual work. In general these will be

components, but handling resources may also be created manually.

6.2.6 Ordering
This process can be used to describe the Ordering (requisition) of a Resource element. Orders can be placed
internally, i.e., within the company, or externally.

Input Resources
Name Description
OrderingParams Necessary information about the items to be ordered, such as the supplier address,

item quantity, or unit type.

Output Resources
Name Description
Resource +
Modified in JDF 1.1

All kinds of physical resources can be ordered.

Page 190

Page 190

6.2.7 Packing
Deprecated in JDF 1.1
This process can be used to describe the Packing of a PhysicalResource element for transport purposes. The
Packing process has been deprecated in version 1.1 and beyond. It is replaced by the individual processes defined
in Section 6.6.46.5 Packaging Processes.

Input Resources
Name Description
PackingParams Necessary information about the packing process.
PhysicalResource All kinds of physical resources can be packed.

Output Resources
Name Description
PhysicalResource The packaged physical resources. Note that Amount attributes referring to this

resource still refer to individual products and not to boxes, cartons or pallets.

6.2.8 QualityControl
Added in JDF 1.2
This process defines the setup and frequency of quality controls for a process. QualityControl is generally
performed on Components produced as intermediate or final output of a process.

Input Resources
Name Description
Resource The Resource to be quality controlled. In general this will be a Component

resource.
QualityControlParams Detailed definition of the QualityControl process.

Output Resources
Name Description
QualityControlResult Details of the process.
Resource The Resource after QualityControl. Note that this resource will generally be

partitioned by Condition to track the amount of accepted and rejected
resources.[RP183]

6.2.9 ResourceDefinition
This process can be used to describe the interactive or automated process of defining resources such as set-up
information. This process creates output resources or modifies input resources of the same type as the output resources.
The ResourceDefinition process is designed to monitor interactive work such as creating imposition templates. It
can also be used to model a hot folder process that accepts resources from outside of a JDF based workflow.

Input Resources
Name Description
Resource *
Modified in JDF 1.1

Any type of resource. Generally these will be templates.

ResourceDefinitionParams
?

Details on how to handle defaults.

Page 191

Page 191

Output Resources
Name Description
Resource +
Modified in JDF 1.1

The same type of resource as the input.

6.2.10 Split
This process is used for splitting one physical or logical resource into multiple physical or logical resources
containing the same content as the original. The quantity of the input and output of resources should be equal.

Input Resources
Name Description
Resource The resource to be split.

Output Resources
Name Description
Resource + The resources formed as a result of splitting.

6.2.11 Verification
The Verification process is used to confirm that a process has been completely executed. In the case of variable
data printing, in which every document is unique and must be validated individually, database access is required.
Verification in this situation may involve scanning the physical sheet and interpreting a bar code or alphanumeric
characters. The decoded data may then be either recorded in a database to be later cross referenced with a
verification list, or cross referenced and validated immediately in real time.
Verification differs from ##ref QualityControl in that Verification verifies the existence of a given set of resources,
whereas QualityControl verifies that the existing resources fulfill certain quality criteria.[RP184]

Input Resources
Name Description
DBSchema ? Schema description of the cross-reference database.
DBSelection ? Database link that defines the database that contains cross-reference data.
IdentificationField * Identifies the position and type of data for an automated, OCR-based verification

process.
Resource *
new in JDF 1.2

The resources to be verified. The input will most often be a resource of class
Quantity.[RP185]

VerificationParams Controls the verification requirements.

Output Resources
Name Description
ApprovalSuccess ? Signature file that defines verification success.
DBSelection ? Database link where the verification data should be recorded.

6.3 Product Intent Descriptions
Product intent is also described as a JDF node. The following table defines the list of JDF Intent Resources used to
describe Product Intent.

Input Resources
Name Description
Component * Components that are partial products of the product described by this node.
ArtDeliveryIntent ? This resource specifies the prepress art delivery intent for a JDF job.

Page 192

Page 192

Name Description
BindingIntent ? This resource specifies the binding intent for a JDF job.
ColorIntent ? This resource specifies the type of ink to be used for a JDF job.
DeliveryIntent ? Summarizes the options that describe pickup or delivery time and location of the

physical resources of a job.
EmbossingIntent ? This resource specifies the embossing and/or foil stamping intent for a JDF job.
FoldingIntent ? This resource specifies the fold intent for a JDF job using information that

identifies the number of folds, the height and width of the folds, and the folding
catalog number.

HoleMakingIntent ? This resource specifies the holemaking intent for a JDF job.
InsertingIntent ? This resource specifies the placing or inserting of one component within another,

using information that identifies page location, position and attachment method.
LaminatingIntent ? This resource specifies the laminating intent for a JDF job using information that

identifies whether or not the product is laminated.
LayoutIntent ? This resource records the size of the finished pages for the product component.
MediaIntent ? This resource describes the media to be used for the product component.
NumberingIntent ? This resource describes the parameters of stamping or applying variable marks in

order to produce unique components, for items such as lottery notes or currency.
PackingIntent ? This resource specifies the packaging intent for a JDF job, using information that

identifies the type of package, the wrapping used, and the shape of the package.
ProductionIntent ? This resource specifies the manufacturing intent and considerations for a JDF job

using information that identifies the desired result or specified manufacturing
path.

ProofingIntent ? This resource specifies the prepress proofing intent for a JDF job, using
information that identifies the type, quality, brand name and overlay of the proof.

ShapeCuttingIntent ? This resource specifies form and line cutting for a JDF job.
SizeIntent ?
Deprecated in JDF 1.1

This resource records the size of the finished pages for the product component.
SizeIntent has been deprecated in JDF 1.1. All contents have been moved to
LayoutIntent.

Output Resources
Name Description
Component[RP186] Resource Representation of the output this Product.[RP187]

6.4 Prepress Processes

6.4.1 AssetCollection
AssetCollection is the process of collecting linked files that belong to a given list of main files, for instance external
fonts or images linked to application files.

Input Resources
Name Description
AssetCollectionParams Parameters to set up the process.
RunList List of main files that are to be searched for linked secondary files.

Page 193

Page 193

Output Resources
Name Description
RunList Complete list all files including the input files and all linked output files

including recursively linked fonts.[RP188]

6.4.2 ColorCorrection
ColorCorrection is the process of modifying the specification of colors in documents to achieve some desired
visual result. The process may be performed to ensure consistent colors across multiple files of a job or to achieve a
specific design intent, e.g., “Brighten the image up a little”.

ColorCorrection is distinct from ColorSpaceConversion, which is the process of changing how the colors
specified in the job will be produced on paper. Rather, ColorCorrection is the process of modifying the desired
result, whatever the specified colorspace might be.

The ColorCorrection process may be combined with the ColorSpaceConversion process in which case
the source and destination profiles used by the ColorSpaceConversion process would be supplied from
ColorSpaceConversionParams. Either the direct Adjustment attributes or the ICC profile attribute
ColorCorrectionOp/FileSpec with ResourceUsage = “AbstractProfile” can be used in this scenario; to apply
color corrections in the device independent ICC Profile Connection Space interpreted from the ICC source profile,
before the ICC destination profile is applied.

Alternatively, a ColorCorrection process may occur after a ColorSpaceConversion process. In this
scenario only the ColorCorrectionOp/FileSpec with ResourceUsage = “DeviceLinkProfile” supplied in
ColorCorrectionOp is used. [amc189]

Input Resources
Name Description
ColorantControl ?
Modified in JDF1.1A

Identifies the assumed color model for the job.

ColorCorrectionParams
New in JDF 1.1

Parameters of the ColorCorrection process

RunList List of content elements that are to be operated on.

Output Resources
Name Description
RunList List of color-corrected pages.

6.4.3 ColorSpaceConversion
ColorSpaceConversion, as the name implies, is the process of converting all colors used in the job to a known
colorspace. There are two ways in which a controller can use this process to accomplish the color conversion. It
can simply order the colors to be converted by the device assigned to the task, or it can request that the process
simply tag the input data for eventual conversion. Additionally, the process may remove all tags from the content.

The parameters of this resource provide the ability to selectively control the conversion or tagging of raster data or
[RP190]graphical objects based on object class and/or incoming color space.

Like all other color manipulation supported in JDF, the color conversion controls are based on the use of ICC
profiles. While the assumed characterization of input data can take many forms, each can internally be represented as
an ICC profile. In order to perform the transformations, input profiles must be paired with the identified final target
device profile to create the transformation.

Page 194

Page 194

In order to avoid the loss of black color fidelity resulting from the transformation from a four-component
CMYK to a three-component interchange space, the agent may select a DeviceLink1 profile as the assumed color
space characterization. In these instances, the final target profile is ignored. Since there is no algorithmic way to
determine that the output characterization in a device link profile is equivalent to another profile, some of the
responsibility to select a sensible combination falls on the agent or end user.

Input Resources
Name Description
ColorantControl ?
Modified in JDF1.1A

Identifies the assumed color model for the job.

ColorSpaceConversionParams Parameters that define how colorspaces will be converted in the file.
RunList List of pages, sheets or ByteMaps[RP191] on which to perform the selected

operation.

Output Resources
Name Description
ColorantControl ? Identifies the assumed color model for the job. The ColorantControl

resource may be modified by a ColorSpaceConversion Process.
RunList List of pages, sheets or ByteMaps[RP192] on which the selected operation

has been performed.

6.4.4 ContactCopying
New in JDF 1.1
ContactCopying is the process of making an analog copy of a film onto a another film or plate. It includes
FilmToPlateCopying as defined in JDF 1.1.

Input Resources
Name Description
ContactCopyParams The settings of the exposure task.
DevelopingParams ? Controls the physical and chemical specifics of the media development

process.
ExposedMedia + The film or films to be copied onto the plate.
Media The unexposed plate.
TransferCurvePool? Area coverage correction and coordinate transformations of the device.

Output Resources
Name Description
ExposedMedia The resulting exposed contact copy.

6.4.5 ContoneCalibration
This process specifies the process of contone calibration. It consumes contone raster data, such as that output from
an interpreting and rendering process. It produces contone raster data which has been calibrated to a press using a
well defined screening process.

1 DeviceLink profiles are ICC profiles that map directly from one device color space to another device color space.
Therefore, it represents a one-way link or connection between devices. Examples for DeviceLink profiles are
CMYK to CMYK print process conversions or RGB to CMYK color separations.

Page 195

Page 195

Input Resources
Name Description
RunList Ordered list of rasterized ByteMaps representing pages or surfaces.
ScreeningParams ?
Modified in JDF 1.1

Parameters specifying which halftoning mechanism is to be applied and
with what specific controls.

TransferFunctionControl ?
Modified in JDF 1.1

Specifies which calibration to apply.

Output Resources
Name Description
RunList Ordered list of rasterized ByteMaps representing pages or surfaces.

6.4.6 DBDocTemplateLayout
This process specifies the creation of a master document template that is used as an input resource for the
DBTemplateMerging process. It is similar to the LayoutElementProduction process except that the output is a set
of document templates. Document template are represented in JDF as LayoutElement resources with Template = true.

Input Resources
Name Description
LayoutElement * Page elements without links to a database.
DBRules Description of the rules that should be applied to database records in order

to generate graphic output.
DBSchema Database schema that describe the structure of data in the database.

Output Resources
Name Description
LayoutElement * The document template is a LayoutElement with links to a database.

These links are proprietary to the linking application and are not described
in JDF. The Template attribute must be true.

6.4.7 DBTemplateMerging
This process specifies the creation of personalized PDL instance documents by combining a document template and
instance data records from a database. The resulting instance documents will generally be consumed by an
Imposition, a RIPping, and ultimately by a DigitalPrinting process.

Input Resources
Name Description
DBMergeParams Parameters of the merge process.
DBSelection Instance database records to be merged into the document.
LayoutElement * Document template page element with internal links to a database.

Output Resources
Name Description
RunList Page element without links to a database. This element usually contains a

printable LayoutElement resource such as PPML, PDF or even plain
ASCII.

6.4.8 FilmToPlateCopying
Deprecated in JDF 1.1

Page 196

Page 196

FilmToPlateCopying has been replaced by the more generic ContactCopying.
FilmToPlateCopying is the process of making an analog copy of a film onto a printing plate.

Input Resources
Name Description
DevelopingParams ? Controls the physical and chemical specifics of the media development

process.
ExposedMedia The film or films to be copied onto the plate.
Media The unexposed plate.
PlateCopyParams The settings of the exposure task.

Output Resources
Name Description
ExposedMedia The resulting exposed plate.

6.4.9 FormatConversion
The FormatConversion process controls the conversion from one document type to another, for instance TIFF to BMP.

Input Resources
Name Description
FormatConversionParams Set of parameters required to control the FormatConversion process.
RunList List of documents and/or pages to be converted.

Output Resources
Name Description
RunList List of documents and pages that have been converted.

6.4.10 ImageReplacement
This process provides a mechanism for manipulating documents that contain referenced image data. It allows for
the “fattening” of files that simply contain a reference to external data or contain a low resolution proxy.
Additionally, the ImageReplacementParams resource can be specified so that this process generates proxy
images from referenced data. ImageReplacement is intentionally neutral of the conventions used to identify the
externally referenced image data.

Input Resources
Name Description
ImageCompressionParams ?
New in JDF 1.1

This resource provides a set of controls that determines how images will be
compressed in the resulting “fat” PDF pages.

ImageReplacementParams Describes the controls selected for the manipulation of images.
RunList List of page contents on which to perform the selected operation.

Output Resources
Name Description
RunList List of page contents with images that have been manipulated as indicated

by the ImageReplacementParams resource.

New in JDF 1.1

Page 197

Page 197

6.4.11 ImageSetting
The ImageSetting [RP193]process is executed by an imagesetter or platesetter that images a bitmap onto the film or
plate media. The ImageSetting process may also be used for hard copy proofing. See section ##ref 4.3.5
Approval[RP194]

Input Resources
Name Description
DevelopingParams ?
New in JDF 1.1

Controls the physical and chemical specifics of the media development
process.

ImageSetterParams ?
Modified in JDF 1.1

Controls the device specific features of the imagesetter.

Media The unexposed media.
RunList Identifies the set of bitmaps to image. May contain bytemaps or images.
TransferCurvePool ?
New in JDF 1.1

Area coverage correction and coordinate transformations of the device.

Output Resources
Name Description
ExposedMedia The exposed media resource.

6.4.12 Imposition
The Imposition process is responsible for combining several pages of input graphical content on to a single surface
whose dimensions are reflective of the physical output media. Printer’s marks can be added to the surface in order
to facilitate various aspects of the production process. Among other things, these marks are used for press
alignment, color calibration, job identification, and as guides for cutting and folding.
Note that the Imposition process specifies the task of combining pages and marks on sheets. The task of setting up
the parameters needed for Imposition, e.g., Layout, is defined either by LayoutPreparation or by the generic
ResourceDefinition process.

There are two mechanisms provided for controlling the flow of page images onto Media. The default mechanism,
which provides the functionality of Layout in PJTF, explicitly identifies all page content for each Sheet imaged and
references these pages by means of the Documents and/or MarkDocuments array. Setting the Automated attribute
of the Layout resource to true activates a template approach to printing and relies upon the full Documents hierarchy
to specify the page content to image. Automated impositioning is equivalent to the PrintLayout functionality in PJTF.

In JDF, there is a single Layout resource definition. Its structure is broad enough to encompass the needs of both
fully specified and template-driven imposition. When described fully, the Layout resources include an array of
Signatures. Each Signature in turn specifies an array of Sheets, and each Sheet can have up to two Surfaces
(Front and Back), on which the page images and any marks are to be placed using PlacedObjects. A Sheet that
specifies no Surface content will be blank. Pages that are to be printed must be placed onto Surfaces using
ContentObject subelements which explicitly identify the page (via the Ord attribute which specifies an index into
the document RunList). Thus, the Layout hierarchy specifies explicitly which pages will be imaged.

When describing automated imposition, Layout resources specify a single Signature of Sheet(s) where page
contents are imaged. The (virtual) sequence of pages which is to be imaged via automated layout is defined by the
Document RunList. Pages are drawn in order from this sequence to satisfy the ContentObjects in the Surfaces
for the Signature in the Layout, and the Signature is repeated until all pages of the sequence are consumed. Each
time the Signature is repeated, pages are consumed in “chunks” whose size are determined by the value of MaxOrd
+ 1 (if present in the Layout), or by the largest Ord value or calculated OrdExpression value for any
ContentObject in the Signature (if MaxOrd is absent).

Attributes of the Media are given for each Sheet used in printing. Because the same Signature is repeated until all
pages are consumed, the Layout hierarchy can provide hints or preferences about special needs for sets of page content
via InsertSheet elements. Inserting media is a way to separate sections of the document content. Thus alternate content

Page 198

Page 198

is printed only as necessary to fill areas which would normally have page content because new media has been added or to
designate where a document section will begin as specified by the odd or even position of the Signature.

In a JDF model, impositioning is defined separately from other processes, which may precede or follow it. A
Combined node may combine Imposition with other processes (such as Separation or Interpreting) to describe
a device that happens to perform both in a single execution module.

Input Resources
Name Description
Layout A Layout resource that indicates how the content pages from the

Document RunList and marks from the Marks RunList (see below) are
combined onto imposed surfaces.

RunList (Document) Structured list of incoming page contents which is transformed to produce
the imposed surface images.

RunList ? (Marks) Structured list of incoming marks. These are typically printer’s marks such
as fold marks, cut marks, punch marks, or color bars.

Output Resources
Name Description
RunList Structured list of imposed surfaces. The Type of the LayoutElements

must all be Surface. Typically the output RunList will be partitioned by
PartIDKeys = “SheetName Side Separation”. If the Imposition process
is executed before RIPping, this RunList will generally be consumed by
an Interpreting process. In the case of post-RIP Imposition it will be
consumed by DigitalPrinting or ImageSetting.

6.4.13 InkZoneCalculation
The InkZoneCalculation process takes place in order to preset the ink zones before printing. The Preview data
are used to calculate a coverage profile that represents the ink distribution along and perpendicular to the ink zones
within the printable area of the preview. The InkZoneProfile can be combined with additional, vendor-specific
data in order to preset the ink zones and the oscillating rollers of an offset printing press.

Input Resources
Name Description
InkZoneCalculationParams Specific information about the printing press geometry(such as the number

of zones) to calculate the InkZoneProfile.
Layout ?
New in JDF 1.1

Specific information about the Media (including type and color) and about
the Sheet (placement coordinates on the printing cylinder).

Preview A low resolution bitmap file representing the content to be printed.
Sheet ?
Deprecated in JDF 1.1

Specific information about the Media (including type and color) and about
the Sheet (placement coordinates on the printing cylinder). Replaced by
Layout in JDF 1.1.

TransferCurvePool ? Function to apply ContactCopying, DigitalPrinting, and
ConventionalPrinting process characteristics such as press, climate, and
substrate under certain standardized circumstances. This function can be
used to generate an accurate InkZoneProfile.

Output Resources

Name Description
InkZoneProfile Contains information about ink coverage along and perpendicular to the

ink zones for a specific press geometry.

Page 199

Page 199

6.4.14 Interpreting
The interpreting device consumes page descriptions and instructions for controlling the printing device. The parsing of
graphical content in the page descriptions produces a canonical display list of the elements to be drawn on each page.

The interpreter may encounter, and must act upon, device control instructions that affect the physical
functioning of the printing device, such as media selection and page delivery. Media selection determines which
type of medium is used for printing and where that medium can be obtained. Page delivery controls the location,
orientation, and quantity of physical output.

The interpreter is also responsible for resolving all system resource references. This includes handling font
substitutions and dealing with resource aliases. However, the interpreter specifically does not get involved with any
functions of the device that could be considered finishing features, such as stapling, duplexing, and collating.

Input Resources
Name Description
ColorantControl ?
Modified in JDF 1.1

Identifies the color model used by the job.

FontPolicy ? Describes the behavior of the font machinery in absence of requested fonts.
InterpretingParams Provides the parameters needed to interpret the PDL pages specified in the

RunList resource.
PDLResourceAlias * These resources allow a JDF to reference resources which are defined in a

Page Description Language (PDL). For example, a PDLResourceAlias
resource could refer to a font embedded in a PostScript file.

RunList This resource identifies a set of PDL pages or surfaces which will be
interpreted.

Output Resources
Name Description
RunList ?
Added in JDF 1.2

Pipe of streamed data which represents the results of Interpreting the
pages in the RunList. The format and detail of these data is
implementation specific. In general, it is assumed that the Interpreting
and Rendering processes are tightly coupled and that there is no value in
attempting to develop a general specification for the format of this data.

InterpretedPDLData ?
Deprecated in JDF 1.2

Pipe of streamed data which represents the results of Interpreting the
pages in the RunList. The format and detail of these data is
implementation specific. In particular, it is assumed that the Interpreting
and Rendering processes are tightly coupled and that there is no value in
attempting to develop a general specification for the format of this data. In
JDF 1.2 and beyond, a RunList with InterpretedPDLData subelements
describes the output content data for Interpreting.

6.4.15 LayoutElementProduction
This process describes the creation of page elements. It also explains how to create a layout that can put together all
of the necessary page elements, including text, bitmap images, vector graphics, PDL, or application files such as
Adobe InDesign®, Adobe PageMaker®, and Quark XPress®. The elements might be produced using any of a
number of various software tools. This process is often performed several times in a row before the final
LayoutElement, representing a final layout file, is produced.

Page 200

Page 200

Input Resources
Name Description
LayoutElement * URL of the PDL or application file, bitmap image file, text file, vector

graphics file, etc. Additional information (e.g., the page number or X, Y-
coordinates) might be stored in the Comment element of the
LayoutElement resource. Customer information such as the file
templates, manuscripts, and sketches are handled via URL.

Output Resources

Name Description
LayoutElement ? A URL of the PDL or application file is produced by this process if no

RunList is produced. Additional information, e.g., page number or X, Y-
coordinates, might be stored in the Comment of the LayoutElement.

RunList ? A RunList of LayoutElement resources of ElementType Page or
Document is produced if this LayoutElementProduction task is the last
process of type LayoutElementProduction.

6.4.16 LayoutPreparation
The LayoutPreparation process specifies the process of defining the Layout resource for the Imposition
process. Note that it is possible to create a Combined process that includes both LayoutPreparation and
Imposition. In this case, the Layout and RunList (Marks) resource would not be explicitly defined, since they
are exchange resources between the two processes.

Input Resources
Name Description
LayoutPreparationParams Set of parameters required to control the LayoutPreparation process.
RunList ? (Document)
Modified in JDF 1.2

List of documents and/or pages that will be input into the layout. Note that
this Runlist is for information only and not modified by the
LayoutPreparation process.

RunList ? (Marks) List of marks that will be input into the layout. These are typically
printer’s marks such as fold marks, cut marks, punch marks, or color bars.

Output Resources
Name Description
Layout The layout of the document to be imposed.
RunList (Marks) ? List of marks that may be used as input of the following Imposition

process.
TransferCurvePool ? Definition of the transfer curves and coordinate systems of the devices.

6.4.17 PDFToPSConversion
The PDFToPSConversion process controls the generation of PostScript from a single PDF document. This
process may be used at any time in a host-based PDF workflow to exit to PostScript for use of tools that consume
such data. Additionally, it may be used to actively control the physical printing of data to a device that consumes

New in JDF 1.1

Page 201

Page 201

PostScript data. The JDF model of this may include a PDFToPSConversion process in a Combined node with a
PSToPDFConversion process.

Input Resources
Name Description
PDFToPSConversionParams Set of parameters required to control the generation of PostScript.
RunList List of documents and pages to be converted to PostScript.

Output Resources
Name Description
RunList Stream or streams of resulting PostScript code. This PostScript code may end up physically

stored in a file or be piped to another process. The GeneratePageStreams attribute of the
PDFToPSConversionParams resource determines whether there is a single stream generated
for all pages in the RunList or whether each page is generated in to a separate consecutive
stream.

6.4.18 Preflight
Preflighting is the process of examining the components of a print job to ensure that the job will print successfully
and with the expected results. Preflight checks may be performed on each PDL document identified within the
associated RunList resource.

Preflighting a file is generally a three-step process. First, the pages are inventoried against a preflight profile,
detailing the expected or hoped-for results. The resulting inventory identifies the significant characteristics of all the
pages in the job. Next, the characteristics are tested against a set of criteria specified by a series of preflight constraint
resources. Finally, results and discrepancies are reported in a PreflightAnalysis hierarchy log as analysis.

Agents record the instructions for, and devices record the results of, preflight operations in JDF jobs, using
hierarchies headed by three types of resources: Inventory, Profile, and Results. The Inventory hierarchy may be used to
record all the information gathered in the first step, although devices need not record this information. The Profile
hierarchy is used to record the criteria used to test the file in the second step. And the Results hierarchy is used to
record the results of the tests. In all three hierarchies, information is grouped into categories. There are six predefined
categories in JDF—Colors, Document, Fonts, FileType, Images and Pages, but applications may define other
categories if needed.

In a profile hierarchy, each category is populated with PreflightConstraint elements. Each PreflightConstraint
element specifies a test that the application will perform when analyzing the file. In the Inventory and Results
hierarchies, each category is populated with two kinds of subelements that record information about specific
characteristics of the file: PreflightInstance and PreflightDetail. Such information is recorded in the following two
ways:

1. Information that is specific to one instance of some file object is recorded via PreflightInstance
subelements that occur in each of the results pools such as FontResultsPool and ImageResultsPool).
Within each PreflightInstance element, PreflightInstanceDetail subelements provide detailed
information about that instance. For example, to record information about each font used in the file, the
FontResultsPool contains one PreflightInstance subelement, which groups a set of
PreflightInstanceDetail subelements. Each of these subelements records one specific characteristic of the
font.

2. Information that applies to the file as a whole is recorded via PreflightDetail subelements, which occur in
the various results pools. For example, to record all the page sizes used in the file, the PagesResultsPool
would contain several PreflightDetail subelements, one for each page size used in the file.

An Inventory hierarchy may be used to record all information about a file. Preflight tools are not required to create
an Inventory hierarchy as part of the preflight information they record. However, tools may find it useful to record
this information, allowing them to avoid reparsing the entire file in order to perform a new Analysis.

Page 202

Page 202

Profile hierarchies specify the constraints against which the file is tested. Each Analysis hierarchy reflects the
results of evaluating the file characteristics, which may be recorded in an Inventory hierarchy, against a set of tests
recorded in a Profile hierarchy.

PreflightConstraint elements record the specific details for the constraints specified in the PreflightProfile
resource. PreflightDetail and PreflightInstanceDetail elements record results, while PreflightInstance elements
group PreflightInstanceDetail subelements for instances of file objects. The details recorded are PDL-specific.

Applications can define constraints within any of the defined constraint categories for any file type. In addition,
applications may add to the set of defined constraints and constraint categories, defining both the new category and the
constraint within the category.

Whether constraints are specified for predefined or new constraint categories, the eventual values for those
constraints are always expressed as PreflightConstraint elements which are part of a PreflightProfile.
Furthermore, the results are always expressed as either PreflightDetail elements or PreflightInstance elements,
which group PreflightInstanceDetail subelements for Analysis results.

Note that the resources for Preflight are under development and subject to major changes in a future release of this
specification.

Input Resources
Name Description
PreflightInventory ? Provides an exhaustive list of all items already resolved in a previous preflight.
PreflightProfile A specified list of constraints against which pages may be tested.
RunList The list of pages to be preflighted.

Output Resources
Name Description
PreflightAnalysis ? Describes the results of a preflight operation. Provides analytical information for the

constraints against which the file was tested.
PreflightInventory ? Provides an exhaustive list of all items considered in preflight.
RunList ? A list of pages that may or may not have been modified as a result of a fix-up operation.

6.4.19 PreviewGeneration
The PreviewGeneration process produces a low resolution Preview of each separation that will be printed. The
Preview can be used in later processes such as InkZoneCalculation. The PreviewGeneration process
typically takes place after Imposition or RIPping.

The PreviewGeneration can be performed in one of the following two ways: 1.) the imaged printing plate is
scanned by a conventional plate scanner or 2.) medium to high resolution digital data are used to generate the
Preview for the separation(s). The extent of the PDL coordinate system (as specified by the MediaBox attribute,
the resolution of the preview image, and width and height of the image) must fulfill the following requirements:

MediaBox length / 72 * x-resolution = width ± 1
MediaBox height / 72 * y-resolution = height ± 1

A gray value of 0 represents full ink, while a value of 255 represents no ink (see the DeviceGray color model in
chapter 4.8.2. of the PostScript Language Reference Manual).

Rules for the Generation of the Preview Image
To be useful for the ink consumption calculation, the preview data must be generated with an appropriate resolution.
This means not only spatial resolution, but also color or tonal resolution. Spatial resolution is important for thin
lines, while tonal resolution becomes important with large areas filled with a certain tonal value. The maximum
error caused by limited spatial and tonal resolution should be less than 1 %.

Page 203

Page 203

Spatial Resolution
Since some pixel of the preview image might fall on the border between two zones, their tonal values must be split
up. In a worst case scenario, the pixels fall just in the middle between a totally white and a totally black zone. In
this case, the tonal value is 50%, but only 25% contributes to the black zone. With the resolution of the preview
image and the zone width as variables, the maximum error can be calculated using the following equation:

][_*]/[*4
100

mmwidthzonemmLresolution
[%]=error

For zone width broader than 25 mm, a resolution of 2 lines per mm will always result in an error less than 0.5 %.
Therefore, a resolution of 2 lines per mm (equal to 50.8 dpi) is suggested.

Zone 2Zone 1

Border between zones

Overlapping pixel

Figure 6.1 Worst case scenario for area coverage calculation

Tonal Resolution
The kind of error caused by color quantization depends on the number of shades available. If the real tonal value is
rounded to the closest (lower or higher) available shade, the error can be calculated using the following equation:

shadesofnumber
[%]=error

__*2
100

Therefore, at least 64 shades should be used.

Line Art Resolution
When rasterizing line art elements, the minimal line width is 1 pixel, which means 1/resolution. Therefore, the
relationship between the printing resolution and the (spatial) resolution of the preview image is important for these
kind of elements. In addition, a specific characteristic of PostScript RIPs adds another error: within PostScript,
each pixel that is touched by a line is set. Tests with different PostScript jobs have shown that a line art resolution of
more than 300 dpi is normally sufficient for ink-consumption calculation.

Conclusion
There are quite a few different ways to meet the requirements listed above. The following list includes several examples:

• The job can be Ripped with 406.4 dpi monochrome.

• With anti-aliasing, the image data can be filtered down by a factor of 8 in both directions. This results in an
image of 50.8 dpi with 65 color shades.

• High resolution data can also be filtered using anti-aliasing. First, the Ripped data, at 2540 dpi monochrome,
is taken and filtered down by a factor of 50 in both directions. This produces an image of 50.8 dpi with 2501
color shades. Finally those shades are mapped to 256 shades, without affecting the spatial resolution.

Rasterizing a job with 50.8 dpi and 256 shades of gray is not sufficient. The problem in this case is the rendering of
thin lines (see Line Art Resolution).

Page 204

Page 204

Recommendations for Implementation
The following three guidelines are strongly recommended:
• The resolution of RIPped line art must be at least 300 dpi.
• The spatial resolution of the preview image must be approximately 20 pixel/cm (= 50.8 dpi).
• The tonal resolution of the preview image must be at least 64 shades.

Input Resources
Name Description
ColorantControl ?
New in JDF 1.1

The ColorantControl resources that define the ordering and usage of
inks in print modules. Needed for generating thumbnails.

ExposedMedia ? The PreviewGeneration process can use an exposed printing plate to
produce a Preview resource. This task is performed using an analog
plate-scanner. Only one of ExposedMedia, Preview, or RunList may
be specified in any PreviewGeneration process.

Preview ?
New in JDF 1.1

Medium or low resolution bitmap file that can be used for calculation of
overviews and thumbnails. Only one of ExposedMedia, Preview, or
RunList may be specified in any PreviewGeneration process.

PreviewGenerationParams Parameters specifying the size and the type of the preview.
RunList ? High resolution bitmap data is consumed by the PreviewGeneration

process. These data represent the content of a separation that is recorded
on a printing plate or other such item. Only one of ExposedMedia,
Preview, or RunList may be specified in any PreviewGeneration
process.

TransferCurvePool?
New in JDF 1.1

Area coverage correction and coordinate transformations of the device.

Output Resources

Name Description
Preview The Preview data are comprised of low resolution bitmap files

representing, for example, the content of a separation that is recorded on a
printing plate or other such item.

6.4.20 Proofing
Deprecated in JDF 1.2[RP195]
The Proofing process results in the creation of a physical proof, represented by an ExposedMedia resource.
Proofs can be used to check an imposition or the expected colors for a job. The inputs of this process are a RunList,
which identifies the pages to proof; the ProofingParams resource, which describes the type of proof to be created;
and a Media resource to describe the physical media that will be used.
In JDF 1.2 and beyond, Proofing is a combined process. For details see ##ref application note proofing.[RP196]

Input Resources
Name Description
ColorantControl ?
Modified in JDF1.1A

Identifies the color model used by the job.

ColorSpaceConversionParams
?

This resource provides information needed to convert colorspaces in the
pages for proofing. Generally present if a color proof is desired, unless the
pages in the RunList have already been operated on by a previous
colorspace conversion process.

Layout ? Required if an imposition proof is desired.

Page 205

Page 205

Name Description
Media This resource characterizes the output media for the proof.
ProofingParams This resource provides the parameters needed to produce the desired proof.
RunList (Document) Identifies the pages to be proofed. When the Layout resource is present in

the ProofingParams resource, Ord values from ContentObject
subelements refer to pages in this RunList.

RunList ? (Marks) Structured list of incoming marks. These are typically printers marks, e.g.,
fold, cut or punch marks, or color bars.
When the Layout resource is present in the ProofingParams resource,
Ord values from MarkObject subelements refer to pages in this RunList.

Output Resources
Name Description
ExposedMedia The resulting physical proof.

6.4.21 PSToPDFConversion
This section defines the controls required to invoke a device that accepts a PostScript stream and produces a set of
PDF pages as output.

Input Resources
Name Description
FontParams ? These parameters determine how the conversion process will handle font

errors encountered in the PostScript stream.
ImageCompressionParams ? This resource provides a set of controls that determines how images will be

compressed in the resulting PDF pages.
PSToPDFConversionParams ? These parameters control the operation of the process that interprets the

PostScript stream and produces the resulting PDF pages.
RunList This resource specifies where the PostScript stream is to be found.

Output Resources
Name Description
RunList This resource identifies the location of the resulting PDF pages.

6.4.22 Rendering
The Rendering process consumes the display list of graphical elements generated by an interpreter. It color
manages and scans/converts the graphical elements according to the geometric and graphic state information
contained within the display list. The controls governing the external rendering processes provide overrides and
additional parameters for controlling the behavior of the process.

Input Resources
Name Description
Media
Deprecated in JDF 1.1

This resource provides a description of the physical media which will be
marked. The physical characteristics of the media may affect decisions made
during Rendering.

RunList ?
Added in JDF 1.2

Pipe of streamed data that represents the results of Interpreting the pages in
the RunList. The format and detail of these data is implementation specific.
In general, it is assumed that the Interpreting and Rendering processes are
tightly coupled and that there is no value in attempting to develop a general
specification for the format of this data.

Page 206

Page 206

InterpretedPDLData ?
Deprecated in JDF 1.2

Pipe of streamed data that represents the results of Interpreting the pages in
the RunList. The format and detail of these data is implementation specific.
In particular, it is assumed that the Interpreting and Rendering processes are
tightly coupled and that there is no value in attempting to develop a general
specification for the format of this data. In JDF 1.2 and beyond, a RunList
with InterpretedPDLData subelements describes the input content data for
Rendering.

RenderingParams ? This resource describes the format of the ByteMaps to be created and other
specifics of the Rendering process.

Output Resources
Name Description
RunList Ordered list of rasterized ByteMaps representing pages

6.4.23 RIPping[RP197]
RIPp[RP198]ing is, in the context of a workflow, a Combined process that is an amalgamation of at least two
processes. Most often it includes Interpreting and Rendering, but it may also include [RP199]Trapping,
Separation, Imposition, and Screening. Thus a typical RIP node is of Type Combined, as shown in the
following example:

<JDF Type="Combined" Category=”RIPping” [RP200]Types="Interpreting Rendering
Screening" … />

The RIPping process consumes page descriptions and instructions for producing the graphical output. It parses the
graphical contents in the page descriptions, renders the contents, and produces a rasterized image of the page. This
raster may contain contone data and be represented upon output as a ByteMap. Alternatively, the RIPping process
may also perform halftone screening, in which case the output is in the form of a bitmap. It is also responsible for
resolving all system resource references that include font handling and resource aliasing.

Instructions read by the RIP include information about the media, halftoning, color transformations, colorant
controls and other items that affect that rasterized output. They do not, however, represent any specific controls for the
physical output device, nor do they deal with any instructions intended for the finishing device.

When a RIPping process is comprised of only the Interpreting and Rendering processes, various
intermediary steps are required before the output can be run through a ConventionalPrinting process. In theory,
however, a workflow could include no intermediary steps between a RIPping process and a DigitalPrinting
process. The following workflow scenarios represent possible process chains in each circumstance:

• RIP→Screening→ImageSetting→ContactCopying→ConventionalPrinting
• RIP→(Screening)→DigitalPrinting

Since RIP’ing never stands alone as a process, see the processes that contribute to the RIP for input and output resources.

6.4.24 Scanning
The Scanning process creates bitmaps from analog images using a scanner.

Input Resources
Name Description
ExposedMedia Description of the media to be scanned. The ExposedMedia should be

partitioned by RunIndex, in order to provide unique mapping from
ExposedMedia to the output RunList.

ScanParams High level scanner settings. These settings are specifically not intended as a
replacement for low-level device interfaces such as TWAIN.

Page 207

Page 207

Output Resources
Name Description
RunList List of ByteMap resources or LayoutElement resources of Type = Image.

6.4.25 Screening
This process specifies the process of halftone screening. It consumes contone raster data, e.g., the output from an
interpreting and rendering process. It produces monochrome which has been filtered through a halftone screen to
identify which pixels are required to approximate the original shades of color in the document.

This process definition includes capabilities for post-RIP halftoning according to the PostScript definitions.
Alternatively it allows for the selection of FM screening/error diffusion techniques. However, in these
circumstances no specific parameter sets are defined. In general, an actual screening process will be a Combined
process of Calibration and Screening.

Input Resources
Name Description
RunList Ordered list of rasterized ByteMaps representing pages or surfaces.
ScreeningParams Parameters specifying which halftone mechanism is to be applied and with

what specific controls.

Output Resources
Name Description
RunList Ordered list of rasterized and screened output pages. Assumes that the

resolution remains the same and that resulting data is one bit per component.
Furthermore, the organization of planes within the data does not change.

6.4.26 Separation
The Separation process specifies the controls associated with the generation of color-separated data. It is designed
to be flexible enough to allow a variety of possible methods for accomplishing this task. First of all, it sponsors
host-based PDF separating operations, in which a RunList of preseparated PDF data is generated. It can also be
combined with a RIP to allow control of In-RIP separations. In this scenario a RunList containing ByteMaps is
generated as the output. Yet another anticipated combination is with the ColorCorrection process to deal with
incoming device-dependent data. And finally, it may be combined with an ImageReplacement process in order
to do image substitution for omitted or proxy images.

Input Resources
Name Description
ColorantControl ?
Modified in JDF1.1A

Identifies which colorants in the job are to be output.

RunList List of pages that are to be operated on.
SeparationControlParams Controls for the separation process.

Output Resources
Name Description
RunList List of separated pages or separated raster bytemaps.

6.4.27 SoftProofing
Deprecated in JDF 1.2[RP201]
In JDF 1.2 and beyond, SoftProofing is a combined process. For details see ##ref application note proofing.[RP202]

Page 208

Page 208

SoftProofing is the process of reviewing final-form output on a monitor rather than in paper form. The inputs are a
RunList, which identifies the pages to proof; the ProofingParams resource, which describes the type of proof to
be created.

Within the ProofingParams resource, the proof device parameter specifies the characterization the monitor
on which the proof will be viewed. This processor must create and perform a transformation from the final target
device to the proof device colors before displaying the document contents.

The soft proofing parameters allow sufficient control to determine whether any images are displayed in the proof.
If so, the ability to select low resolution proxies or full resolution images is provided. The mechanism for approving
proofs requires the generation of a PDF file containing the proofing parameters and a digital signature noting the
acceptance of them. The approval PDF file need not contain any graphical data.

Like all other color manipulation supported in JDF, the color conversion controls are based on the use of ICC
profiles. While the assumed characterization of input data can take many forms, each can internally be represented as
an ICC Profile. In order to perform the transformations, input profiles must be paired with the identified final target
device profile to create the transformation.

Input Resources
Name Description
ColorantControl ?
Modified in JDF1.1A

Identifies the color model used by the job.

ColorSpaceConversionParams ? This resource provides information needed to convert colorspaces in the
pages for proofing. Generally present if a color proof is desired, unless
the pages in the RunList have already been operated on by a previous
colorspace conversion process.

Layout ? Required if an imposition proof is desired.
ProofingParams Provides the parameters needed to produce the desired proof.
RunList (Document) Identifies the pages to be proofed. When the Layout resource is present

in the ProofingParams resource, Ord values from ContentObject
subelements refer to pages in this RunList.

RunList ? (Marks) Structured list of incoming marks. These are typically printer’s marks,
e.g., fold marks, cut marks, punch marks, or color bars.
When the Layout resource is present in the ProofingParams resource,
Ord values from MarkObject subelements refer to pages in this
RunList.

Output Resources
None. The SoftProofing process is always combined with an Approval process.

6.4.28 Tiling
The Tiling process allows the contents of Surfaces to be imaged onto separate pieces of media. Note that many
different workflows are possible. Tiling must always follow Imposition, but it can operate on imposed PDL page
contents or on contone or halftone data. Tiling will generally be combined with other processes. For example,
Tiling might be combined with ImageSetting. In that case, the input would be a RunList that contains
ByteMaps for each Surface.

Input Resources
Name Description
RunList (Surface) Structured list of imposed page contents or ByteMaps that are to be

decomposed to produce the images for each tile. The Type value of
LayoutElement resources must all be Surface.

RunList ? (Marks) Structured list of incoming marks. These are typically printer’s marks that
provide the information needed to combine the tiles.

Page 209

Page 209

Tile A partitioned Tile resource that describes how the Surface contents are to
be decomposed.

Output Resources
Name Description
RunList Structured list of portions of the decomposed surfaces. The value of the

Type attribute of the LayoutElement resources must be Tile.

6.4.29 Trapping
Trapping is a prepress process that modifies PDL files to compensate for a type of error that occurs on presses.
Specifically, when more than one colorant is applied to a piece of media using more than one inking station, the
media may not stay in perfect alignment when moving between inking stations. Any misalignment will result in an
error called misregistration. The visual effect of this error is either that inks are erroneously layered on top of one
another, or, more seriously, that gaps occur between inks that should abut. In this second case, the color of the
media is revealed in the gap and is frequently quite noticeable. Trapping, in short, is the process of modifying
PDL files so that abutting colorant edges intentionally overlap slightly, in order to reduce the risk of gaps.

The Trapping process specifies that a set of document pages should be modified to reduce or (ideally) eliminate
visible misregistration errors in the final printed output. The process may be combined with RIPping or specified as
a stand-alone process.

Input Resources
Name Description
ColorantControl ?
Modified in JDF1.1A

Identifies color model used by the job.

FontPolicy ?
New in JDF 1.1

Describes the behavior of the font machinery in absence of requested fonts.

RunList Structured list of incoming page contents that are to be trapped.
TrappingDetails Describes the general setting needed to perform trapping.

Output Resources
Name Description
RunList Structured list of the modified page contents after Trapping has been

executed.

6.5 Press Processes
Press processes are various technological procedures involving the transfer of ink to a substrate. From a technical
standpoint they are often classified in impact and non-impact printing technologies. The impact printing class can
be further subdivided into relief, intaglio, planograph, or screen technologies, which in turn can be divided in further
subparts. Because of the way a workflow is constructed in JDF, however, a different approach to classification was
used. All of the various printing technologies are gathered into three categories: 1.) ConventionalPrinting, which
involves printing from a physical master, 2.) DigitalPrinting, which involves generic commercial printing from a
digital master. A third process, 3.) IDPrinting, which stands for integrated digital printing and involves simple
digital printing as specified in the IPP protocol was defined in JDF 1.0 but is deprecated in JDF 1.1. A Combined
process including DigitalPrinting should be implemented instead.

The most prominent physical, planographic printing technologies are offset lithography and electrophotography.
They are also the printing processes with the highest adoption in today’s graphic arts industry. Consequently, the
ConventionalPrinting process in JDF takes them as models. That does not mean, however, that other printing
techniques can not make use of the ConventionalPrinting process and its resources. The extensibility features of
JDF may be used to fill other requirements related to printing technology.

Page 210

Page 210

6.5.1 ConventionalPrinting
This process covers several conventional printing tasks, including sheetfed printing, web printing, web/ribbon
coating, converting, and varnishing. Typically, each takes place after prepress and before postpress processes. Press
machinery often includes postpress processes, e.g., Folding, Numbering, and Cutting, as in-line finishing
operations. The ConventionalPrinting process itself does not cover these postpress tasks. Using a conventional
printing press for producing a pressproof can be performed in the following two ways:

• A proof of type Component is produced with a ConventionalPrinting process. The result of this
process is then sent to the Approval process, which in turn produces an ApprovalSuccess resource.
That resource is then passed on to a second ConventionalPrinting process, which requires that the press
be set up a second time.

• The DirectProof attribute of the ConventionalPrintingParams can be used to specify the proof if it is
produced during the ConventionalPrinting process. In this case, the press need only be set up once.

Note, the definition and ordering of separations is specified by the DeviceColorantOrder attribute of the
appropriate ColorantControl resource.

Input Resources
Name Description
ColorantControl ? The ColorantControl resources that define the ordering and usage of

inks in print modules. The ColorantControl resource specifies the
complete set of colors that will be printed on a sheet.[RP203]

Component ? (Input) Various components in the form of preprints can be used in
ConventionalPrinting in lieu of Media. Examples include waste or a
set of preprinted sheets.

Component ? (Proof) A Proof component is used if a proof was produced during an earlier print
run Note that the proof may be a Component produced in a previous run
and must not necessarily have been produced explicitly as a proof. In
general, only one of Component(Proof) or ExposedMedia (Proof) should
be specified[RP204]

ConventionalPrintingParams Specific parameters to set up the press.
ExposedMedia ? (Proof) A Proof is used to compare color and content during

ConventionalPrinting. This Proof is produced by a prepress proofing
device.

ExposedMedia (Plate) The printing plates and information about it (such as Thickness and
RegisterPunch) is used to set up the press. The ExposedMedia(Plate)
resource defines the set of plates to be used in the press run that is
described by this node.[RP205]

Ink ?
Modified in JDF 1.1

Information (brand, type, clone) about the ink is useful to set up the press.

InkZoneProfile ? The InkZoneProfile contains information about how much ink is needed
along the printing cylinder of a specific printing press. It is only useful for
Offset Lithography presses with ink key adjustment functions.

Layout ?
New in JDF 1.1

Sheet and Surface elements from the Layout tree such as
CIELABMeasuringField, DensityMeasuringField, or
ColorControlStrip can be used for quality control at the press. The
quality control field value and position can be of interest for automatic
quality control systems. RegisterMark can be used to line up the printing
plates for the press run, and its position can in turn be used to position
items such as a camera.

Page 211

Page 211

Name Description
Media ? The physical substrate, e.g., paper or foil, and information about the

Media, e.g., such as thickness, type, and size, are useful in setting up paper
travel in the press. This resource must be present if no preprinted
Component (Input) resource is used.

Sheet ?
Deprecated in JDF 1.1

Specific information about the Media (including type and color) and about
the Sheet (placement coordinates on the printing cylinder). Replaced by
Layout in JDF 1.1.

TransferCurvePool?
New in JDF 1.1

Area coverage correction and coordinate transformations of the device.

Output Resources
Name Description
Component
Modified in JDF 1.2

Describes the printed sheets or ribbons which may be used by another
printing process or postpress processes. Note that the Amount attribute of
the ResourceLink to this resource indicates the number of copies of the
entire job which will be produced. In JDF1.0 and 1.1 the ResourceLink that
linked to this Component required a ResourceUsage="Good”. This is
supported but not required in JDF 1.2 and beyond.[RP206]

Component ? (Waste)
Deprecated in JDF 1.2

Produced waste of printed sheets or ribbons. In JDF1.2 and beyond,
ConventionalPrinting produces one Component that is optionally
partitioned by Condition.

6.5.2 DigitalPrinting
DigitalPrinting is a direct printing process that, like ConventionalPrinting, occurs after prepress processes but before
postpress processes. In DigitalPrinting, the data to be printed are not stored on an extra medium (such as a printing plate
or a printing foil), but instead are stored digitally. The printed image is generated for every output using the digital data.
Electrophotography, inkjet, and other technologies are used for transferring ink (both liquid ink and dry toner) onto the
substrate. Furthermore, both sheet and web presses can be used as machinery for DigitalPrinting.

DigitalPrinting is often used to image a small area on preprinted Components to perform actions such as
addressing or numbering another Component. This kind of process can be executed by imaging with an inkjet
printer during press, postpress, or packaging operations. Therefore, DigitalPrinting is not only a press or prepress
operation but sometimes also a postpress process.

Digital printing devices which provide some degree of finishing capabilities, such as collating and stapling, as
well as some automated layout capabilities, such as N-up and duplex printing may be modeled as a combined
process which includes DigitalPrinting. Such a combined process may also include other processes, e.g.,
ContoneCalibration, Cutting, Folding, HoleMaking, Imposition, Interpreting, LayoutPreparation,
Perforating, Rendering, Screening, Stacking, Stitching, Trapping, or Trimming.

Controls for DigitalPrinting are provided in the DigitalPrintingParams resource. The set of input
resources of a combined process which includes DigitalPrinting may be used to represent an Internet Printing
Protocol (IPP) job or a PPML job. See Application Notes for IPP and Variable Data printing.

Note: Putting a label on a product or DropItem is not DigitalPrinting but Inserting.

Input Resources
Name Description
ColorantControl ? The ColorantControl resources that define the ordering and usage of

inks in print modules.

Page 212

Page 212

Name Description
Component * (Input) Various components can be used in DigitalPrinting instead of Media.

Examples include preprinted covers, waste, precut Media, or a set of
preprinted sheets or webs. If multiple Component * (Input) resources are
linked to one process, the mapping of media to content is defined in the
partitions of DigitalPrintingParams.

Component ? (Proof) A Proof component is used if a proof was produced during an earlier print
run (see description in Section 6.5.1). Note that the proof may be a
Component produced in a previous run and must not necessarily have been
produced explicitly as a proof. In general, only one of Component(Proof)
or ExposedMedia should be specified[RP207]

DigitalPrintingParams Specific parameters to set up the machinery.
ExposedMedia ? A Proof is useful for comparisons (completeness, color accuracy) with the

print out of the DigitalPrinting process.
Ink ? Ink or toner and information that is needed for DigitalPrinting.
Layout ?
New in JDF 1.1

Sheet and Surface elements from a Layout such as the
CIELABMeasuringField, DensityMeasuringField, or
ColorControlStrip can be used for quality control at the press. The
value and position of the quality can be of interest for automatic quality
control systems. RegisterMarks can be used to line up the printing
registration during press run, and its position can in turn be used to position
an item such as a camera.

Media * The physical Media and information about the Media, such as thickness,
type, and size, is used to set up paper travel in the press. This has to be
present if no preprinted Component (input) resource is present.
Unprinted Media used for covers are also defined as Media.
Note: Printing a job on more than one web or sheet at the same time is
parallel processing.

RunList Rendered data in ByteMaps that will be printed on the digital press is
needed for DigitalPrinting. The RunList contains only ByteMaps.

Sheet ?
Deprecated in JDF 1.1

Specific information about the Media (including type and color) and about
the Sheet (placement coordinates on the printing cylinder). Replaced by
Layout in JDF 1.1.

TransferCurvePool?
New in JDF 1.1

Area coverage correction and coordinate transformations of the device.

Output Resources
Name Description
Component
Modified in JDF 1.2

Components are produced for other printing processes or postpress
processes. Note that the Amount attribute of the ResourceLink to this
resource indicates the number of copies of the entire job which will be
produced. Prior to JDF 1.2 this Component was marked with a
ProcessUsage=”Good”. This is supported but not required in JDF 1.2 and
beyond.

Component ? (Waste)
Deprecated in JDF 1.2

Produced waste, may be used by other processes. In JDF 1.2 and beyond,
Waste is tracked by partitioning the output using the Condition
PartIDKey. [RP208]

6.5.3 IDPrinting
Deprecated in JDF 1.1

Page 213

Page 213

IDPrinting, which stands for Integrated Digital Printing, is a specific form of digital printing. It combines
functionality that might be represented by the Interpreting, Rendering, Screening, and DigitalPrinting
processes in a single process. In addition, devices which support IDPrinting frequently provide some degree of
finishing capabilities, such as collating and stapling, as well as some automated layout capabilities, such as N-up and
duplex printing.

Controls for IDPrinting are provided in the IDPrintingParams resource. These controls are intended to be
somewhat limited in their scope. If greater control over various aspects of the printing process is required,
IDPrinting should not be used. Ultimately, the controls specified for IDPrinting can be used to generate an
Internet Printing Protocol (IPP) job. See JDF/1.0 Appendix F for a mapping between JDF IDPrinting and IPP.
IDPrinting may be combined with other processes, such as Trapping or ColorSpaceConversion.

Input Resources
Name Description
ColorantControl ? The ColorantControl resources that define the ordering and usage of

inks in print modules.
Component ? (Cover) A finished cover may be combined with the pages that will be output by

this process.
Component ? (Input) Various components can be used in IDPrinting instead of Media.

Examples include waste, precut Media, or a set of preprinted sheets or
webs.

Component ? (Proof) A Proof component is used if a proof was produced during an earlier
ConventionalPrinting process.

ExposedMedia ? A Proof is useful for comparisons (completeness, color accuracy) with the
print out of the IDPrinting process.

FontPolicy ? Describes the behavior of the font machinery in absence of requested fonts.
Ink ? Ink or toner and information about it is needed for IDPrinting.
InterpretingParams * A set of resources that specify how the device should interpret the PDL

files which are referenced by the RunList for the process. Note that
InterpretingParams is an abstract resource. Instances are PDL-specific.

IDPrintingParams ? Specific parameters to set up the machinery.
Media ? The physical Media and information about the Media, such as thickness,

type, and size, are used to set up paper travel in the press. This has to be
present if no preprinted Component (input) resource is present.
Note: Printing a job on more than one web or sheet at the same time is
parallel processing.

RenderingParams ? This resource describes the format of the ByteMaps to be created.
RunList The set of pages to be printed.
ScreeningParams ? Parameters specifying which halftone mechanism is to be applied and with

what specific controls.
TransferFunctionControl ? Controls whether the device performs transfer functions and what values

are used when doing so.

Output Resources
Name Description
Component (Good) Components are produced for other printing processes or postpress

processes. Note that the Amount attribute of the ResourceLink to this
resource indicates the number of copies which will be produced.

Component ? (Waste) Produced waste, may be used by other processes.

Page 214

Page 214

6.6 Postpress Processes
In this specification, the postpress processes are presented in two parts: an alphabetical list of processes that is then
followed by a Postpress Processes Structure section that divides these processes into subchapters for structuring
purposes. This structuring is useful to find specific processes. Please note that processes, in some cases can be used
to describe operations that go beyond the scope of a specific chapter. Therefore, it is a good idea not only to look at
certain processes within a subchapter but also to find out what functionality other processes offer if a specific task
needs to be addressed.

6.6.1 AdhesiveBinding
Deprecated in JDF 1.1
The AdhesiveBinding has been split into the following individual processes:
• CoverApplication,
• Gluing
• SpinePreparation,
• SpineTaping.
Note that the parameters of the GlueApplication ABOperations have been moved into
CoverApplicationParams and SpineTapingParams as GlueApplication refelements. The generic
GlueApplication ABOperation is now described by the Gluing process.

6.6.2 BlockPreparation
New in JDF 1.1
As there are many options for a hardcover book, the block preparation is more complex than what has already been
described for other types of binding above. Those options are the ribbon band (numbers of bands, materials and
colors), gauze (material and glue), headband (material and colors), kraft paper (material and glue), and tightbacking
(different geometry and measurements).

Input Resources
Name Description
Component The BlockPreparation process consumes one Component and

creates a book block.
BlockPreparationParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the prepared book block. Its

ProductType = “BookBlock”

6.6.3 BoxPacking
New in JDF 1.1
A pile, stack or bundle of products can be packed into a box or cartoon.

Input Resources
Name Description
Component The BoxPacking process puts a set of Components into the box

Component.
BoxPackingParams Specific parameters to set up the machinery.
Component (Box) ? Details of the box or carton.

Page 215

Page 215

Output Resources
Name Description
Component One Component is produced: the boxed Component.

6.6.4 CaseMaking
New in JDF 1.1
Case making is the process where a hard case is produced. As there are many different kinds of hardcover cases,
they will be described in a later version of the JDF specification.

Input Resources
Name Description
Component (CoverMaterial) ? The cover material which may be either a preprinted and processed sheet

of paper. If no Component is specified, a Media (CoverMaterial) must
be specified.

CaseMakingParams Specific parameters to set up the machinery.
Media (CoverMaterial)? The CaseMaking process may also consume unprocessed Media as

cover material. Only one of Media (CoverMaterial) or Component
(CoverMaterial) must be specified.

Media (CoverBoard)
Modified in JDF 1.1A

The cardboard Media used for the cover board.

Media (SpineBoard)? The cardboard Media used for the spine board. If not specified, the same
media as used for Media (CoverBoard) is used.

Output Resources
Name Description
Component One Component is produced: the produced book case. Its ProductType

= “BookCase”

6.6.5 CasingIn
New in JDF 1.1
The hard cover book case and the book block are joined in the CasingIn process.

Input Resources
Name Description
Component The prepared book block.
Component (Case) The hard cover book case.
CasingInParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the hard cover book.
Component One Component is produced: the thread-sewn components forming an item such as a raw

book.

6.6.6 ChannelBinding
Various sizes of metal clamps can be used in ChannelBinding. The process can be executed in two ways. In the
first, a pile of single sheets—sometimes together with a front and back cover—is inserted into a U-shaped clamp and
crimped in special machinery. In the second, a preassembled cover that includes the open U-shaped clamp is used

Page 216

Page 216

instead of the U-shaped clamp alone. The thickness of the pile of sheets determines in both cases the width of the
U-shaped clamp to be used for forming the fixed document, which is not meant to be reopened later.

Input Resources
Name Description
Component (BookBlock) The operation requires one component: the block of sheets to be bound.
Component ? (Cover) The empty cover with the U-shaped clamp that might, for example, have

been printed before it is used during the ChannelBinding process.
ChannelBindingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the channel-bound component forming an item such as a

brochure.

6.6.7 CoilBinding
CoilBinding is a technique that creates bindings not meant to be reopened later. Another name for CoilBinding
is spiral binding. Metal wire, wire with plastic, or pure plastic is used to fasten prepunched sheets of paper,
cardboard, or other such materials. First, automated machinery forms a spiral of proper diameter and length. The
ends of the spiral are then “tucked-in”. Finally, the content is permanently fixed. Note that every time a coil-bound
book is opened, a vertical shift occurs as a result of the coil action. This is a characteristic of the process.

Input Resources
Name Description
Component The operation requires one component: the pile of prepunched sheets often

including a top and button cover.
CoilBindingParams

Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the coil-bound component forming an item such as a

calendar.

6.6.8 Collecting
This process collects folded sheets or partial products, some of which may have been
cut. The first Component to enter the workflow lies at the bottom of the pile
collected on a saddle, and the sequence of the input components that follows depends
upon the produced component. The figure to the right shows a typical collected pile.

The operation coordinate system is defined as follows: The y-axis is aligned with the binding edge. It increases
from the registered edge to the edge opposite to the registered edge. The x-axis is aligned with the registered edge.
It increases from the binding edge to the edge opposite to the binding edge, i.e., the product front edge.

Input Resources
Name Description
CollectingParams ? Specific parameters to set up the machinery.
Component + Variable amount of sheets to be collected.
DBRules * Database input that describes which sheets should be collected for a

particular instance component. In this version the schema is only human
readable text. One rule is applied for each individual component.

Page 217

Page 217

Name Description
DBSelection ? Database input that describes which sheets should be collected for a

particular instance component.
IdentificationField ?
Deprecated in JDF 1.2

Information about identification marks on the component. In JDF 1.2 and
beyond, this information is defined in the Component itself.

Output Resources
Name Description
Component A block of collected sheets is produced. This Component can be joined

in further postpress processes.

6.6.9 CoverApplication
New in JDF 1.1
CoverApplication describes the process of applying a soft cover to a book block.

Input Resources
Name Description
CoverApplicationParams Specific parameters to set up the machinery.
Component The book block on which the cover is applied
Component (Cover) The soft cover that is applied.

Output Resources
Name Description
Component The book block with the applied soft cover.

6.6.10 Creasing
New in JDF 1.1
Sheets are creased or grooved to enable folding or to create even, finished page delimiters.

Input Resources
Name Description
Component ? This process consumes one Component: the printed sheets.
CreasingParams Details of the Creasing process.

Output Resources
Name Description
Component One creased Component is produced.

6.6.11 Cutting
Sheets are cut using a guillotine Cutting machine. Before Cutting, the sheets might be jogged and buffered.
CutBlocks and or CutMarks can be used for positioning the knife. After the Cutting process is performed, the
blocks are often again buffered on a pallet.

Since Cutting is described here in a way that is machine independent as much as possible, the CutBlock
elements specified do not directly imply a certain cutting sequence. Therefore, a sequence must be determined by a
specialized agent.

Input Resources
Name Description
Component ? This process consumes one Component: the printed sheets.

Page 218

Page 218

CutBlock *
Deprecated in JDF 1.1

One or several CutBlocks can be used to find the Cutting sequence.
Only one of CutBlock or Cut may be specified.

CutMark *
Deprecated in JDF 1.1

CutMark resources can be used to adapt the theoretical cut positions to the
real positions of the corresponding blocks on the Component to be cut.

CuttingParams
New in JDF 1.1

Details of the Cutting process.

Media ? Cutting can be performed to unprinted Media in order to adjust size or
shape.

Output Resources
Name Description
Component + One or several blocks of cut components are produced. When Media are

cut, the output Components can be input resources for processes such
as ConventionalPrinting.

6.6.12 Dividing
Deprecated in JDF 1.1.
Dividing has been replaced by Cutting. In-line finishing of web presses often includes equipment for cutting the
ribbon(s) in cross direction. This operation can be described with the Dividing process. Dividing in cross
direction is likely to happen after former folding, which is a LongitudinalRibbonOperations process. It may
affect one or more ribbons at the same time that are all part of one Component.

Input Resources
Name Description
Component The Dividing process consumes one Component: the web(s) or

ribbon(s) entering the crosscutting machinery. The substrate might have
been treated with LongitudinalRibbonOperations and may be folded
with a former fold.

DividingParams Specific parameters to set up the machinery.

Output Resources

Name Description
Component One Component is produced: either the divided web or ribbon.

6.6.13 Embossing
The Embossing process is performed after printing to stamp a raised or depressed image (artwork or typography)
into the surface of paper, using engraved metal embossing dies, extreme pressure, and heat. Embossing styles
include blind, deboss, and foil-embossed.

New in JDF 1.1

Page 219

Page 219

Input Resources
Name Description
Component This process consumes one Component:
EmbossingParams Parameters to setup the machinery.
Media ? If foil stamping or foil embossing, the stamping foil material is required.
Tool ? The embossing stamp or calendar.

Output Resources
Name Description
Component One Component is created.

6.6.14 EndSheetGluing
EndSheetGluing finalizes the folded Sheet or book block in preparation for case binding. It requires three
Components—the back-end sheet, the book block, and the front-end sheet—and information about how they are
merged together. Back-end sheets and front-end sheets are in most cases sheets folded once before
EndSheetGluing takes place. The end sheets serve as connections between the book block and the cover boards.

Input Resources
Name Description
Component (BackEndSheet) A back-end sheet to be mounted on the book block.
Component (BookBlock) A back-end sheet and a front-end sheet are glued onto the book block.
Component (FrontEndSheet) A front-end sheet to be mounted on the book block.
EndSheetGluingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component A book block is produced that includes the end sheets.

6.6.15 Folding
Buckle folders or knife folders are used for Folding sheets. One or more sheets can be folded at the same time.
Web presses often provide in-line Folding equipment. Longitudinal Folding is often performed using a former, a
plow folder, or a belt, while jaw folding, chopper folding, or drum folding equipment is used for folding the sheets
that have been divided.

The JDF Folding process covers both operations done in stand-alone Folding machinery—typically found for
processing sheet fed printed materials—and in-line equipment of web printing presses. Creasing and/or slot perforating
are sometimes necessary parts of the Folding operation that guarantee exact process execution. They depend on the
folder used, the Media, and the folding layout. These operations are specified in the Creasing and Perforating
processes respectively.

Input Resources
Name Description
Component Components, including a printed sheet or a pile of sheets, are used in the

Folding process.
FoldingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component
Modified in JDF 1.1

The process produces a Component, which in most cases is a folded Sheet.

Page 220

Page 220

6.6.16 Gathering
In the Gathering process, ribbons, sheets, or other Components are accumulated
on a pile that will eventually be stitched or glued in some way to create an individual
Component. The input Components may be output resources of a web-printing
machine used in Collecting or of any machine that executes a
ConventionalPrinting or DigitalPrinting process. In sheet applications, a
moving gathering channel is used to transport the pile. But no matter what the
inception of the Gathering process, the sequence of the input components dictates
the produced component. The figure on the right shows typical gathered piles.

Input Resources
Name Description
Component + Variable amount of components including single sheets or folded sheets

are used in the Gathering process. The first Component in the list lies
at the bottom of the gathered pile.[RP209]

GatheringParams Specific parameters to set up the machinery.
DBRules * Database input that describes which sheets should be gathered for a

particular instance component. The schema are only in the form of human-
readable text. One rule is applied for each individual component.

DBSelection ? Database input that describes which sheets should be gathered for a
particular instance component.

IdentificationField ?
Deprecated in JDF 1.2

Information about identification marks on the component. In JDF 1.2 and
beyond, this information is defined in the Component itself.

Output Resources
Name Description
Component Components gathered together, such as a pile of folded sheets.

6.6.17 Gluing
New in JDF 1.1
Gluing describes arbitrary methods of applying glue to a Component.

Input Resources
Name Description
Component This process consumes one Component: the printed sheets.
GluingParams Details of the Gluing process.

Output Resources
Name Description
Component One Component is produced.

6.6.18 HeadBandApplication

Page 221

Page 221

Head bands are applied to the hard cover book block.

Input Resources
Name Description
Component The prepared book block.
HeadBandApplicationParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the hard cover block with head bands.

6.6.19 HoleMaking
A variety of machines, such as those responsible for stamping and drilling, can perform the HoleMaking process.
This postpress process is needed for different binding techniques, such as spiral binding. One or several holes with
different shapes can be made that are later on used for binding the book block together.

Input Resources
Name Description
Component One Component, such as a printed sheet or a pile of sheets, are modified in the

HoleMaking process.
HoleMakingParams Specific parameters, including hole diameter, and positions, used to set up the

machinery.

Output Resources
Name Description
Component A Component with holes, such as a book block or a single sheet, is produced for

further postpress processes.

6.6.20 Inserting
This process can be performed at several stages in postpress. The process can be used to describe the labeling of
products, of packages, or the gluing-in of a Component (such as a card, sheet, or CD-ROM). Two Components
are required for the Inserting process: the “mother” Component and the “child ” Component. Inserting
can be a selective process by means of inserting different “child” Components. Information about the placement
is needed to perform the process.
Inserting multiple child components is specified as a Combined process with multiple individual Inserting steps.

Input Resources
Name Description
Component (Mother) Designates where to insert the child Component.
Component (Child) The Component to be inserted in the mother Component.
InsertingParams Specific parameters, such as placement, to set up the machinery.
DBRules ? Database input that describes whether the child should be inserted for a

particular instance Component. In this version the schema is only
human readable text.

DBSelection ? Database input that describes whether the child should be inserted for a
particular instance Component.

IdentificationField ?
Deprecated in JDF 1.2

Information about identification marks on the Component. In JDF 1.2
and beyond, this information is defined in the Component itself.

New in JDF 1.1

Page 222

Page 222

Output Resources
Name Description
Component A mother Component is produced containing the inserted child

Component.

6.6.21 Jacketing
New in JDF 1.1
The jacketing is the process where the book is wrapped by a jacket that needs to be folded twice. As long as the
book is specified and the jacket dimensions are known, there are just a few important details. If the jacketing device
also creases the jacket, this can be described with a Combined process of Jacketing and Creasing.

Input Resources
Name Description
JacketingParams Specific parameters to set up the machinery.
Component (Book) The book that the jacket is wrapped around.
Component (Jacket) The description of the jacket.

Output Resources
Name Description
Component The jacketed book.

6.6.22 Labeling
New in JDF 1.1
A label can be attached to a bundle. The label can contain information on the addressee, the product, the product
quantities, etc., which can be different for each bundle.

Input Resources
Name Description
Component The Labeling process labels one Component with a set of labels.
Component(Label) ? The label to be attached to the Component.
LabelingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the labeled Component.

6.6.23 Laminating
In the Laminating process, a plastic film is bonded to one or both sides of a Component's media, and adhered
(under pressure) with either a thermal setting or pressure sensitive adhesive.

Input Resources
Name Description
Component A Component is required for Laminating.
LaminatingParams Specific parameters to set up the machinery.
Media ? The laminating foil material.

Page 223

Page 223

Output Resources
Name Description
Component One Component is produced: the laminated component.

6.6.24 LongitudinalRibbonOperations
Deprecated in JDF 1.1.
In-line finishing within web printing presses can include folding, perforating, or applying a line of glue on the
ribbon while it is traveling in longitudinal direction. In version 1.1.of JDF and beyond, in-line finishing is described
using the “standard” finishing processes, e.g., Creasing, Cutting, or Folding in a combined node with
ConventionalPrinting.

Input Resources
Name Description
Component The Component can consist of more than one web or ribbon that has

been combined with the Gathering process.
LongitudinalRibbonOperation-
Params

Specific parameters to set up the machinery tools for the
LongitudinalRibbonOperations process.

Output Resources
Name Description
Component + A ribbon is produced that is used in other postpress processes. If the

LongitudinalRibbonOperations process was slitting, more than one Component is
produced.

6.6.25 Numbering
Numbering is the process of stamping or applying variable marks in order to produce unique components, for
items such as lottery notes or currency. No database access is required, and the counters automatically increase
incrementally. Numbering is also used for alphanumeric, automatic, and unique marking.

Input Resources
Name Description
Component One Component, such as a printed sheet or a pile of sheets, are modified

in the Numbering process.
NumberingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the numbered sheet.

6.6.26 Palletizing
New in JDF 1.1
Bundles, stacks, piles or boxes can be loaded onto a palette.

Input Resources
Name Description
Component The Palletizing process describes placing the bundle that is represented

by the Component onto a palette.

Page 224

Page 224

6.6.27 PageList
New in JDF 1.2
PageList defines the additional
metadata of individual pages, such as
pagination details. PageList
references the page regardless of the
pages position in a pdl file or
RunList.
Resource Properties
Resource class: Parameter
Resource referenced by:
 LayoutElement
Example Partition:
PartVersion
Input of processes: -
Output of processes: -
Resource Structure

Name Data Type Description
HasBleeds ? boolean If true, the file has bleeds. Default = false.
IsBlank ?

boolean If false, the PageData has no content marks and is blank. Default = false.

IsPrintable ? boolean If true, the file is a PDL file and can be printed. Possible files types
include PCL, PDF or PostScript files. Application files such as MS Word
have IsPrintable=”false”.
Default = true.

IsTrapped ? boolean If true, the file has been trapped.
Default = false.

JobID ? string ID of the job that this page belongs to.
JobPartID ? string ID of the part of the job that this page belongs to. Note that this JobPartID

will generally be a reference to the JobPartID of a product intent node and
not to a process node.

PageLabelPrefix ? string Prefix of the identification of the page as it is displayed on the page. For
instance “C - ”, if the Pages are Labeled “C – 1”, “C – 2” etc.

PageLabelSuffix ? string Suffix of the identification of the page as it is displayed on the page. For
instance “ - a”, if the Pages are Labeled “C – 1 - a”, “C – 2 - a” etc.

SourceBleedBox ? rectangle A rectangle that describes the bleed area of the page to be included. This
rectangle is expressed in the default user space.
If not specified uses element’s defined bleed box (or no bleed box if element
does not supply a bleed box)

SourceClipBox ? rectangle A rectangle that defines the region of the page to be included. This
rectangle is expressed in the default user space of the source document
page.
If not specified use element’s defined clip box (or no clip box if element
does not supply a clip box)

SourceTrimBox ? rectangle A rectangle that describes the intended trimmed size of the page to be
included. This rectangle is expressed in the default user space.
If not specified uses element’s defined trim box (or no trim box if element
does not supply a trim box)

Template ? boolean Template is false when this page is self-contained. This attribute is true if
the PageList represents a template that must be completed with
information from a database.
Default = false

ColorPool ? refElement Definition of the color details.

Specific parameters to set up the machinery.

Page 225

Page 225

Pallet The palette.

Output Resources
Name Description
Component One Component is produced: the loaded palette.

6.6.28 Perforating
New in JDF 1.1
Perforating describes any process where a Component is perforated.

Input Resources
Name Description
Component This process consumes one Component: the printed sheets.
PerforatingParams Details of the Perforating process.

Output Resources
Name Description
Component One Component is produced.

6.6.29 PlasticCombBinding
In the PlasticCombBinding process, a plastic insert wraps through prepunched holes in the substrate. Most often,
these holes are rectangular and elongated. After the plastic comb is opened with a special tool, the prepunched
block of sheets—often together with a top and button cover—is inserted onto the “teeth” of the plastic comb. When
released from the machine, the teeth return to their original cylindrical positions with the points tucked into the
backside of the spine area. Special machinery can be used to reopen the plastic comb binding.

Input Resources
Name Description
Component The operation requires one component: the pile of sheets often including a

top and button cover.
PlasticCombBindingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the plastic-comb-bound component

forming an item such as a calendar.

6.6.30 RingBinding
In this process, prepunched sheets are placed in a ring binder. Ring binders have different numbers of rings that are
fixed to a metal backbone. In most cases, two, three, or four metal rings hold the sheets together as long as the binding
is closed. Depending on the amount of sheets to be bound together, ring binders of different thickness must be used.

Input Resources
Name Description
Component (BookBlock) The operation requires one component: the pile of prepunched sheets to be

inserted into the ring binder.
Component ? (RingBinder) The empty ring binder that might have been printed, for example, before it is

used during the RingBinding process.
RingBindingParams Specific parameters to set up the process/machinery.

Page 226

Page 226

Output Resources
Name Description
Component One Component is produced: the ring-bound component forming an item

such as a calendar.

6.6.31 SaddleStitching
Deprecated in JDF 1.1
In SaddleStitching, signatures are collected so that all sections have a common spine, and then stitched with
staples through the spine. SaddleStitching has been replaced by Stitching in JDF 1.1.

Input Resources
Name Description
Component The only required Component is the collected pile.
SaddleStitchingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component The stitched-together components.

6.6.32 ShapeCutting
New in JDF 1.1

The ShapeCutting process can be performed using tools such as hollow form punching, perforating, or die-cutting
equipment.

Input Resources
Name Description
Component This process consumes one Component: the printed sheets.
ShapeCuttingParams Details of the ShapeCutting process.
Tool ? The cut die

Output Resources
Name Description
Component One Component is produced.

6.6.33 Shrinking
New in JDF 1.1
Shrink-wrap must be treated in order to shrink.

Input Resources
Name Description
Component The Wrapping process wraps a bundle that is represented by a

Component.
ShrinkingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the loaded palette.

Page 227

Page 227

6.6.34 SideSewing
Deprecated in JDF 1.1 Replaced by ThreadSewing.
This is a binding technique resulting in robust products that have a significant loss of inner margin space and poor
handling characteristics. For these reasons, other binding techniques are used more often. In SideSewing, the first
step is to create the holes in the book block and inject the glue (see Section 6.6.46.2 HoleMaking). Then the entire
book is sewn at once with a ThreadMaterial such as Cotton or Polyester. If the book block is rather thick, a
Stitching process using wire might be performed before SideSewing.

Input Resources
Name Description
Component The only required Component is the gathered sheets.
SideSewingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component The Component is produced.

6.6.35 SpinePreparation
New in JDF 1.1
The SpinePreparation process describes the preparation of the spine of book blocks for hard and soft cover book
production, e.g., milling and notching.

Input Resources
Name Description
SpinePreparationParams Specific parameters to set up the machinery.
Component The raw book block.

Output Resources
Name Description
Component The book block with a processed spine.

6.6.36 SpineTaping
New in JDF 1.1
SpineTaping describes the process of applying a tape strip to the spine of a book block. It also describes the
process of applying kraft paper to a hard cover book block.

Input Resources
Name Description
SpineTapingParams Specific parameters to set up the machinery.
Component The book block that the spine is taped to.

Output Resources
Name Description
Component The book block with the spine.

6.6.37 Stacking
New in JDF 1.1
The stacking process collects physical resources (products) and produces a pile, stack or bundle for delivery. In a
standard production each bundle consists of the same amount of identical products, possibly followed by one or more

Page 228

Page 228

odd-count bundles. In a production with variable data (e.g., newspaper dispatch, demographic production or individual
addressed products), each bundle has a variable amount of products, and, in the worst case, each product can be
different from the others. The input components are single products; the output components are stacks of this product.

 Input Resources
Name Description
Component The Stacking process consumes one Component and stacks it onto a

stack.
StackingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the stack of input Components.

6.6.38 Stitching
Gathered or collected sheets or signatures are stitched together with a cover.

Input Resources
Name Description
Component The only required Component is the pile of gathered sheets, including

the cover.
StitchingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the gathered or collected sheets including

the cover stitched together.

6.6.39 Strapping
New in JDF 1.1
A bundle can be strapped. There are different kinds of strapping, e.g., single (one strap around the bundle), double (two
parallel straps), and cross (two crossed straps).

Input Resources
Name Description
Component The Strapping process puts straps around a bundle that is represented by a

Component.
StrappingParams Specific parameters to set up the machinery.
Strap ? The straps used.

Output Resources
Name Description
Component One Component is produced: the strapped Component.

6.6.40 StripBinding
New in JDF 1.1
Hard plastic strips are held together by plastic pins, which in turn are bound to the strips with heat. The sheets to be
bound must be prepunched so that the top strip with multiple pins fits through the assembled material. It is then
connected to the bottom strip with matching holes for the pins. The binding edge is often compressed in a special

Page 229

Page 229

machine before the excess pin length is cut off. The backstrip is permanently fixed with plastic clamping bars and
cannot be removed without a special tool.

Input Resources
Name Description
Component The operation requires one component: the block of sheets to be bound.
StripBindingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the Velobound component forming an

item such as a book.

6.6.41 ThreadSealing
New in JDF 1.1
Similar to Smythe sewing, ThreadSealing involves sewing the signatures at the spine of the book. After the
signatures are sewn they are gathered and run through the perfect binder. The perfect binder however does not grind
the spine. Instead the binding adhesive (which attaches the cover) envelops the thread that holds the book together.
This special thread holds to the glue to create a sewn book with most of the same properties as Smythe sewing.

Input Resources
Name Description
Component This process consumes one Component: the printed sheets.
ThreadSealingParams Details of the ThreadSealing process.

Output Resources
Name Description
Component One Component is produced.

6.6.42 ThreadSewing
This process may include a gluing application, which would be used principally between the first and the second or
the last and the last sheet but one. Gluing may also be necessary if different types of paper are used.

Input Resources
Name Description
Component The operation requires one component: the gathered sheets.
ThreadSewingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the thread-sewn components forming an

item such as a raw book block.

6.6.43 Trimming
The Trimming process is performed to adjust a book block or sheet to its final size. In most cases, it follows a
block joining process, and the process is often executed as an in-line operation of a production chain. For example,
the binding station may deliver the book blocks to the trimmer. A Combined operation in the trimming machinery
would then execute a cut at the front, head, and tail in a cycle of two operations. Closed edges of folded signatures
would then be opened while the book block is trimmed to its predetermined dimensions.

Page 230

Page 230

Some trimming machines, such as magazine production systems, can produce N-ups. In every case, however, the
additional trimming cuts that divide the N-ups result in separated book blocks. Sometimes a stripe is trimmed out
between the book blocks. To describe these operations, multiple Trimming processes must be defined in JDF.

Input Resources
Name Description
Component The bound book block or sheet that will be trimmed.
TrimmingParams Specific parameters, e.g., trim size, to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the trimmed component.

6.6.44 WireCombBinding
The WireCombBinding is a technique that creates bindings not meant to be reopened later. WireCombBinding
is often named Wire-O®-binding. Metal wire, wire with plastic, or pure plastic is used to fasten prepunched sheets
of paper, cardboard, or other such materials. The wire—often formed as a double wire—is inserted into the holes,
then curled to create a circular enclosure.

Input Resources
Name Description
Component The operation requires one component: the pile of preprinted sheets often

including a front and back cover.
WireCombBindingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the wire-comb bound component forming

an item such as a calendar.

6.6.45 Wrapping
New in JDF 1.1
Single products, bundles or pallets can be wrapped by film or paper.

Input Resources
Name Description
Component The Wrapping process wraps a bundle that is represented by a

Component.
WrappingParams Specific parameters to set up the machinery.
Media ? The wrapping material.

Output Resources
Name Description
Component One Component is produced: the wrapped Component.

6.6.46 Postpress Processes Structure

6.6.46.1 Block Production
This subcategory of the postpress processes merges together all the processes for making a book block. First the block
is compiled using the Collecting and Gathering processes. After that, it is combined using one or several of the block

Page 231

Page 231

joining processes, including CoverApplication, SaddleStitching, SideSewing, SpineTaping, Stitching, and
ThreadSewing. The workflow using these processes eventually produces a Component that can be trimmed.

6.6.46.1.1 Block Compiling
The Gathering and Collecting processes are used to position unfolded sheets and/or folded sheets in a planned
order. These operations set a fixed page sequence in preparation for three-side trimming and binding. Block
compiling includes:

• Collecting
• Gathering

6.6.46.1.2 Block Joining
The block joining processes can be grouped into two major subcategories: conventional binding methods, which
includes the processes of Stitching, SaddleStitching, CoverApplication, SpinePreparation, SpineTaping,
ThreadSewing, and SideSewing; and single-leaf binding methods, which are listed in Section Single-Leaf Binding
Methods. Together they form a subcategory of block-production processes. All of these processes, which are known
as block-joining processes, unite sheets and/or folded sheets lying loose on top of each other.

There are numerous possible binding methods. The most prominent ones are modeled by the processes
described in the following sections. Many of them can be part of a combined production chain being performed as
in-line tasks. Block Joining includes:

• AdhesiveBinding
• CoverApplication
• SaddleStitching
• SideSewing
• SpinePreparation
• SpineTaping
• Stitching
• ThreadSewing

6.6.46.1.2.1 Single-Leaf Binding Methods
Besides the conventional binding methods, there is a multifaceted group of binding methods for single-leaf bindings.
This group can again be subdivided into two subtypes: loose-leaf binding and mechanical binding, each of which is
described in the sections that follow.

6.6.46.1.2.1.1 Loose-Leaf Binding Method
This binding techniques allow contents to be changed, inserted, or removed at will. There are two essential groups
of loose-leaf binding systems: those that require the paper to be punched or drilled and those that do not. The
RingBinding method, described in the next section, is the most prominent binding in the loose-leaf binding category.
Loose-Leaf Binding Methods include:

• RingBinding

6.6.46.1.2.1.2 Mechanical Binding Methods
Single leafs are fastened into what is essentially a permanent system that is not meant to be reopened. However,
special machinery can be used to reopen some of the mechanical binding systems described below.

In mechanical binding, printing and folding can be done in a conventional manner. The gathered sheets,
however, often require the back to be trimmed, as well as the other three sides. Mechanical bindings are often used
for short-run jobs such as ones that have been printed digitally. The most prominent mechanical binding processes
are described in the sections that follow. Mechanical Binding Methods include:

• ChannelBinding
• CoilBinding
• PlasticCombBinding
• RingBinding

Page 232

Page 232

• StripBinding
• WireCombBinding

6.6.46.2 HoleMaking
See HoleMaking.

6.6.46.3 Laminating
See Laminating.

6.6.46.4 Numbering
See Numbering.

6.6.46.5 Packaging Processes
The individual processes defined in this section replace the deprecated Packing process. Packaging processes include:

• BoxPacking
• Labeling
• Palletizing
• Shrinking
• Stacking
• Strapping
• Wrapping

Each of these processes share a common coordinate system as depicted below:

Figure 6.2 Packaging Process Coordinate System

6.6.46.6 Processes in Hardcover Book Production
The following processes refer to the production of hard cover books. As there are several processes which are
needed to produce a hardcover, some of them are optional, others are essential. The processes described are in detail:
CaseMaking: Production of hard cover book cases.

Y-Axis:
Along spine of bottom product

X-Axis

Z-Axis:
Height of bundle /

Origin:
Lower left corner of bottom product

Spine of
bottom

Page 233

Page 233

BlockPreparation: The optional hardcover design elements like rounding and backing, ribbon band, headband,
side gluing, and tightbacking are described here. Application of kraft paper to the book
block is described in the SpineTaping process.

CasingIn: In this process, the case and the prepared book block are brought together.
Jacketing: In the jacketing process, the jacket is wrapped around the hardcover book.
Processes in Hardcover Book Production include:

• BlockPreparation
• CaseMaking
• CasingIn
• HeadBandApplication
• Jacketing

6.6.46.7 Sheet Processes
Many printing processes produce sheets that must be processed further in finishing operations. The web processes
presented in the preceding sections result in sheets that are treated in much the same way as sheets produced by
sheetfed printing presses. The following processes describe these sheet finishing operations. Sheet processes include:

• Creasing
• Cutting
• Embossing
• Folding
• Gluing
• Perforating
• ShapeCutting
• ThreadSealing

6.6.46.8 Tip-on/in
The following processes (EndSheetGluing, Inserting) are part of the postpress operations. They can be grouped
together as the tip-on/in processes. Both processes can be performed by hand, tip-on/in machine, or by a press. Tip-
on/in includes:

• EndSheetGluing
• Inserting

6.6.46.9 Trimming
See Trimming.

6.6.46.10 Web Processes
This subchapter of the postpress processes is dedicated to web and ribbon operations, i.e., operations that require a
web or a ribbon to execute. In essence, a ribbon is a web that has been slit or cross-cut. More specifically, a web is
a continuous strip of Media to be used for printing, e.g., paper or foil. This substrate is called “web” while it is
threaded through the printing machinery, but once it has run through the Dividing process and been slit, the web no
longer exists. In its place are ribbons or sheets.

A ribbon, then, is the part of the web that enters the folder. If the web is never slit, however, the web and the
ribbon are identical. Slitting and salvage-trim operations on a web can result in one or more ribbons. A ribbon can
be further subdivided after it has been slit. After the Dividing process, sheets are treated further. The Gathering
process and Folding process also handle web and ribbon applications.

Page 234

Page 234

Chapter 7 Resources
Introduction
Resources represent inputs and outputs, the ‘things” that are produced, modified, consumed, or in any way used by
nodes. A more thorough description was provided in Section 3.7 Resources. The resources in this chapter are
divided into two sections. The first section documents all of the resources of class Intent. The second section
documents the rest of the resources that have been defined for JDF.

7.1 Intent Resources
As was described in Section 4.1.1 Product Intent Constructs, intent resources are designed to narrow down the
available options when defining a JDF job. Many of the elements in intent resources are optional. If an optional
element of an intent resource is omitted, and no additional information is specified in the description, the value
defaults to “don’t care”.

All intent resources share a set of subelements that allow a Request for Quote to describe a range of acceptable
values for various aspects of the product. These elements, taken together, allow an administrator to provide a specific
value for the quote. Section 7.1.1, below, describes these elements.

Each of the following sections begins with a brief narrative description of the resource. Following that is a list
containing details about the properties of the resource, as shown below. The first item in the list provides the class of
the resource, which, in this section is always Intent. For more information on resource class, see Section 3.7.1
Resource Classes. A template of this list is shown below.

After the list describing the resource properties, each section contains tables that outline the structure of each resource
and, when applicable, the abstract or subelement information that pertains to the resource structure. The first column
contains the name of the attribute or element. In some cases, a resource will contain an element with more than one value
associated with it. If this is the case, the element name is listed as often as it appears, and a term in parentheses that
identifies the kind of element is included in the column. A template of these tables is also provided below.

Resource Properties Template
Resource class: Defines the resource class.
Resource referenced by: List of parent resources that contain elements of this type. Only valid for elements.
Example Partition: List of valid partitioning boundaries: BlockName, DocIndex, DocRunIndex,

DocSheetIndex, FountainNumber, LayerIDs, Location, Option, PageNumber,
PartVersion, PreviewType, RibbonName, Run, RunIndex, RunTag, RunPage, Separation,
SetIndex, SheetIndex, SheetName, Side, SignatureName, TileID, WebName If a partition
is specified, the resource may contain nested elements of its own type.
Note that resources may also be partitioned by keys that are not included in the list, e.g.,
Option, which is valid for any resource.

Input of processes: List of node types that use the resource as an input resource.
Output of processes: List of node types that create the resource as an output resource.

Resource Structure Template
Name Data Type Description
Name of attribute data type of attribute Usage of the attribute.
Name of element element Subelements that must be defined locally within the resource.
Name of element refelement Elements that are based on other atomic resources or resource elements.

These may either be in-line elements or instances of ResourceRef
elements (see Section 3.8.6). In case of ResourceRef elements, a "Ref"
must be appended to the name specified in the table column entitled
"Name".

Page 235

Page 235

7.1.1 Intent Resource Span Subelements
Intent resources contain subelements that allow spans of values to be specified. These subelements also provide
mechanisms to select a set of values from the provided range and map them to a set of quotes. These subelements
are called span elements. The abstract span element to be used is determined by the data type of the values to be
recorded. All possible span elements are listed in the following table.

Each span element contains further attributes or subelements. The contents shared by all span elements are
listed in the Section 7.1.1.1 Structure of Abstract Span Subelement, below, and the contents particular to each span
element type are described in the sections that follow.

Span Element Types Data Type Description
DurationSpan
New in JDF 1.1

element Describes a set of duration values.

EnumerationSpan element Describes a set of enumeration values.
IntegerSpan element Describes a numerical range of integer values.
LabColorSpan element Describes a set of LabColor values.[RP210]
NameSpan element Describes a set of NMTOKEN values.
NumberSpan element Describes a numerical range of values.
OptionSpan element Describes an intent in which the principal information is that a

specific option is requested.
ShapeSpan
New in JDF 1.1

element Describes a set of shape values.

StringSpan element Describes a set of string values.
TimeSpan element Describes a set of dateTime values.
XYPairSpan element Describes a set of XYPair values.

7.1.1.1 Structure of Abstract Span Subelement
Abstract span elements of intent resources have a common set of attributes and elements that define the priority, data
type, and requested identity of the element. These attributes are described in the following table. In addition,
abstract Span elements have 3 attributes that define the aspects of the span. The data type of these values depends on
the data type of the span and is defined in the following sections:
Actual: The accepted actual value
Preferred: A preferred value
Range: A proposed range of values

Name Data Type Description
Describes the data type of the span element within an intent
resource. This attribute is provided for applications that do not have
access to schema validation. Possible values are:

DataType enumeration

DurationSpan
EnumerationSpan
IntegerSpan
NameSpan
NumberSpan

OptionSpan
ShapeSpan
StringSpan
TimeSpan
XYPairSpan

Page 236

Page 236

Name Data Type Description
Priority ?
Deprecated in JDF
1.2[RP211]

enumeration Indicates the importance of the specific intent. The following values
have prescribed meanings:
None – Default value.
Suggested – The customer will accept a value of Actual that is
different than the value of Preferred or outside of Range.
Required – Actual must be equal to Preferred or within Range.
Note that the attribute Preferred is available in the data types which
inherit from this abstract type.
Replaced by SettingsPolicy in JDF 1.2 and beyond.[RP212]

The following table describes the allowed values defined by the combination of Range, Preferred, and Priority in
Span resources.

SettingsPolicy
[RP213]

Preferred Exists Range Exists Suggested Value
defined by:

Required Value
defined by:

 [RP214]
BestEffort yes no Preferred -
BestEffort yes yes Preferred -
BestEffort no yes Range -
MustHonor yes no - Preferred
MustHonor yes yes Preferred Range
MustHonor[RP215] no yes - Range

7.1.1.2 Structure of the DurationSpan Subelement
New in JDF 1.1
This span subelement is used to describe a selection of instances in time. It inherits from the abstract span element
described in Section 7.1.1.1 Structure of Abstract Span Subelement.

Name Data Type Description
Actual ? duration The actual value selected for the quote.
Preferred ? duration Provides a value specified by the person submitting the request,

indicating what that person prefers. Preferred must fall within the range
of values specified in Range.

Range ? DurationRange Range provides a valid range of time durations. Default = Preferred.

7.1.1.3 Structure of the EnumerationSpan Subelement
This span subelement is used to describe ranges of enumerative values. It inherits from the abstract span element
described in Section 7.1.1.1 Structure of Abstract Span Subelement. It is identical to the NameSpan element except
for the fact that it describes a closed list of enumeration values.

Name Data Type Description
Actual ? enumeration The actual value selected for the quote.
Preferred ? enumeration Provides a value specified by the person submitting the request,

indicating what that person prefers. Preferred must fall within the range
of values specified in Range.

Range ? enumerations Provides a set of discreet enumeration values. Default = Preferred.

Page 237

Page 237

7.1.1.4 Structure of the IntegerSpan Subelement
This span subelement is used to describe ranges of integer values. It inherits from the abstract span element
described in Section 7.1.1.1 Structure of Abstract Span Subelement.

Name Data Type Description
Actual ? integer The actual value selected for the quote.
Preferred ? integer Provides a value specified by the person submitting the request,

indicating what that person prefers. The value of Preferred must fall
within the range of values specified in Range.

Range ? IntegerRangeList Provides either a set of discreet values, a range of values, or a
combination of the two that comprise all allowed values for the span.
Default = Preferred.

7.1.1.5 Structure of the LabColorSpan Subelement
This span subelement is used to describe LAB color ranges. It inherits from the abstract span element described in
Section 7.1.1.1 Structure of Abstract Span Subelement.

Name Data Type Description
Actual ? LabColor The actual value selected for the quote.
Preferred ? LabColor Provides a value specified by the person submitting the request,

indicating what that person prefers. Preferred must fall within the range
of values specified in Range.

Range ? LabColorSpanList Provides a set of discreet values. Default = Preferred.[RP216]

7.1.1.6 Structure of the NameSpan Subelement
This span subelement is used to describe name ranges. It inherits from the abstract span element described in
Section 7.1.1.1 Structure of Abstract Span Subelement. It is identical to the EnumerationSpan element except for
the fact that it describes an extensible list of NMTOKEN values.

Name Data Type Description
Actual ? NMTOKEN The actual value selected for the quote.
Preferred ? NMTOKEN Provides a value specified by the person submitting the request,

indicating what that person prefers. Preferred must fall within the range
of values specified in Range.

Range ? NMTOKENS Provides a set of discreet values. Default = Preferred.

7.1.1.6.1 Specifying New Values in a NameSpan Subelement
NameSpan elements generally define an open list of predefined values. If a value that is not included in the list
must be specified, a comment that defines that value can be included in the NameSpan using the new name as a
Name attribute of the comment, as demonstrated in the following example:
<HoleType DataType=”NameSpan” Range=”36Hole 42Hole”>
<Comment Name=”36Hole”>6 equidistant holes on each side of a hexagonal piece of paper
</Comment>
<Comment Name=”42Hole”>7 equidistant holes on each side of a hexagonal piece of paper
</Comment>
</HoleType>

7.1.1.7 Structure of the NumberSpan Subelement
This span subelement is used to describe a numerical range of values. It inherits from the abstract span element
described in Section 7.1.1.1 Structure of Abstract Span Subelement.

Name Data Type Description
Actual ? number The actual value selected for the quote.

Page 238

Page 238

Preferred ? number Provides a value specified by the person submitting the request,
indicating what that person prefers. Preferred must fall within the range
of values specified in Range.

Range ? DoubleRangeList Provides either a set of discreet values, a range of values, or a
combination of the two. Default = Preferred.

7.1.1.8 Structure of the OptionSpan Subelement
This span subelement is used to describe a range of options or boolean values. It inherits from the abstract span
element described in Section 7.1.1.1 Structure of Abstract Span Subelement.

Name Data Type Description
Actual ? boolean The actual value selected for the quote. If the option is included = true.
Preferred ? boolean Provides a value specified by the person submitting the request,

indicating what that person prefers.
Detail ? string Detail provides information about the option.

7.1.1.9 Structure of the ShapeSpan Subelement
New in JDF 1.1
This span subelement is used to describe ranges of numerical value pairs. It inherits from the abstract span element
described in Section 7.1.1.1 Structure of Abstract Span Subelement.

Name Data Type Description
Actual ? shape The actual value selected for the quote.
Preferred ? shape Provides a value specified by the person submitting the request, indicating

what that person prefers. The value of Preferred must fall within the range
of values specified in Range.

Range ? ShapeRangeList Provides either a set of discreet values, a range of values, or a combination of
the two that comprise all allowed values for the span. Default = Preferred.

7.1.1.10 Structure of the StringSpan Subelement
This span subelement is used to describe string ranges. It inherits from the abstract span element described in
Section 7.1.1.1 Structure of Abstract Span Subelement.

Name Data Type Description
Actual ? string The actual value selected for the quote.
Preferred ? string Provides a value specified by the person submitting the request,

indicating what that person prefers. Preferred must fall within the range
of values specified in Range.

Range * telem Provides a set of discreet string values. Default = Preferred.

7.1.1.11 Structure of the TimeSpan Subelement
This span subelement is used to describe a selection of instances in time. It inherits from the abstract span element
described in Section 7.1.1.1 Structure of Abstract Span Subelement.

Name Data Type Description
Actual ? dateTime The actual value selected for the quote.

Preferred ? dateTime Provides a value specified by the person submitting the request,
indicating what that person prefers. Preferred must fall within the range
of values specified in Range.

Range ? DateTimeRange Range provides a valid time period. Default = Preferred.

Page 239

Page 239

7.1.1.12 Structure of the XYPairSpan Subelement
This span subelement is used to describe ranges of numerical value pairs. It inherits from the abstract span element
described in Section 7.1.1.1 Structure of Abstract Span Subelement.

Name Data Type Description
Actual ? XYPair The actual value selected for the quote.

Preferred ? XYPair Provides a value specified by the person submitting the request,
indicating what that person prefers. The value of Preferred must fall
within the range of values specified in Range.

Range ? XYPairRangeList Provides either a set of discreet values, a range of values, or a
combination of the two that comprise all allowed values for the span.
Default = Preferred.

7.1.2 ArtDeliveryIntent
This resource specifies the prepress art delivery intent for a JDF job and maps the items to the appropriate reader
pages and separations. Art delivery refers to any physical or electronic asset that is required for processing the job.

Resource Properties
Resource class: Intent
Resource referenced by: -
Example Partition: Option
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
ArtDeliveryDate ?
New in JDF 1.1

TimeSpan Specifies the latest time by which the transfer of the artwork will be
made.

ArtDeliveryDuration
?
New in JDF 1.1

DurationSpan Specifies the latest time by which the transfer will be made relative to
the date of the purchase order. Within an RFQ or a Quote only one of
either ArtDeliveryDate or ArtDeliveryDuration may be specified.
Within a purchase order only ArtDeliveryDate is allowed.

ArtHandling ?
New in JDF 1.1

EnumerationSpan Describes what should happen to the artwork after usage. The return or
pickup address must be specified by a Contact with ContactTypes
including “ArtReturn”. Possible values are:
ReturnWithProof – the artwork is delivered back to the customer
together with the proof, if there is any.
ReturnWithProduct – the artwork is delivered back to the customer
together with the final product. The default.
Return – the artwork is delivered back independently directly after
usage.
Pickup – the customer picks up the artwork
Destroy – the printer must destroy the artwork
PrinterOwns – the artwork belongs to the printer
Store – the printer has to store the artwork for future purposes

DeliveryCharge ?
New in JDF 1.1

EnumerationSpan Specifies who pays for a delivery being made by a third party. Possible
values are:
Printer
Buyer: The default.

Page 240

Page 240

Name Data Type Description
Method ? NameSpan Identifies a required delivery method, may be a generic item, e.g.:

EMail
ExpressMail
InterofficeMail
OvernightService
Courier
CompanyTruck
May also be a delivery service brand, e.g.:
UPS
DHL
FedEx

PreflightStatus ?
New in JDF 1.1

enumeration Information about a preflight process probably applied to the artworks
before being submitted. Possible values are:
NotPerformed – No preflighting was applied. The default.
WithErrors – Preflighting resulted in error and warning messages.
WithoutErrors – Preflighting was successful.

ReturnList ?
New in JDF 1.1

NMTOKENS Type of printer created intermediate materials that should be sent to the
customer after usage. Possible values include:
DigitalMedia – Digital data on media such as a CD.
DigitalNetwork – Digital data via network.
ExposedPlate – Preexposed press plates, usually used for a rerun.
ImposedFilm – Film of the imposed surfaces.
LooseFilm – Film of individual pages or sections.
OriginalPhysicalArt – Analog artwork, e.g,. reflective or transparencies
Tool – Tools required for processing the job, e.g., a die for die cutting or
embossing stamp.
None – No intermediate materials should be returned to the customer.
The default.

ReturnMethod ?
New in JDF 1.1

NameSpan Identifies a required delivery method for returning the artwork, if
ArtHandling = Return and for the printer created materials listed in
ReturnList. The predefined values are the same as the list specified in
Method.

Transfer ?
New in JDF 1.1

EnumerationSpan Describes the responsibility of the transfer. Possible values are:
BuyerToPrinterDeliver – the buyer delivers the artwork to the printer.
The printer may specify in the quote a special Contact with
ContactTypes including Delivery, where the buyer should send the
artwork.
BuyerToPrinterPickup – the printer picks up the artwork. The Contact
with ContactTypes including pickup describes, where the printer has to
pick up the artwork.

ArtDelivery +
Modified in JDF 1.1

element Individual delivery.

Company ?
Deprecated in JDF 1.1

refelement Address and further information of the art delivery. This must only be
specified if the printer is expected to pick up the art delivery at this
address. Defaults to an empty element, i.e., the art is delivered to the
printer.

Page 241

Page 241

Name Data Type Description
Contact *
New in JDF 1.1

refelement Address and further information about the transfer of the artwork. The
actual delivery address is specified as the Address of the Contact with
ContactTypes including Delivery. Only one Contact with
ContactTypes including Delivery may be specified. The actual pickup
address is specified as the Address of the Contact with ContactTypes
including Pickup. Only one Contact with ContactTypes including
Pickup may be specified.

Structure of ArtDelivery Elements
Each ArtDelivery element defines a set of existing products that are required to create the specified product.
Attributes that are specified in an ArtDelivery element overwrite those that are specified in their parent
ArtDeliveryIntent element. If optional attributes are not specified, their values default to the values specified in
ArtDeliveryIntent.

Name Data Type Description
Amount ? integer Number of physical objects to be delivered. Only valid if no detailed

resource description, i.e. ExposedMedia, RunList, ScanParams or
Tool is specified.

ArtDeliveryDate ?
New in JDF 1.1

TimeSpan Specifies the latest time by which the transfer of the artwork will be
made.

ArtDeliveryDuration ?
New in JDF 1.1

DurationSpan Specifies the latest time by which the transfer will be made relative to
the date of the purchase order. Within an RFQ or a Quote only one of
either ArtDeliveryDate or ArtDeliveryDuration may be specified.
Within a purchase order only the ArtDeliveryDate is allowed.

ArtDeliveryType
New in JDF 1.1

NMTOKEN Type of artwork supplied. Possible values include:
DigitalFile – Digital data irrespective of the delivery mechanism. The
union of DigitalMedia and DigitalNetwork. [RP217]
DigitalMedia – Digital data on media such as a CD.
DigitalNetwork – Digital data via network.
ExposedPlate – preexposed press plates, usually used for a rerun.
ImposedFilm – Film of the imposed surfaces.
LooseFilm – Film of individual pages or sections.
OriginalPhysicalArt – analog artwork, e.g. reflective or transparencies
Proof – physical proof delivered with digital scan or separated film
asset.
Tool – Tools required for processing the job, e.g. a Die for Die cutting
or embossing stamp.
None – No artwork exists and it must be created

Page 242

Page 242

Name Data Type Description
ArtHandling ?
New in JDF 1.1

Enumeration-
Span

Describes what should happen to the artwork after usage. The return or
pickup address must be specified by a Contact with ContactTypes
including “ArtReturn”. Possible values are:
ReturnWithProof – the artwork is delivered back to the customer
together with the proof, if there is any.
ReturnWithProduct – the artwork is delivered back to the customer
together with the final product.
Return – the artwork is delivered back independently directly after
usage.
Pickup – the customer picks up the artwork
Destroy – the printer must destroy the artwork
PrinterOwns – the artwork belongs to the printer
Store – the printer has to store the artwork for future purposes
Defaults to the value of ArtHandling in ArtDeliveryIntent.

DeliveryCharge ?
New in JDF 1.1

EnumerationS
pan

Specifies who pays for a delivery being made by a 3rd party. Possible
values are:
Printer
Buyer
Defaults to the value of DeliveryCharge in ArtDeliveryIntent

HasBleeds ? boolean If true, the file has bleeds.
Default = false.

IsTrapped ? boolean If true, the file has been trapped.
Default = false.

Method ? NameSpan Identifies a required delivery method, may be either a generic item from
the following list:
EMail,
ExpressMail,
InterofficeMail,
OvernightService,
Courier,
CompanyTruck.
May also be a delivery service brand. For example:
UPS
DHL
FedEx
Defaults to the value of Method in ArtDeliveryIntent.

PageList ? IntegerRange
List

Set of pages of the output Component that are filled by this
ArtDelivery. This maps the pages in the ArtDelivery to the Pages in
the product that is produced. For example if PageList = “3~5”, page 0
of the ArtDelivery (e.g., RunList) is page 3 in the product, page 1 is
page 4, etc. Default = “0~-1”, i.e., all pages in reader order.

PreflightOutput ?
New in JDF 1.1

URL Pointer to the output information created by the preflight tool, if
PreflightStatus is either WithoutErrors or WithErrors.

Page 243

Page 243

Name Data Type Description
PreflightStatus ?
New in JDF 1.1

enumeration Information about a preflight process. The values are identical to those
of PreflightStatus in ArtDeliveryIntent.
Defaults to the value of PreflightStatus in ArtDeliveryIntent.

ReturnMethod ?
New in JDF 1.1

NameSpan Identifies a required delivery method for returning the artwork, if
ArtHandling = Return. Defaults to the value of ReturnMethod in
ArtDeliveryIntent.

Transfer ?
New in JDF 1.1

EnumerationS
pan

Describes the responsibility of the transfer. The values are identical to
those of Transfer in ArtDeliveryIntent.
Defaults to the value of Transfer in ArtDeliveryIntent.

Company ?
Deprecated in JDF 1.1

refelement Address and further information about the art delivery. This must only
be specified if the printer is expected to pick up the art delivery at this
address. Defaults to the value of Company specified in the parent
ArtDeliveryIntent.

Component ?
Deprecated in JDF 1.1

refelement Description of a physical component, e.g., physical artwork. If neither
Component, ExposedMedia nor RunList are specified, no details of
the ArtDelivery except the ArtDeliveryType and Amount are known.

Contact *
New in JDF 1.1

refelement Address and further information about the art transfer. Defaults to the
value of Contact specified in the parent ArtDeliveryIntent.

DigitalMedia ? refelement Description of any digital media, e.g. CD or tape with artwork that will
be delivered.[RP218]

ExposedMedia ? refelement Description of exposed media, e.g., film, plate or proof. If neither
ExposedMedia, RunList, nor Tool are specified, no details of the
ArtDelivery except the ArtDeliveryType and Amount are known.

RunList ? refelement Link to digital artwork that is accessible via a set of URLs that are
defined in the RunList/LayoutElement/FileSpec/@URL[RP219]. If
neither DigitalMedia[RP220], ExposedMedia, RunList, nor Tool are
specified, no details of the ArtDelivery except the ArtDeliveryType
and Amount are known.

ScanParams ? refelement Description of a ScanParams that defines scanning details for the
exposed media defined by ExposedMedia.

Tool ?
New in JDF 1.1

refelement Details of the Tool if ArtDeliveryType = “Tool”. If neither
ExposedMedia, RunList, nor Tool are specified, no details of the
ArtDelivery except the ArtDeliveryType and Amount are known.

7.1.3 BindingIntent
This resource specifies the binding intent for a JDF job using information that identifies the type of binding required
and which side is to be bound. The input components that are used as a cover should have a ProcessUsage of
Cover. The input components that are used as a hard cover jacket should have a ProcessUsage of Jacket. All
other input components are bound in the order of their appearance in the ResourceLinkPool of the JDF node that
contains the BindingIntent.

Resource Properties
Resource class: Intent
Resource referenced by: -
Example Partition: Option
Input of processes: Any product node
Output of processes: -

Page 244

Page 244

Resource Structure
Name Data Type Description
BackCoverColor ?
New in JDF 1.1

EnumerationSpan Defines the color of the back cover material of the binding.
Allowed values are defined in Appendix A.2.11 NamedColor. If
not specified, it defaults to the values defined in CoverColor.

BindingOrder ?
New in JDF 1.1

enumeration Specifies whether the child Components should be collected or
gathered if multiple child Components are combined. One of:
Collecting: The child Components are collected on a spine and
placed within one another. The first Component is on the
outside.
Gathering: The child Components are gathered on a pile and
placed on top of one another. The first Component is on the
top. The default.
List: More complex ordering of child Components is specified
using the BindList in this intent resource for this product.

BindingColor ? EnumerationSpan Defines the color of the spine material of the binding. Allowed
values are defined in Appendix A.2.11 NamedColor.
Default = don’t care, i.e., system specified.

BindingLength ? EnumerationSpan Indicates which side should be bound when no content and, thus,
no orientation is available but a quote for binding is required.
Long – The default, if neither BindingLength nor BindingSide
were specified.
Short

BindingSide ? EnumerationSpan Indicates which side should be bound. Possible values are:
Top
Bottom
Right
Left
Each of these values is intended to identify an edge of the job.
These edges are defined relative to the orientation of the first page
in the job with content on it. Default = BindingLength value,
unless non-empty BindList was specified. If both BindingSide
and BindingLength are specified, BindingSide has precedence.

BindingType
Modified in JDF 1.1

Modified in JDF 1.2

EnumerationSpan Describes the desired binding for the job. Possible values are:
Adhesive – This type of binding can be handled with the
AdhesiveBinding process. It includes perfect binding.
Deprecated in JDF1.1 and replaced with SoftCover or
HardCover.
ChannelBinding – This type of binding can be handled with the
ChannelBinding process.
CoilBinding – This type of binding can be handled with the
CoilBinding process.
CornerStitch –Stitch in the corner that is at the clockwise end
binding edge. For example, to stitch in the top left corner set
BindingSide = “Left”.[RP221]
 Added in JDF 1.2
EdgeGluing – Gluing gathered sheets at one edge of the pile. This
Type of Binding can be handled with the Gluing process.
HardCover – This type of binding defines a hard cover bound

Page 245

Page 245

Name Data Type Description
book.
LooseBinding – This type of binding defines a stack of pages with
no additional binding.
PlasticComb – This type of binding can be handled with the
PlasticCombBinding process.
Ring – This type of binding can be handled with the
RingBinding process.
SaddleStitch – This type of binding can be handled with the
Stitching process.
Sewn – This type of binding can be handled with the
ThreadSewing process.
SideSewn – This type of binding can be handled with the
ThreadSewing process.
SideStitch – This type of binding can be handled with the
Stitching process.
SoftCover – This type of binding defines a soft cover bound book.
It includes perfect binding.
StripBind – This type of binding can be handled with the
StripBinding process.
Tape – This type of binding is an inexpensive version of the
SoftCover.
ThreadSealing – This type of binding can be handled with the
ThreadSealing process.
StripBind – This type of binding can be handled with the
StripBinding process.[RP222]
WireComb – This type of binding can be handled with the
WireCombBinding process.

CoverColor ? EnumerationSpan Defines the color of the cover material of the binding. Allowed
values are defined in Appendix A.2.11 NamedColor.
Default = don’t care, i.e., system specified.

AdhesiveBinding ?
Deprecated in JDF 1.1

element Details of AdhesiveBinding. Replaced with SoftCoverBinding in
JDF 1.1.

BindList ?
New in JDF 1.1

element Details of binding of individual child Components.

BookCase ?
Deprecated in JDF 1.1

element Details of the book Case. Used in Combination with
AdhesiveBinding ,ThreadSewing or ThreadSealing. .
Replaced with HardCoverBinding in JDF 1.1.

ChannelBinding ? element Details of ChannelBinding. Default = ChannelBinding value.
CoilBinding ? element Details of CoilBinding. Default = CoilBinding value.
EdgeGluing ?
New in JDF 1.1

element Details of EdgeGluing. Default = EdgeGluing value.

HardCoverBinding ?
New in JDF 1.1

element Details of HardCoverBinding. Default = HardCoverBinding
value.

PlasticCombBinding ? element Details of PlasticCombBinding.
Default = PlasticCombBinding value.

Page 246

Page 246

Name Data Type Description
RingBinding ? element Details of RingBinding. Default = RingBinding value.
SaddleStitching ? element Details of SaddleStitching. Default = SaddleStitching value.
SideSewing ? element Details of SideSewing. Default = SideSewing value.
SideStitching ? element Details of SideStitching. Default = SideStitching value.
SoftCoverBinding ?
New in JDF 1.1

element Details of SoftCoverBinding. Default = SoftCoverBinding
value.

Tape ?
New in JDF 1.1

element Details of Tape binding. Default = Tape value.

Tabs ? element Details of Tabs. Default = no tabs
ThreadSealing ? element Details of ThreadSealing. Default = ThreadSealing value.
ThreadSewing? element Details of ThreadSewing. Default = ThreadSewing value.
StripBinding ?
New in JDF 1.1

element Details of StripBinding.
Default = StripBinding value.

VeloBinding ?
Deprecated in JDF 1.1

element Details of VeloBinding. Renamed to StripBinding in JDF 1.1.

WireCombBinding ? element Details of WireCombBinding. Default = WireCombBinding
value.

Structure of BindList Subelement
New in JDF 1.1

Name Data Type Description
 BindItem * element Individual bind item description.

Default = BindingIntent::BindingSide value if empty, i.e., as
if the BindList element weren’t there.

Structure of BindItem Subelement[RP223]
New in JDF 1.1

Name Data Type Description
BindingType ? EnumerationSpan Describes the desired binding for the individual BindItem. The

list of possible values is defined in
BindingIntent:BindingType.
Defaults to the value specified in the parent BindingIntent.

ChildFolio ? XYPair Definition of the fold between two pages in the BindItem
component that is bound to the cover. The two numbers in the
ChildFolio attribute are the page numbers of the two outer
pages of the child Component, which touch the cover or an
other child Component. The pages are counted in the order,
which is described in FolioCount of the child product. Defaults
to the spine of the child.

Page 247

Page 247

Name Data Type Description
ParentFolio XYPair Definition of the fold between two pages in the Cover

Component that receive the BindItem. The two numbers in
the ParentFolio attribute are the page numbers in the Cover
Component, which touch the child Component. The pages
are counted in the order, which is described in FolioCount of
the cover product.

Transformation ? matrix Rotation and offset between the Component to be inserted
and the “parent” Component. For details on transformations,
see How and Where Coordinates and Transformations Are
Used/Defined in JDF.

WrapPages ? IntegerRangeList List of pages of the Cover that wrap around a BindItem after all
folds are correctly positioned. It is sufficient to specify the
pages of the Front surface of the cover. Note that this key must
only be specified if the folding is ambiguous. Default = empty
list.

BookCase ?
Deprecated in JDF 1.2

element Details of the hard cover book Case. Used in Combination
with HardCoverBinding.

ChannelBinding ? element Details of ChannelBinding.
CoilBinding ? element Details of CoilBinding.
EdgeGluing ? element Details of EdgeGluing.
HardCoverBinding ? element Details of HardCoverBinding.
PlasticCombBinding ? element Details of PlasticCombBinding.
RingBinding ? element Details of RingBinding.
SaddleStitching ? element Details of SaddleStitching.
SideSewing ? element Details of SideSewing.
SideStitching ? element Details of SideStitching.
SoftCoverBinding ? element Details of SoftCoverBinding.
Tape ? element Details of Tape binding.
Tabs ? element Details of Tabs.
ThreadSealing ? element Details of ThreadSealing.
ThreadSewing? element Details of ThreadSewing.
StripBinding ? element Details of StripBinding.
WireCombBinding ? element Details of WireCombBinding.

Structure of the AdhesiveBinding Subelement.
Deprecated in JDF 1.1
Name Data Type Description
Scoring ? EnumerationSpan Scoring option for AdhesiveBinding. Possible values are:

TwiceScored
QuadScored
None
Values are based on viewing the cover in its flat prebinding
state.

Page 248

Page 248

Name Data Type Description
SpineGlue ? EnumerationSpan Glue type used to define AdhesiveBinding procedures.

Possible values are:
ColdGlue
Hotmelt
PUR – Polyurethane Rubber

TapeBinding ?

OptionSpan If true, a cloth tape which has been preglued with hot-melt
adhesive is used in AdhesiveBinding the unmilled block.,
e.g., FastBack or DocuTech binding.
Default = false

Structure of the BookCase Subelement.
This subelements contains details of the book case for hard cover book binding. The actual binding parameters are
set in the appropriate AdhesiveBinding, ThreadSewing or ThreadSealing elements.

Name Data Type Description
HeadBands ? OptionSpan The following CaseBinding choice specifies the use of

headbands on a case bound book.
If true, headbands are inserted both top and bottom.
Default = false.

Shape ? EnumerationSpan Indicates the shape of the “back” or spine of a Casebound book.
Possible values are:
RoundedBack
SquareBack

Thickness ? NumberSpan Specifies thickness of board which is wrapped as front and
back covers of a case bound book, in points.

Structure of the ChannelBinding Subelement.
Name Data Type Description
Cover ? OptionSpan If true, the clamp used in ChannelBinding includes a

preassembled cover.
Default = false

Thickness ? NumberSpan Specifies thickness of board which is wrapped as front and
back covers of a Case bound book, in points.
Default = system specified.

Structure of the CoilBinding Subelement.
Name Data Type Description
CoilMaterial ? EnumerationSpan The coil materials available for CoilBinding. Possible values

are:
Steel – plain steel
ColorCoatedSteel – coated steel
Plastic – plastic
Default = system specified

Deprecated in JDF 1.1

Page 249

Page 249

Structure of the EdgeGluing Subelement.
Name Data Type Description
EdgeGlue ? EnumerationSpan Glue type used to glue the edge of the gathered sheets. Possible

values are:
ColdGlue
Hotmelt
PUR – Polyurethane Rubber
Default = system specified

Structure of the HardCoverBinding Subelement.
Name Data Type Description
BlockThreadSewing ? OptionSpan Option if the block is also thread sewn.

Default = false
EndSheets ? OptionSpan Option if end sheets are applied.

Default = true
StripMaterial ? EnumerationSpan SpineTaping strip material. Possible values are:

Calico
Cardboard
CrepePaper
Gauze
Paper
PaperlinedMules
Tape

HeadBands ? OptionSpan The following CaseBinding choice specifies the use of
headbands on a case bound book.
If true, headbands are inserted both top and bottom.
Default = false.

HeadBandColor ? EnumerationSpan Defines the color of the headband. Allowed values are defined
in Appendix A.2.11 NamedColor.

Jacket ? EnumerationSpan Specifies whether a hard cover jacket is needed and how it is
attached. If specified, details of the jacket are described in the
Component with ProcessUsage of Jacket. Possible values:
None: No jacket is required.
Loose: The jacket is loosely wrapped.
Glue: Jacket is glued to the spine
Default = None

JapanBind ? OptionSpan Bind the book block at the open edge, so that the folds are
visible on the outside. Default = false.

SpineBrushing ? OptionSpan Brushing option for SpinePreparation.
SpineFiberRoughing ? OptionSpan FiberRoughing option for SpinePreparation.

New in JDF 1.1

New in JDF 1.1

Page 250

Page 250

Name Data Type Description
SpineGlue ? EnumerationSpan Glue type used to glue the book block to the cover. Possible

values are:
ColdGlue
Hotmelt
PUR – Polyurethane Rubber

SpineLevelling ? OptionSpan Leveling option for SpinePreparation.
SpineMilling ? OptionSpan Milling option for SpinePreparation.
SpineNotching ? OptionSpan Notching option for SpinePreparation.
SpineSanding ? OptionSpan Sanding option for SpinePreparation.
SpineShredding ? OptionSpan Shredding option for SpinePreparation.
Thickness ? NumberSpan Specifies thickness of board which is wrapped as front and

back covers of a case bound book, in points.
TightBacking ? EnumerationSpan Definition of the geometry of the back of the book block. This

can be one of:
Flat: The default
Round: rounding way,
FlatBacked: backing way,
RoundBacked, rounding way, backing way.

RegisterRibbon* refelement Number, materials, colors and details of register ribbons.

Structure of the PlasticCombBinding Subelement.
Name Data Type Description
PlasticCombType ?
Modified in JDF 1.1

NameSpan The distance between the “teeth” in PlasticCombBinding and the
distance between the holes of the prepunched sheets must be the
same. The following values from the hole type catalog in Appendix
L exist:
P12m-rect-02: Distance = 12 mm; Holes = 7 mm x 3 mm
P16_9i-rect-0t: Distance = 14.28 mm; Holes = 8 mm x 3 mm
The following values are deprecated in JDF 1.1.
Euro – Distance = 12 mm; Holes = 7 mm x 3 mm
USA1 – Distance = 14.28 mm; Holes = 8 mm x 3 mm
Default = system specified

Structure of the RingBinding Subelement.

Name Data Type Description
BinderMaterial ? NameSpan The following describe RingBinding binder materials used.

Values include:
Cardboard – Cardboard with no covering.
ClothCovered – Cardboard with cloth covering.
Plastic – Binder cover fabricated from solid plastic sheet material,
e.g., PVC sheet.
VinylCovered – Cardboard with colored vinyl covering.
Default = system specified

Page 251

Page 251

Name Data Type Description
Predefined hole pattern for the ring system. Multiple hole patterns
are not allowed, e.g., 3-hole ring binding and 4-hole ring binding
holes on one piece of media. For details of the hole types, refer to
Appendix L JDF/CIP4 Hole Pattern Catalog.
Allowed values include:

HoleType ?
New in JDF 1.1

EnumerationSp
an

R2-generic
R2m-DIN
R2m-ISO
R2i-US-a
R2i-US-b
R3-generic.
R3i-US
R4-generic
R4m-DIN-A4
R4m-DIN-A5
R4m-swedish
R4i-US

R5-generic
R5i-US-a
R5i-US-b
R5i-US-c
R6-generic
R6m-4h2s
R6m-DIN-A5
R7-generic
R7i-US-a
R7i-US-b
R7i-US-c
R11m-7h4s

RingDiameter ? NumberSpan Size of the rings in points.
Default = system specified, but suitable for specified HoleType (s).
Note: In ring shapes other than round, this size is specified by
industry-standard method.

RingMechanic ? OptionSpan The ring binder used includes a lever for opening and closing.
Default = false

RingShape ? NameSpan The following RingBinding shapes are used:
Round: the default.
Oval
D-shape
SlantD

RingSystem
Deprecated in JDF 1.1

NameSpan The following values are deprecated from JDF 1.1
2HoleEuro
3HoleUS
4HoleEuro
These have been replaced by HoleType.

RivetsExposed ? OptionSpan The following RingBinding choice describes mounting of the ring
mechanism in binder case.
If true, the heads of the rivets are visible on the exterior of the
binder. If false, the binder covering material covers the rivet heads.
Default = true.

ViewBinder ? NameSpan The following RingBinding clear vinyl outer wrap types are used
on top of a colored base wrap:
Embedded – Printed material is embedded by sealing between the
colored and clear vinyl layers during the binder manufacturing.
Pocket – Binder is designed so that Printed material may be inserted
between the color and clear vinyl layers after the binder is

Page 252

Page 252

Name Data Type Description
manufactured.
Default = Pocket

Structure of the SaddleStitching Subelement.
Name Data Type Description
StitchNumber ?
New in JDF 1.1

IntegerSpan Number of stitches used for saddle stitching.
Default = system specified.

Structure of the SideSewing Subelement.
This is a placeholder that may be filled with private or future data.

Name Data Type Description

Structure of the SideStitching Subelement.
 [RP224]

Name Data Type Description
StitchNumber ?
New in JDF 1.2

IntegerSpan Number of stitches used for side stitching.[RP225]

Structure of the SoftCoverBinding Subelement.
New in JDF 1.1
Name Data Type Description
BlockThreadSewing ? OptionSpan Specifies whether the block is also thread sewn.

Default = false
GlueProcedure ? Enumeration-

Span
Glue procedure used to glue the book block to the cover. Possible
values are:
Spine:
SideOnly: Glued at the side/endsheets but not the spine.
SingleSide: Swiss Brochure
SideSpine: Both side gluing and SpineGluing. The default.

Scoring ? EnumerationSp
an

Scoring option for SoftCoverBinding. Possible values are:
TwiceScored
QuadScored
None
Values are based on viewing the cover in its flat prebinding state.

SpineBrushing ? OptionSpan Brushing option for SpinePreparation.
SpineFiberRoughing ? OptionSpan FiberRoughing option for SpinePreparation.
SpineGlue ? Enumeration-

Span
Glue type used to glue the book block to the cover. Possible values
are:
ColdGlue
Hotmelt
PUR – Polyurethane Rubber

SpineLevelling ? OptionSpan Leveling option for SpinePreparation.
SpineMilling ? OptionSpan Milling option for SpinePreparation.
SpineNotching ? OptionSpan Notching option for SpinePreparation.
SpineSanding ? OptionSpan Sanding option for SpinePreparation.
SpineShredding ? OptionSpan Shredding option for SpinePreparation.

Page 253

Page 253

Structure of the Tape Subelement.
Name Data Type Description
TapeColor ? EnumerationSp

an
Defines the color of the tape material of the binding. Allowed values
are defined in Appendix A.2.11 NamedColor.
Default = don’t care, i.e., system specified

Structure of the Tabs Subelement.
Specifies tabs.

Name Data Type Description
TabBanks ? Integer Number of rows of tabs on the face of the book. Default = 1
TabsPerBank ? Integer Number of equal-sized tabs in a single bank, if all positions were

filled. Default = don’t care, i.e., system specified.
Note: Banks may have tabs only in some of the possible positions

TabExtensionDistance ? NumberSpan Distance tab extends beyond the body of the book block, in points.
Default = system specified

TabExtensionMylar ? OptionSpan If true, the tab extension will be mylar reinforced
Default = false

TabBindMylar ? OptionSpan If true, the tab bind edge will be mylar reinforced
Default = false

TabBodyCopy ? OptionSpan If true, Color will be applied not only on tab extension, but also on
tab body.
Note: Lack of body copy allows all tabs within a bank to be printed
on a single sheet.
Default = false

 TabMylarColor ? EnumerationSp
an

Specifies the color of the mylar used to reinforce the tab extension.
This is conditional on TabExtensionMylar being true. Allowed
values are defined in Appendix A.2.11 NamedColor.
Default = don’t care, i.e., system specified

Structure of the ThreadSealing Subelement.
This is a placeholder that may be filled with private or future data.

Name Data Type Description

Structure of the ThreadSewing Subelement.
This is a placeholder that may be filled with private or future data.

Name Data Type Description
Sealing ? OptionSpan If true, thermo-sealing is required in ThreadSewing.

Structure of the StripBinding Subelement.
New in JDF 1.1
This is a placeholder that may be filled with private or future data.

Name Data Type Description

Structure of the VeloBinding Subelement.

New in JDF 1.1

Page 254

Page 254

This is a placeholder that may be filled with private or future data.
Name Data Type Description

Structure of the WireCombBinding Subelement.
Name Data Type Description
WireCombMaterial ? EnumerationSp

an
The material used for forming the WireCombBinding. Possible
values are:
Steel-Silver – The default if BindingColor is specified as silver,
otherwise ColorCoatedSteel.
ColorCoatedSteel

WireCombShape ? EnumerationSp
an

The shape of the WireCombBinding. Possible values are:
Single – Each “tooth” is made with one wire
Twin – The shape of each “tooth” is made with a double wire, e.g.,
Wire-O.
Default = system specified

7.1.4 ColorIntent
This resource specifies the type of ink to be used. Typically, the parameters consist of a manufacturer name and
additional identifying information. The resource also specifies any coatings and colors to be used, including the
process color model and any spot colors.

Resource Properties
Resource class: Intent
Example Partition: Option, PageNumber, Side
Resource referenced by: -
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
Coatings ?
Modified in JDF 1.1

StringSpan Material usually applied to a full surface on press as a protective or
gloss enhancing layer over ink. Possible values include:
DullVarnish
GlossVarnish
UV
Aqueous
Silicone
The individual strings within Coatings are of type NMTOKENS
and may contain multiple entries from the above list.

ColorStandard ?
Modified in JDF 1.2

NameSpan The color process (i.e., printing condition) standard requested for
the job. Possible values are defined as NMTOKEN by removing
SPACE characters from the standard or registration designation and
preserving case. If both of ColorStandard or ColorsUsed are
specified, the union of the two is specified, e.g if ColorStandard
specifies CMYK and ColorsUsed contains one Spot color, CMYK
+ Spot is specified. [RP226]
 Possible values include:
CMYK – Generic four color process.
FIRST – Flexographic Image Reproduction Specifications &

Deprecated in JDF 1.1

Page 255

Page 255

Name Data Type Description
Tolerances. [first]
GRACOL – General Requirements for Applications in Commercial
Offset Lithography. [gracol]
Hexachrome – 6 Colors CMYK+Orange and Green.
HIFI – 7 Colors CMYK+Red, Green and Blue.
In addition to the pre-defined values specified in this document, the
ColorStandard attribute value can also include any
Characterization Data registered with the ICC
(http://www.color.org/drsection1.html). In this case the syntax will
be ICC:ReferenceName as shown in the examples below. See
section 3.11.4 “Extending NMTOKEN Lists” for the use of prefixes
with NMTOKEN.
The following example values have been registered with the ICC.
The values are taken from the Reference Name field in the ICC
Registry and prefixed with "ICC:" to indicate that these names are
taken from the ICC registry with the SPACE characters removed
and case preserved. Any additional values from the ICC Registry
may be used as long as they are prefixed with "ICC:" with SPACE
characters removed and case preserved:
ICC:OFCOMPOP1F60 - Registered by FOGRA with the ICC
pertaining to printing condition: offset commercial and speciality
printing according to ISO 12647-2, positive plates, paper type 1
(gloss-coated, above 70 g/m2), screen frequency 60/cm.
ICC:OFCOMPOP2F60 - Registered by FOGRA with the ICC
pertaining to printing condition: offset commercial and specialty
printing according to ISO 12647-2, positive plates, paper type 2
(matte-coated, above 70 g/m2), screen frequency 60/cm.
New in JDF 1.2
ISO12647 – ISO offset standard.
JapanColor2001 – Japan Color 2001 standard [JapanColor].
Monochrome – Generic single color printing condition, e.g., black
and white or one single spot color.
None – No marks. Used to define one-sided printing. Deprecated in
JDF 1.2, instead use ##ref LayoutIntent/@Sides.
SNAP – Specifications for Newsprint Advertising Production[snap]
SWOP – Specifications for Web Offset Publications. Registered by
ANSI with the ICC as ICC:CGATSTR001 pertaining to printing
conditions that conform to ANSI CGATS.6 which is based on
Publication printing in the US as defined by SWOP.[RP227]

Coverage ? NumberSpan Cumulative colorant coverage percentage. For example, a full sheet
of 100% deep black in CMYK has Coverage = “400". Typical
coverages based on one color plane are:
Light = 1-9%
Medium= 10-35%
Heavy= 36+%

InkManufacturer ? NameSpan Name of the manufacturer of the ink requested,
e.g.:CIP4InkCorpACMEInkCompany
.[RP228]

Page 256

Page 256

Name Data Type Description
ColorPool ?
New in JDF 1.1

refelement Additional details about the colors used.

ColorsUsed ? element Array of colorant[RP229] separation names that are requested. If not
specified, the values are implied from ColorStandard.
If additional information about the colors and colorants [RP230]is
required, it can be specified in the referenced ColorPool resource.

Structure of the ColorsUsed Subelement
Name Data Type Description
SeparationSpec* element These can be process colors, generic spot colors or named spot

colors.[RP231]
In addition, partial coating is specified by adding a
SeparationSpec with anything from Coatings as Name:
DullVarnish
GlossVarnish
Spot - Generic spot color of which the details are unknown. Spot
may be specified multiple times in one ColorsUsed element.[RP232]
UV
Aqueous
Bronzing
Silicone

7.1.5 DeliveryIntent
Summarizes the options that describe pickup or delivery time and location of the physical resources [RP233]of a job. It also
defines the number of copies that are requested for a specific job or delivery. This includes delivery of both final products
and of proofs. DeliveryIntent may also be used to describe the delivery of intermediate products such as partial products
in a subcontracting description.[RP234]

Resource Properties
Resource class: Intent
Resource referenced by: -
Example Partition: Option
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
Accepted ? boolean The quote that is specified by this DeliveryIntent has been

accepted. Default = false
BuyerAccount ? string Account ID of the buyer with the delivery service.
DeliveryCharge ?
New in JDF 1.1

Modified in JDF 1.2

EnumerationSpan Specifies who pays for a delivery being made by a 3rd party.
Possible values are:
Printer: The Printer is defined as the person who creates the
Resource that is delivered. This includes all suppliers, e.g.
Binders or Prepress suppliers.
Buyer: The Customer Specified in CustomerInfo.
Other: The Contact with ContactType=”DeliveryCharge”.
Default = Buyer[RP235]

Page 257

Page 257

Name Data Type Description
Earliest ? TimeSpan Specifies the earliest time after which the transfer may be made.
EarliestDuration ? DurationSpan Specifies the earliest time by which the transfer must be made

relative to the date of the purchase order. Within an RFQ or a
Quote, only one of either Earliest or EarliestDuration may be
specified. Within a purchase order only the Earliest is allowed.

Method ? NameSpan Identifies a required delivery method, may be a generic item from
the following list:
BestWay – The sender decides how to deliver.
CompanyTruck
Courier
Email
ExpressMail
InterofficeMail
Storage – The product must be stored by the supplier.
OvernightService
Unknown
May also be a delivery service brand. For example:
UPS
DHL
FedEx

Ownership ? enumeration If Origin (default), then ownership of goods is transferred upon
leaving point of origin. If Destination, ownership is transferred
upon receipt at destination.

Overage ? NumberSpan Percentage value that defines the acceptable upwards variation of
Amount. Defaults to the trade custom defaults as defined by PIA,
BVD etc.

Pickup ?
Deprecated in JDF 1.1

boolean Specifies whether the delivery brings or picks up the
merchandise.
Default = false, which means that the drop is delivered to the
address specified in Company.
If Pickup = true, the DeliveryIntent describes an input to the
job, e.g., a CD for inserting, a preprinted cover, etc. In this case
Company describes the location where the merchandise is
picked up.

Required ? TimeSpan Specifies the time by which the transfer must be made.
RequiredDuration ? DurationSpan Specifies the time by which the transfer must be made relative to

the date of the purchase order. Within an RFQ or a Quote only one
of either Required or RequiredDuration must be specified.
Within a purchase order only Required is allowed.

ReturnMethod ?
New in JDF 1.1

NameSpan Identifies a required delivery method for returning the surplus
material, if SurplusHandling = Return. The values may be of the
same list as specified in Method.

Page 258

Page 258

Name Data Type Description
SurplusHandling ?
New in JDF 1.1

EnumerationSpan Describes what should happen with unused or redundant parts of
the transfer specified with Transfer = BuyerToPrinterDeliver or
BuyerToPrinterPickup after the job. The return delivery or pickup
address is specified in the Contact with ContactTypes including
SurplusReturn. Possible values are:
ReturnWithProduct – The surplus material is delivered back to
the customer together with the final product.
Return – The surplus material is delivered back independently
directly after usage.
Pickup – The customer picks up the surplus material
Destroy – The printer must destroy the surplus material
PrinterOwns – The surplus material belongs to the printer
Store – The printer has to store the surplus material for future
purposes
Default = ReturnWithProduct.

Transfer ?
New in JDF 1.1

EnumerationSpan Describes the direction and responsibility of the transfer. Possible
values are:
BuyerToPrinterDeliver – The DeliveryIntent describes an input
to the job, e.g., a CD for inserting, a preprinted cover, etc. In this
case, the buyer delivers the merchandise to the printer. The printer
may specify in the quote a special Contact with ContactTypes
including “Delivery”, where the buyer should send the
merchandise to.
BuyerToPrinterPickup – The DeliveryIntent describes an input
to the job, e.g., a CD for inserting, a preprinted cover, etc. In this
case, the printer picks up the merchandise. The Contact with
ContactTypes including pickup describes, where the printer has to
pick up the merchandise.
PrinterToBuyerDeliver – The DeliveryIntent describes an
output of the job. In this, case the printer delivers the merchandise
to the buyer. The Contact that has ContactTypes including
“Delivery” specifies where the printer should send the
merchandise.
PrinterToBuyerPickup – the DeliveryIntent describes an output
of the job. In this case, the buyer picks up the merchandise. The
printer may specify in the quote a special Contact that has
ContactTypes including “Pickup”, where the buyer should pick
up the merchandise.

Underage ? NumberSpan Percentage value that defines the acceptable downwards variation
of Amount. Defaults to the trade custom defaults as defined by
PIA, BVD etc.

Company ?
Deprecated in JDF 1.1

refelement Address and further information of the addressee.

Page 259

Page 259

Name Data Type Description
Contact *
New in JDF 1.1

refelement Address and further information of the Contact responsible for
the transfer. The actual delivery address is specified as the
Address of the Contact with ContactTypes that includes
”Delivery”. The actual pickup address is specified as the Address
of the Contact with ContactTypes that includes “Pickup”. For
each of the values “Delivery”, “Pickup”, and “Billing” only one
Contact with ContactTypes including these values may be
specified.

DropIntent + element Includes all locations where the product will be delivered. Note
that multiple DropIntents specify multiple deliveries and not
options for delivery.

Pricing ? element Pricing elements that define the pricing of the complete
DeliveryIntent including any DropIntents or DropItemIntents
that may contain further Pricing elements.

Structure of DeliveryIntent Elements
DropIntent
This element contains information about the intended individual drop of a delivery. Attributes that are specified in a
DropIntent element overwrite those that are specified in their parent DeliveryIntent element. If optional values are
not specified, they default to the values specified in the DeliveryIntent.

Name Data Type Description
BuyerAccount ? string Account ID of the buyer with the delivery service. Defaults to the

impiled or explicit value specified in the parent DeliveryIntent.
Earliest ? TimeSpan Specifies the earliest time after which the transfer may be made.
EarliestDuration ? DurationSpan Specifies the earliest time by which the transfer must be made

relative to the date of the purchase order. Within an RFQ or a
Quote, only one of either Earliest or EarliestDuration may be
specified. Within a purchase order only the Earliest is allowed.

Method ? NameSpan Identifies a required delivery method. The values are identical to
those of Method in the DeliveryIntent root. Defaults to the value
of Method in DeliveryIntent.

Pickup ?
Deprecated in JDF 1.1

boolean If true, the merchandise is picked up. If false, the merchandise is
delivered.
Default = false, which means that the DropIntent is delivered to
the address specified in Company.
If Pickup = true, the DropIntent describes an input to the job,
e.g., a CD for inserting, a preprinted cover, etc. In this case,
Company describes the location where the merchandise is
picked up.

Required ? TimeSpan Specifies the time by which the delivery must be made.
RequiredDuration ? DurationSpan Specifies the time by which the delivery must be made relative to

the date of the purchase order. Within an RFQ or a Quote only,
one of either Required or RequiredDuration must be specified.
Within a purchase order only Required is allowed.

Page 260

Page 260

Name Data Type Description
ReturnMethod ?
New in JDF 1.1

NameSpan Identifies a required delivery method for returning the surplus
material, if SurplusHandling = Return. Defaults to the value of
ReturnMethod in DeliveryIntent.

SurplusHandling ?
New in JDF 1.1

Enumeration-
Span

Describes what should happen with unused or redundant parts of
the transfer. The values are identical to those of
SurplusHandling in DeliveryIntent. Defaults to the value of
SurplusHandling in DeliveryIntent.

Transfer ?
New in JDF 1.1

EnumerationSp
an

Describes the direction and responsibility of the transfer. The
values are identical to those of Transfer in DeliveryIntent.
Defaults to the value of Transfer in DeliveryIntent.

Company ?
Deprecated in JDF 1.1

refelement Address and further information of the addressee. Defaults to the
Company specified in the parent resource.

Contact *
New in JDF 1.1

refelement Address and further information of the Contact responsible for
the transfer. The actual delivery address is specified as the
Address of the Contact with ContactTypes that includes
“Delivery”. The actual pickup address is specified as the Address
of the Contact with ContactTypes that includes “Pickup”. For
each of the values “Delivery”, “Pickup”, and “Billing”, only one
Contact with ContactTypes including these values may be
specified. Defaults to the Contact specified in the parent
resource.

DropItemIntent + element A DropIntent may consist of multiple products, which are
represented by their respective Component resources. Each
DropItemIntent element describes a number of individual
resources that is part of this DropIntent.

Pricing ? element Pricing element that defines the pricing of the DropIntent.

Structure of the DropItemIntent Subelement
Name Data Type Description
AdditionalAmount ? integer Number of components used to calculate the value of the AdditionalPrice

attribute in the Pricing. Default = 1.
Amount ? integer Specifies the final number of components delivered. If not specified, defaults

to the total amount of the resource that is referenced by Component or 1 if
this DropItemIntent specifies a proof.

OrderedAmount ? integer Specifies the original number of components ordered. If not specified, Default
= Amount.

Proof ?
New in JDF 1.1

string This DropItem refers to a proof that is specified in a ProofItem of the
ProofingIntent of this product node. The ProofName attribute of a
ProofItem must match Proof. One of either Component or Proof must be
specified.

Unit ? string Unit of measurement for the Amount specified in the Component attribute.
Defaults to the value of Unit defined in the resource described by the
Component.

PhysicalResource
?
Modified in JDF 1.1

refelement Description of the individual item that is delivered. One of either
PhysicalResource or Proof must be specified. Note that PhysicalResource
is an abstract resource and that the element must be an instance of
PhysicalResource.

Pricing ? element Pricing element that defines the pricing of the DropItemIntent.

Page 261

Page 261

Contents of the Pricing Subelement[RP236]
Name Data Type Description
AdditionalPrice ? number Price for ordering the number of copies specified in the AdditionalAmount

attribute as specified in the parent element of the Pricing.
Currency ? NMTOKEN Three digit currency definition according to ISO 4217. It defaults to the

currency defined in the parent quote.
HasPrice ? boolean Specifies whether the line item defined by this quote has a price. If false, the

line item is not included in the parent quote, and the price is unknown and
must be added. Default = true, i.e., the line item is included in the parent
quote.

Item ? string Name of the item that this particular quote element describes.
Default = everything

Price ? number Price for ordering the number of copies specified in the Amount attribute as
specified in the parent element of the Pricing. If not specified, it defaults to the
sum of prices of the direct child Pricing elements.

Payment ?
New in JDF 1.1

element Details of the payment method.

Pricing * element Individual items of the quote. Note that a parent quote defines the complete
quote, i.e., including the values defined in the line items of any child quotes
but excluding all line items with HasPrice = “false”. The sum of line items
need not be identical to the parent quote.

Contents of the Payment Subelement
New in JDF 1.1
Name Data Type Description
PayTerm ? telem Describes the payment terms & conditions.
CreditCard ? element Specifies credit card information

Contents of the CreditCard Subelement
New in JDF 1.1
Name Data Type Description
Authorization ? String Authorization code for this transaction.
AuthorizationExpires ? gYearMonth Expiration date of the Authorization.
Expires gYearMonth Expiration date of the credit card.
Number NMTOKEN Credit card number. The format is specified without blanks or any

other separator characters.
Type NMTOKEN Credit card brand. Possible values include:

Amex
DinersClub
Discovery
MasterCard: This includes derived brands, e.g., EuroCard
Visa

7.1.6 EmbossingIntent
New in JDF 1.1
This resource specifies the embossing and/or foil stamping intent for a JDF job using information that identifies
whether or not the product is embossed or stamped and, if desired, the complexity of the affected area.

Page 262

Page 262

Resource Properties
Resource class: Intent
Resource referenced by: -
Example Partition: Option, PageNumber, Side
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
EmbossingItem + refelement Each embossed image is described by one EmbossingItem.

Structure of the EmbossingItem Subelement
Name Data Type Description
Direction EnumerationSpan The direction of the image. Possible values are:

Both – Both debossing and embossing in one stamp.
Depressed – Debossing
Raised – Embossing

EdgeAngle ? NumberSpan The angle of a beveled edge in degrees. Typical values are an angle of:
30, 40, 45, 50, or 60 degrees. For EdgeAngle to exist, EdgeShape =
Beveled must be specified.

EdgeShape ? EnumerationSpan The transition between the embossed surface and the surrounding media
may be rounded or beveled (angled). Possible values are:
Rounded
Beveled

EmbossingType StringSpan The strings defined in EmbossingType are whitespace separated
combinations of the following tokens. Possible values for the tokens are:
BlindEmbossing – Embossed forms that are not inked or foiled. The
color of the image is the same as the paper.
FoilEmbossing – Combines embossing with foil stamping in one single
impression.
FoilStamping-using a heated die to place a metallic or pigmented image
from a coated foil on the paper.
RegisteredEmbossing – Creates an embossed image that exactly registers
to a printed image.

FoilColor ? EnumerationSpan Defines the color of the foil material which is used within the FoilStamp
process. Allowed values are defined in the appendix A.2.11
NamedColor.

Height ? NumberSpan The height of the levels. This value specifies the vertical distance
between the highest and lowest point of the stamp, regardless of the
value of Direction.

ImageSize ? XYPairSpan The size of the bounding box of one single image.

Level ? EnumerationSpan The level of embossing. Possible values are:
SingleLevel,
MultiLevel,
Sculpted

Position ? XYPairSpan Position of the center of the bounding box of the embossed image in the
coordinate system of the Component.

Page 263

Page 263

7.1.7 FoldingIntent
This resource specifies the fold intent for a JDF job using information that identifies the number of folds, the height
and width of the folds, and the folding catalog number. Note that the folding catalog is described in Section 7.2.57
and that the number of folds and the folding catalog are related.

Resource Properties
Resource class: Intent
Resource referenced by: -
Example Partition: Option
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
FoldingCatalog NameSpan Description of the folding scheme as specified in the FoldingParams folding catalog

attribute in the format “Fn-i”. See JDF Folding Catalog descriptions in Figure 7.11
Fold Catalog part 1 and Figure 7.12 Fold Catalog part 2.
Note: The folding scheme in this context refers to the folding of the finished product
as seen after the cutting, not the folding, of the flat as seen in production.

Folds ?
Deprecated in
JDF 1.1

XYPair Number of folds in x and in y direction. This attribute specifies the number of folds
seen in the sheet after folding not the number of fold operations needed to achieve that
result. If not specified, it must be inferred from FoldingCatalog. The product
2*(X+1)*(Y+1) of Folds must always match the n of “Fn-i” of FoldingCatalog.

Fold *
New in JDF 1.1

element This describes the details of folding operations in the sequence described by the value
of FoldingCatalog. Fold must be specified if non-symmetrical folds are requested.

7.1.8 HoleMakingIntent
This resource specifies the holemaking intent for a JDF job, using information that identifies the type of
HoleMaking operation or alternatively, an explicit list of holes.

Resource Properties
Resource class: Intent
Resource referenced by: -
Example Partition: Option
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
Extent ?
New in JDF 1.2

XYPair Size (Bounding Box) of the hole in points when specifying a
standard hole pattern in HoleType. If not specified the implied
default defined in table ##ref hole pattern appendix is assumed.
Ignored when HoleType=”Explicit”[RP237]

HoleReferenceEdge ?
New in JDF 1.1

enumeration The edge of the media relative to where the holes should be
punched. Use with HoleType. Possible values are:
Left
Right
Top
Bottom
Pattern – Specifies that the reference edge implied by the value of
HoleType in Appendix L JDF/CIP4 Hole Pattern Catalog is used.

Page 264

Page 264

Name Data Type Description
The default if HoleType is not Explicit, otherwise Left.

Predefined hole pattern. Multiple hole patterns are specified as
one NMTOKENS string, e.g., 3-hole ring binding and 4-hole ring
binding holes on one piece of media. For details of the hole types,
refer to Appendix L JDF/CIP4 Hole Pattern Catalog.
Allowed values include:
R2-generic
R2m-DIN
R2m-ISO
R2i-US-a
R2i-US-b
R3-generic
R3i-US
R4-generic
R4m-DIN-A4
R4m-DIN-A5
R4m-swedish
R4i-US
R5-generic
R5i-US-a
R5i-US-b
R5i-US-c

R6-generic
R6m-4h2s
R6m-DIN-A5
R7-generic
R7i-US-a
R7i-US-b
R7i-US-c
R11m-7h4s
P12m-rect-0t
P16_9i-rect-0t
W2_1i-round-0t
W2_1i-square-0t
W3_1i-square-0t
C9.5m-round-0t
Explicit – Holes are defined in an
array of Hole elements.

HoleType
Modified in JDF 1.1

StringSpan

The following values are deprecated from JDF 1.0
2HoleEuro – Replace by either R2m-DIN or R2m-ISO.
3HoleUS – Replace by R3I-US
4HoleEuro – Replace by R4m-DIN-A4 or R4m-DIN-A5.

HoleList ? element Array of all Hole elements. Used when HoleType = Explicit.
Default = no holes

Structure of the HoleList Subelement
Name Data Type Description
Hole *
Modified in JDF 1.1

refelement Description of individual holes. See 7.2.66 Hole.

HoleLine *
New in JDF 1.1

refelement Array of all HoleLine elements. See 7.2.67 HoleLine.

7.1.9 InsertingIntent
This resource specifies the placing or inserting of one component within another, using information that identifies
page location, position and attachment method. The receiving component is defined by a ProcessUsage attribute
of “Parent”. All other input components are mapped to the Insert elements by their ordering in the
ResourceLinkPool.

Resource Properties
Resource class: Intent

Page 265

Page 265

Resource referenced by: -
Example Partition: Option
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
GlueType ? Enumeration-

Span
Glue used to fasten the insert. Possible values are:
Permanent
Removable
Default = system specified

InsertList Element List of individual inserts.
Method Enumeration-

Span
Possible values are:
BindIn – Apply glue to fasten the insert
BlowIn – Loose insert. The default.

Structure of InsertList Subelement

Name Data Type Description
Insert * element Individual insert description.

Structure of Insert Subelement

Name Data Type Description
Folio IntegerRangeList List of potential folios where the insert is to be placed. A Folio is

defined by its first page in case Method = BlowIn and by the page
that the glue is applied in case Method = BindIn. In general, a list of
folios will only be supplied for Method = BlowIn. The pages are
counted in the order, which is described in FolioCount of the parent
Component.

GlueType ? EnumerationSpan Glue used to fasten the insert. Possible values are:
Removable
Permanent
Defaults to the GlueType specified in the parent resource.

Method ? EnumerationSpan Inserting method. Possible values are:
BindIn – Apply glue to fasten the insert
BlowIn – Loose insert
Defaults to the Method specified in the parent resource.

SheetOffset ?
Deprecated in JDF 1.1

XYPair Offset between the Component to be inserted and page in the
parent Component.

Transformation ? matrix Rotation and offset between the Component to be inserted and the
parent Component. For details on transformations, see How and
Where Coordinates and Transformations Are Used/Defined in JDF.
Default = identity

WrapPages ?
New in JDF 1.1

IntegerRangeList List of pages of the Cover that wrap around an Insert after all folds
are correctly positioned. It is sufficient to specify the pages of the
Front surface of the cover. Note that this key must only be specified
if the folding is ambiguous. Default = empty list.

Page 266

Page 266

Name Data Type Description
GlueLine *
New in JDF 1.1

element Array of all GlueLine elements used to glue in the Insert. Must not
be specified in conjunction with GlueType.

7.1.10 LaminatingIntent
This resource specifies the laminating intent for a JDF job using information that identifies whether or not the
product is laminated and, if desired, the temperature and thickness of the laminant.

Resource Properties
Resource class: Intent
Resource referenced by: -
Example Partition: Option
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
Laminated
Deprecated in JDF 1.1

OptionSpan If true, the product is laminated.
Default = false

Temperature Enumeration-
Span

Temperature used in the lamination process. Possible values are:
Hot
Cold

Surface ? Enumeration-
Span

The surface to be laminated. One of:
Front
Back
Both
Default = system specified

Thickness ? NumberSpan Thickness of the laminating material. Measured in micron[µm].
Default = system specified

7.1.11 LayoutIntent
This resource records the size of the finished pages for the product component. It does not, however, specify the
size of any intermediate results, such as press sheets. It also describes how the pages of the product component
should be imaged onto the finished media. The size definition of the finished media describes the size of a sheet that
is folded to create a product, not the size of a production sheet, e.g., in the press.

Resource Properties
Resource class: Intent
Example Partition: Option
Resource referenced by: -
Input of processes: Any product node
Output of processes: -

Page 267

Page 267

Resource Structure
Name Data Type Description
Dimensions ?
New in JDF 1.1

XYPairSpan Specifies the width (X) and height (Y) in points,
[RP238]respectively, of the media or product Component
unfolded. For example, Dimensions for a z-fold is the unfolded
dimensions, while FinishedDimensions is the folded
dimensions, if known. Use Dimensions if Finished-
Dimensions is not known. Dimensions is provided for the rare
case that FinishedDimensions does not unambiguously define
the finished product, due to complex folding schemes. If both
values are present, FinishedDimensions takes
precedence.[RP239]

FinishedDimensions ?
New in JDF 1.1

Modified in JDF 1.2

ShapeSpan Specifies the width (X), height (Y) and depth (Z) in points,
respectively, of the finished product Component after all
finishing operations including folding. If the Z coordinate is 0, it
is ignored.
Implementation warning: in JDF 1.1 height and width were
erroneously switched in the description.[RP240]

FinishedPageOrientation ?
Deprecated in JDF 1.1

enumeration Indicates the desired orientation of the finished Media. Possible
values are:
Portrait – The short edges of the media are the top and bottom.
Landscape – The long edges of the media are the top and bottom.
Default = Portrait.
In JDF 1.1, the page orientation is implied by the value of
Dimensions and FinishedDimensions. If height (X) > width
(Y), the product is portrait.

FolioCount ?
New in JDF 1.1

enumeration Defines the method used when counting page folios. The number
of pages of one sheet of an individual component is given by the
product 2*(X+1)*(Y+1), where x denotes the number of folds in x
direction and y denotes the number of folds in y direction. One of:
Booklet: Each sample of the component consists of two pages with
no fold inside the page (the front side and the back side of one
sample of the component). The pages are counted in reader order
of the pages of the component in the product. The default.
Flat: The pages are counted from the top left of the front side of
the top media to the bottom right of the back side of the bottom
media. Flat should be used for non-standard products where the
reader order is ambiguous. The page breaks on a sheet are defined
by the folds as specified by FoldingCatalog (see Figure 7.11 and
Figure 7.12) in the FoldingIntent for the product. All sheets are
counted, even if they are not included in the product, e.g., due to a
ShapeCuttingIntent.

NumberUp ? XYPair Specifies a regular, multi-up grid of page cells into which content
pages are mapped.
The first value specifies the number of columns of page cells and
the second value specifies the number of rows of page cells in the
multi-up grid.
Implementation warning: in JDF 1.0 and 1.1 rows and columns
were erroneously switched in the description.
Default = 1 1, i.e., 1 document page per side.

Page 268

Page 268

Name Data Type Description
Pages ?
New in JDF 1.1

Modified in JDF 1.2

IntegerSpan Specifies the number of finished page surfaces of the product
component, including blank pages.
Pages multiplied with Dimensions then divided by 2 always
defines the amount of paper that is used in the product. Pages
describes the paper usage regardless of document layout. This
value must be an even number. For example, the value for
Pages for a two-sided booklet with 7 reader pages would be 8,
whether the booklet were saddle stitched or glued.

Implementors Note: The meaning of Pages has been modified in
JDF 1.2 to clarify an ambiguity in its definition. Prior to JDF 1.2
Pages was ambiguously defined as the number of 2 sided leaves.
It is now defined as the number of Surfaces, which is different by
a factor of 2.[RP241]

PageVariance ?
New in JDF 1.1

Modified in JDF 1.2

IntegerSpan Specifies the number of non-identical pages of the product
component. If not specified, Default = value of Pages.

RotatePolicy ?
New in JDF 1.2

enumeration Specifies the policy to automatically rotate the image to optimize
the fit of the image to the page container. The page container is one
cell on the NUp grid of the Media defined in Dimensions or
FinishedDimensions.
NoRotate – The default
RotateOrthogonal – Rotate by 90° in either direction.
RotateClockwise – Rotate clockwise by 90°.
RotateCounterClockwise – Rotate counter-clockwise by
90°.[RP242]

Sides ?
Modified in JDF 1.2[RP243]

enumeration Indicates whether contents should be printed on one or both sides
of the media. Possible values are:
OneSided [RP244]– Page contents will only be imaged on the front
side of the media.
OneSidedBack– Page contents will only be imaged on the back
side of the media. Added in JDF 1.2[RP245]
TwoSidedHeadToHead – Impose pages upon the front and back
sides of media sheets so that the head (top) of page contents back
up to each other.
TwoSidedHeadToFoot – Impose pages upon the front and back
sides of media sheets so that the head (top) of the front backs up to
the foot (bottom) of the back.

Page 269

Page 269

Name Data Type Description
SizePolicy ?
New in JDF 1.2

EnumerationSp
an

Allows printing even if the container size defined in
Dimensions or FinishedDimensions does not match the
requirements of the data. The page container is one cell on the
NUp grid of the Media defined in Dimensions or
FinishedDimensions.

ClipToMaxPage – The page contents should be clipped to
the size of the container. The printed area is centered in the
source image.
FitToPage – The page contents should be scaled up or
down to fit the container. The aspect ratio is maintained.
ReduceToFit – The page contents should be scaled down
but not scaled up to fit the container. The aspect ratio is
maintained.
Tile – the page contents should be split into several tiles,
each printed on its own container.[RP246]

Layout ?
New in JDF 1.1

refelement Specifies the details of a more complex Layout. Must not be
specified together with NumberUp. Note that the Layout
specified in LayoutIntent specifies the layout definition of the
finished product and not the layout of the production sheets.

7.1.12 MediaIntent
This resource describes the media to be used for the product component. In some cases, the exact identity of the
medium is known, while in other cases, the characteristics are described and a particular stock is matched to those
characteristics.

Resource Properties
Resource class: Intent
Example Partition: Option
Resource referenced by: -
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
BackCoatings ? EnumerationSp

an
Identical to FrontCoatings, but applied to the back surface of the
media.
Default = value of FrontCoatings.

BackGloss ?
New in JDF 1.3

NumberSpan Acceptable range of gloss values of the back surface of the media,
in gloss units as defined by ISO 8254-1:1995 Paper and board –
Measurement of specular gloss – Part 1: 75º gloss with a
converging beam, TAPPI method. Default = value of
FrontGloss.[RP247]

Brightness ?
Clarified in JDF 1.2

NumberSpan Reflectance percentage of diffuse blue reflectance as defined by
ISO2470 – ISO 2470:1977 Paper and board – Measurement of
diffuse blue reflectance factor (ISO brightness). The reflectance is
reported per ISO 2470 as the diffuse blue reflectance factor of the
paper or board in percent to the nearest 0.5% reflectance

Page 270

Page 270

Name Data Type Description
factor.[RP248]

BuyerSupplied ? OptionSpan Indicates whether the customer will supply the media.
Note that the Media process resource can be used to specify
additional media requirements, particularly when the media is
supplied by the customer.[RP249]

CIEWhiteness ?
New in JDF 1.3

NumberSpan Average CIE Whiteness. Average CIE Whiteness is calculated
according to equations given in (both T560 and T562 use the
same calculations):
“TAPPI T 560” – TAPPI T 560 “CIE Whiteness and Tint of Paper
and Paper Board (using d/0°, diffuse illumation and normal
viewing)”
“TAPPI T 562” – TAPPI T 562 “CIE Whiteness and Tint of Paper
and Paper Board (using 45°/0° directional illumination and normal
viewing)”.
If the measurement is to be reproduced use the method given in
CIEWhitenessStandard.

CIEWhitenessStandard ?
New in JDF 1.3

string Standard used to specify CIE Whiteness and CIE Tint
measurement methods. Possible values are defined as a string
using the standards body's complete designation and preserving
case, SPACE characters, version numbers, dates (if used by the
standards organization to designate the standard), and all special
characters that are in the standard designation. Possible values
include:
“ASTM E 313-98” – ASTM E 313-98 Practice for Calculating
Yellowness and Whiteness Indices from Instrumentally Measured
Color Coordinates.
“TAPPI T 560” – TAPPI T 560 “CIE Whiteness and Tint of Paper
and Paper Board (using d/0°, diffuse illumation and normal
viewing)”
“TAPPI T 562” – TAPPI T 562 “CIE Whiteness and Tint of Paper
and Paper Board (using 45°/0° directional illumination and normal
viewing)”
“SystemSpecified” – the default.[RP250]

Dimensions ?
Deprecated in JDF 1.2

XYPairSpan Specifies the size of the media in points. This value was only used
for BuyerSupplied=”true” In JDF 1.2 and beyond the specifics of
BuyerSupplied Media should be specified using a ##ref Media
resource.The Dimensions of the finished product are specified with
##ref LayoutIntent/@Dimensions or ##ref
LayoutIntent/@FinishedDimensions. [RP251]

FrontCoatings ? EnumerationSp
an

What preprocess coating has been applied to the front surface of
the media. Possible values are:
None: the default.
Glossy
HighGloss
Matte
Satin
Semigloss

FrontGloss? NumberSpan Acceptable range of gloss values of the front surface of the media,
in gloss units as defined by ISO 8254-1:1995 Paper and board –

Page 271

Page 271

Name Data Type Description
New in JDF 1.3 Measurement of specular gloss – Part 1: 75º gloss with a

converging beam, TAPPI method. Refer also to TAPPI T 480 om-
92 “Specular gloss of paper and paper board at 75 degrees” for
examples of gloss calculation.[RP252]

Grade ?
Clarified in JDF 1.2

IntegerSpan The intended grade of the media on a scale of 1 through 5.
Grade is ignored if MediaType is not “Paper”.
Grade of paper material is defined in accordance with the paper
“types” set forth in ISO 12647-2[iso12647-2]. Offset printing
paper types are defined with the following integer values:
1: Gloss-coated paper
2: Matte-coated paper
3: Gloss-coated, web paper
4: Uncoated, white paper
5: Uncoated, yellowish paper
Note that ISO 12647-2 paper type attribute values do NOT align
with U.S. GRACOL paper grade attribute values, e.g, ISO 12647-2
type 1 does not equal U.S. GRACOL grade 1.[RP253]

GrainDirection ?
New in JDF 1.2

EnumerationSp
an

Direction of the grain in the coordinate system defined by
LayoutIntent/@Dimensions or
LayoutIntent/@FinishedDimensions. Possible values are:
ShortEdge: Parallel to the shorter axis of the finished page.
LongEdge: Parallel to the longer axis of the finished page.[RP254]

HoleCount ?
Deprecated in JDF 1.1

IntegerSpan The intended number of holes that should be punched in the media
(either pre- or post-punched). Default = 0. In JDF/1.1, use
HoleType which includes the number of holes.

HoleType ?
New in JDF 1.1

StringSpan Predefined hole pattern that specifies the prepunched holes in the
media. If custom holes are required, or the hole manufacturing
method (prepunched or post-punched) is “don’t care,” this must
be specified in HoleMakingIntent. Multiple hole patterns are
specified as one NMTOKENS string, e.g, 3-hole ring binding and
4-hole ring binding holes on one piece of media. For details of the
hole types, refer to Appendix L JDF/CIP4 Hole Pattern Catalog.
Allowed values include:

Page 272

Page 272

Name Data Type Description
 None: The default.

R2-generic
R2m-DIN
R2m-ISO
R2i-US-a
R2i-US-b
R3-generic
R3i-US
R4-generic
R4m-DIN-A4
R4m-DIN-A5
R4m-swedish
R4i-US
R5-generic
R5i-US-a
R5i-US-b

R5i-US-c
R6-generic
R6m-4h2s
R6m-DIN-A5
R7-generic
R7i-US-a
R7i-US-b
R7i-US-c
R11m-7h4s
P12m-rect-0t
P16_9i-rect-0t
W2_1i-round-0t
W2_1i-square-0t
W3_1i-square-0t
C9.5m-round-0t

MediaColor ?
Clarified in JDF 1.2

Enumeration-
Span

Color of the media. Allowed values are defined in Appendix
A.2.11 NamedColor. If more-specific, specialized, or site-specific
media color names are needed, use MediaColorDetails.

MediaColorDetails?
New in JDF 1.2

StringSpan A more-specific, specialized, or site defined name for the media
color. If MediaColorDetails is supplied, MediaColor must
also be supplied. Note that there is a one to many
relationship between entries in MediaColor and
MediaColorDetails, e.g. MediaColorDetails values of
Burgundy and Ruby. both correspond to a MediaColor of
DarkRed.[RP255]

MediaColorMeasurement
?
New in JDF 1.3

LabColor

MediaColorMeasurement is a CIE LAB color value computed
as specified in

TAPPI T524 “Color of Paper and Paperboard
(45°/0°geometry)”

and in (identical calculation)

TAPPI T527 “Color of Paper and Paperboard (d/0°
geometry)”.

MediaColorMeasurement is data type LabColor.
Color values are stated in CIELAB, which can be translated to
other color spaces as needed through well-known transforms.

MediaColorStandard ?
New in JDF 1.3

NMTOKEN The color standard to be used if media color measurements for the
MediaColorMeasurement attribute are to be reproduced.
Possible values are defined as a string using the standards body's
complete designation and preserving case, SPACE characters,
version numbers, dates (if used by the standards organization to
designate the standard), and all special characters that are in the
standard designation. Possible values include:
“TAPPI T 524” – TAPPI T 524 “Color of Paper and Paperboard

Page 273

Page 273

Name Data Type Description
(45°/0° geometry)”
“TAPPI T 527” – TAPPI T 527 “Color of Paper and Paperboard
(d/0° geometry)”
“SystemSpecified” – the default.[RP256]

MediaSetCount ? integer When the input media is grouped in sets, identifies the number of
pieces of media in each set. For example, if the UserMediaType
is “PreCutTabs”, a MediaSetCount of 5 would indicate that
each set includes 5 tab sheets.

MediaType ?
New in JDF 1.1

Enumeration-
Span

Describes the medium being employed. Possible values are:
Disc - CD or DVD disc to be printed on. New in JDF 1.2
Other: any other Media.[RP257]
Paper: the default.
Transparency

MediaUnit ?
Deprecated in JDF 1.2

Enumeration-
Span

Describes the format of the media as it is delivered to the device.
Possible values are:
Roll
Sheet
Intent attributes pertain to finished product, not the raw media
format. If BuyerSupplied=”true” then the Media process
resource can be used to provide this attribute.[RP258]

Opacity ?
Modified in JDF 1.2

EnumerationSp
an

The opacity of the media. See OpacityLevel to specify the degree
of opacity for any of these values. Possible values are:
Opaque – the media is opaque. With two-sided printing the
printing on the other side does not show through under normal
incident light. The default.
Translucent – The media is translucent to a system specified
amount. For example, translucent media can be used for back lit
viewing. New in JDF 1.2
Transparent – the media is transparent to a system specified
amount.[RP259]

OpacityLevel ?
New in JDF 1.2

NumberSpan Normalized TAPPI Opacity, Cn, as defined and computed in ISO
2471:1998 “Paper and board – Determination of opacity (paper
backing) – Diffuse reflectance method”. Refer also to TAPPI T
519 “Diffuse opacity of paper (d/0° paper backing)” for
calculation examples.[RP260]

PrePrinted ? boolean Indicates whether the media is preprinted. Default = false

Recycled ?
Deprecated in JDF 1.2[RP261]

OptionSpan If true, recycled media is requested. In JDF 1.2 and beyond, use
RecycledPercentage.[RP262]

RecycledPercentage ?
New in JDF 1.2

NumberSpan The percentage, between 0 and 100, of recycled material that the
media must contain.[RP263]

StockBrand ? StringSpan Strings providing available brand names. The customer may know
exactly what paper is to be used. Example is “Lustro” or “Warren
Lustro” even though the manufacturer name is included.

StockType ? NameSpan Strings describing the available stock. Examples include:
Bristol
Cove,

Page 274

Page 274

Name Data Type Description
Bond
Newsprint
Index
Offset – This includes book stock.
Tag
Text

Texture ? NameSpan The intended texture of the media. Examples include:
Antique – Rougher than vellum surface
Calendared – Extra-smooth or polished uncoated paper
Linen – Texture of coarse woven cloth
Smooth
Stipple – Fine pebble finish
Vellum – Slightly rough surface

Thickness ?
New in JDF 1.1

NumberSpan The thickness of the chosen medium. Measured in micron [µm].

UserMediaType ? NMTOKEN A human-readable description of the type of media. The value
can be used by an operator to select the correct media to load.
The semantics of the values will be site-specific. Possible values
include:
Continuous – Continuously connected sheets of an opaque
material. Which edge is connected is not specified.
ContinuousLong – Continuously connected sheets of an opaque
material connected along the long edge.
ContinuousShort – Continuously connected sheets of an opaque
material connected along the short edge.
Envelope – Envelopes that can be used for conventional mailing
purposes.
EnvelopePlain – Envelopes that are not preprinted and have no
windows.
EnvelopeWindow – Envelopes that have windows for addressing
purposes.
FullCutTabs – Media with a tab that runs the full length of the
medium so that only one tab is visible extending out beyond the
edge of non-tabbed media.
Labels – Label stock, e.g., a sheet of peel-off labels.
Letterhead – Separately cut sheets of an opaque material
including a letterhead.
MultiLayer – Form medium composed of multiple layers which
are preattached to one another, e.g., for use with impact printers.
MultiPartForm – Form medium composed of multiple layers not
preattached to one another; each sheet may be drawn separately
from an input source.
Photographic – Separately cut sheets of an opaque material to
produce photographic quality images.
PreCutTabs – Media with tabs that are cut so that more than one
tab is visible extending out beyond the edge of non-tabbed media.

Page 275

Page 275

Name Data Type Description
Stationery – Separately cut sheets of an opaque material.
TabStock – Media with tabs (either precut or full-cut).
Transparency – Separately cut sheets of a transparent material.

USWeight ?
Deprecated in JDF 1.2

NumberSpan The intended weight of the media, measured in pounds per ream of
basis size. Only one of Weight and USWeight may be specified.
If known, Weight should be specified (in g/m2). In JDF 1.2 and
beyond use Weight.[RP264]

Weight ?
Clarified in JDF 1.2

NumberSpan The intended weight (grammage) of the media, measured in
(g/m2). See ##ref usweight for an explanation of how to calculate
the US weight from the grammage for different stock types.[RP265]

7.1.13 NumberingIntent
This resource describes the parameters of stamping or applying variable marks in order to produce unique
components, for items such as lottery notes or currency.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: See Laminating.
Numbering
Output of processes: -

Resource Structure
Name Data Type Description
ColorName ? EnumerationSpan Defines the color of the numbering. Allowed values are defined in

Appendix A.2.11 NamedColor. Default = don’t care, i.e., system
specified.

ColorPool ? refelement Additional details about the colors used.
NumberItem + element Individual position of the numbers on the finished page.

Structure of NumberItem Subelement
Name Data Type Description
ColorName ? EnumerationSpan Defines the color of the numbering. Allowed values are defined in

Appendix A.2.11 NamedColor. If not specified, it defaults to the values
defined in NumberingIntent.

StartValue ? string First value of the numbering machine. Default = 1, i.e., system
specified.

XPosition ? NumberSpan Position of the numbering machine along the printer axis.
Default = system specified.

YPosition ? NumberSpan Position of the numbering machine across the printer axis.
Default = system specified.

Orientation ? NumberSpan Rotation of the numbering machine in degrees. If Orientation = 0, the
top of the numbers is along the leading edge. Default = 0

Step ? integer Number that specifies the difference between two subsequent numbers
of the numbering machine.
Default = 1

SeparationSpec? element Specifies the name of the Color in the ColorPool that is used for
Numbering.

Page 276

Page 276

7.1.14 PackingIntent
This resource specifies the packaging intent for a JDF job, using information that identifies the type of package, the
wrapping used, and the shape of the package. Note that this specifies packing for shipping only, not packing of items
into custom boxes, etc. Boxes are convenience packaging and are not envisioned to be protection for shipping.
Cartons perform this function. All quantities are specified as finished pieces per wrapped/boxed/carton or palletized
package. The model for packaging is that products are wrapped together, wrapped packages are placed in boxes,
boxes are placed in cartons, and cartons are stacked on pallets.

Resource Properties
Resource class: Intent
Resource referenced by: -
Example Partition: Option
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
BoxedQuantity ? IntegerSpan How many units of product in a box.
BoxShape ? ShapeSpan Describes the length, width, and height of the box in points.
CartonQuantity ? IntegerSpan How many units of product in a carton.
CartonShape ? ShapeSpan Describes the length, width ,and height of the carton in points.

For example, 288 544 1012
CartonMaxWeight ? NumberSpan Maximum weight of an individual carton in kilograms.
CartonStrength ? NumberSpan Strength of the carton in kilograms.
FoldingCatalog ? NameSpan Description of the folding scheme for folding the product for

packaging as specified in the FoldingParams folding catalog
attribute in the format “Fx-y”. See JDF Folding Catalog
descriptions in Figure 7.11 Fold Catalog part 1 and Figure 7.12
Fold Catalog part 2.
Note: The folding scheme in this context refers to the folding of
the finished product for packaging only. The folding has no effect
on the page/folio definition.

PalletQuantity ? IntegerSpan Number of product per pallet
PalletSize ? XYPairSpan Describes the length and width of the pallet in points, e.g., 3500

3500
PalletMaxHeight ? NumberSpan Maximum height of a loaded pallet in points.
PalletMaxWeight ? NumberSpan Maximum weight of a loaded pallet in kilograms.
PalletType ? NameSpan Type of pallet used. Examples include:

2Way: Two-way entry
4Way: Four-way entry
Euro: Standard 1*1 m Euro pallet

PalletWrapping ? NameSpan Wrapping of the completed pallet. Examples include:
StretchWrap
Banding
Default = None

WrappedQuantity ? IntegerSpan Number of units of product per wrapped package.

Page 277

Page 277

Name Data Type Description
WrappingMaterial ? NameSpan Examples include:

RubberBand
ShrinkWrap
PaperBand
Polyethylene
Default = None

7.1.15 ProductionIntent
This resource specifies the manufacturing intent and considerations for a JDF job using information that identifies
the desired result or specified manufacturing path.

Resource Properties
Resource class: Intent
Resource referenced by: -
Example Partition: Option
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
PrintPreference ? EnumerationSp

an
Intended result or goal. Possible values are:
Balanced – Request for a manufacturing process that balances the
requirements for cost, speed and quality. The default.
CostEffective – Request for the most cost effective manufacturing
process.
Fastest – Request for the most time effective manufacturing
process. Cost and Quality may be sacrificed for a fast turnaround
time.
HighestQuality – Request for the manufacturing process which
will result in the highest quality.

PrintProcess ? EnumerationSp
an

Print process requested. Allowed values are:
Electrophotography
Flexography
Gravure
Inkjet
Lithography
Letterpress
Screen
Thermography

7.1.16 ProofingIntent
This resource specifies the prepress proofing intent for a JDF job, using information that identifies the type, quality,
brand name and overlay of the proof. The proofs defined in ProofingIntent define the proofs that will be provided
to the customer and does not specify internal production proofs. [RP266]The delivery options of proofs are specified
in DeliveryIntent.

Resource Properties
Resource class: Intent

Page 278

Page 278

Resource referenced by: -
Example Partition: Option
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
ProofItem *
New in JDF 1.1

element Specifies the details of the proofs that are required. If no ProofItem
exists in a ProofingIntent, it explicitly specifies that no proofs are
desired.

Structure of the ProofItem Element
All parameters of ProofingIntent have been moved into ProofItem in JDF 1.1.

Name Data Type Description
Amount ?
Modified in JDF 1.1

IntegerSpan Specifies the total number of copies of this proof that is required. If
not specified, it defaults to an IntegerSpan with Preferred = 1.

BrandName ?
Modified in JDF 1.1

StringSpan Brand name of the proof, such as “Iris”.

ColorType ?
Modified in JDF 1.1

EnumerationSpan Color quality of the proof. Possible values are:
Monochrome –Generic single color printing condition, e.g., black and
white or one single spot color. [RP267]
BasicColor – Color does not match precisely. This implies the absence
of a color matching system.
MatchedColor –Color is matched to the output of the press using a
color matching system.

Contract ?
Modified in JDF 1.1

boolean Requires proof to be a legally binding, accurate representation of the
image to be printed, e.g., color quality requirements have been met
when the printed piece acceptably matches the proof.
If true, a contract proof is required.
If false, a lesser proof demonstrating content, color-breaks, or position
is adequate.
Default = false

HalfTone ?
Modified in JDF 1.1

OptionSpan Specifies whether the proof should emulate halftone screens. Default =
false

ImageStrategy ?
New in JDF 1.2

EnumerationSpan

Identifies which images (OPI or other) will be printed during the
Proofing or displayed during the SoftProofing process
NoImages – No images are imaged on the proof.
LowResolution – Low resolution images are imaged on the proof.
HighResolution –High resolution production images are imaged on the
proof, resulting in proofs that accurately represent the final
product.[RP268]

PageIndex ?
New in JDF 1.1

IntegerRangeList List of pages in the numbering scheme given by the FolioCount
attribute of the component that should be proofed. Default = 0~-1, i.e.,
all pages.

ProofName ?
New in JDF 1.1

string Name of the ProofItem. This field must exist, if delivery of a proof is
specified in DeliveryIntent.

ProofTarget ?
Modified in JDF 1.1

URL Identifies a remote target for the proof output. This can be either a soft
or a hard proofing target.

Page 279

Page 279

Name Data Type Description
Technology ?
Modified in JDF 1.1

NameSpan Technology used for making the proof. Possible values are:
BlueLine
DyeSub
InkJet
Laser
PressProof
SoftProof

ProofType ?
Modified in JDF 1.1

EnumerationSpan The kind of proof. Possible values are:
Page – Page proof
Imposition – Imposition proof
None – No Proof is required. The default.

SeparationSpec *
New in JDF 1.1

element Separations that are to be proofed. Default = all separations

ApprovalParams ?
New in JDF 1.2

refElement List of people (such as a customer, printer, or manager) who can sign
the approval.[RP269]

7.1.17 ShapeCuttingIntent
This resource specifies form and line cutting for a JDF job. The cutting processes are applied for producing special
shapes like an envelope window or a heart-shaped beer mat. Information that identifies the type and shape of cuts
can be described. The cutting process(es) can be performed using tools such as hollow form punching, perforating,
or die-cutting equipment.

Resource Properties
Resource class: Intent
Resource referenced by: -
Example Partition: Option
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
ShapeCut * element Array of all ShapeCut elements. Used when each shape is

exactly specified.

Structure of ShapeCut Subelement
Name Data Type Description
CutBox ? rectangle Specification of a rectangular window.
CutOut ? boolean If true, the inside of a specified shape must be removed. If false,

the outside of a specified shape must be removed. An example of
an inside shape is a window, while an example of an outside
shape is a shaped greeting card. Default = false

CutPath ? PDFPath Specification of a complex path. This may be an open path in the
case of a single line.

Material ? StringSpan Transparent material that fills a shape, such as an envelope
window, that was cut out when CutOut = true.

Page 280

Page 280

Name Data Type Description
CutType ?
Modified in JDF 1.1

EnumerationSp
an

Type of cut or perforation used. Possible values are:
Cut: Full cut. The default.
Perforate: Interrupted perforation that does not span the entire
sheet.

ShapeDepth ?
New in JDF 1.1

NumberSpan Depth of the shape cut. Measured in micron[µm]. If not specified,
the shape is completely cut.

Pages ? IntegerRangeL
ist

List of pages to which this shape must be applied. Only the pages
of face-up surfaces should be specified.

ShapeType EnumerationSp
an

Describes any precision cutting other than hole making. Possible
values are:
Rectangular
Round
Path

TeethPerDimension ? NumberSpan Number of teeth in a given perforation extent in teeth/point.
MicroPerforation is defined by specifying a large number of teeth
(n>1000).

7.1.18 SizeIntent
Deprecated in JDF 1.1
SizeIntent has been deprecated in JDF 1.1. All contents have been moved to LayoutIntent. This resource records
the size of the finished pages for the product component. It does not, however, specify the size of any intermediate
results, such as press sheets.

Resource Properties
Resource class: Intent
Example Partition: Option
Resource referenced by: -
Input of processes: Any Product Node
Output of processes: -

Resource Structure
Name Data Type Description
Dimensions XYPairSpan Specifies the height and width of the product component in pts.

Note: Height and width are ambiguously specified in JDF 1.0.
Pages ? IntegerSpan Specifies the number of pages of the product component.
Type ? enumeration Specifies whether the product component referred to is flat or

finished. Possible values are:
Folded = Size of the product after folding. Default value
Flat = Size of the unfolded sheet. Note that this describes the
size of a sheet that is folded to create a product, not the size of
the sheet in the press.

7.2 Process Resources
The rest of the resources described in this chapter are what are known as process resources. This means that they
serve as necessary components in each of the JDF processes. Section 7.2.1 describes the template for all of the
sections that follow. Then every resource already defined for JDF is chronicled, in alphabetical order, below.

Page 281

Page 281

7.2.1 Process Resource Template
Each of the following sections begins with a brief narrative description of the resource. Following that is a list
containing details about the properties of the resource, as shown below. The first item in the list provides the class
of the resource. As was described in Section 3.7.1 Resource Classes, all resources are derived from one of the
following eight superclasses: Intent, Parameter, Implementation, Consumable, Quantity, Handling and
PlaceHolder. All resources inherit additional contents (which may be attributes or elements) from their respective
superclasses, and those attributes and elements are not repeated in this section. Thus those attributes associated with
a resource of class Parameter, for example, can be found in Table 3-12. Note that this inheritance is only valid for
atomic resources, i.e., resources that reside directly in a ResourcePool.

Resource elements are listed in separate sections if they may be referenced by more than one resource. For an
example, see the resource element SeparationSpec. If the resource is not referenced by multiple resources, it is
described inside the resource section of the resource to which it belongs. For an example, see the
ColorSpaceConversionOp element of the ColorSpaceConversionParams resource. The resource class of an
atomic resource also defines the superclasses from which the resource inherits additional contents. The Consumable,
Quantity, and Handling resource elements inherit from the PhysicalResource element, which in turn inherits from
the Resource element. Parameter and Implementation resource elements inherit from the Resource element
directly. Non-atomic resources, i.e., resource subelements, do not inherit contents from resource superclasses.

Examples for resources that may be used as atomic resources or resource elements are: Employee, InsertSheet,
LayoutElement, and Media. For example, if the Media is used as an atomic resource, it inherits all content from
the resource class Consumable. If it is used as a resource element, then the Media may have only an ID as defined
by Table 3-23 Contents of the abstract ResourceElement.
After the list describing the resource properties, each section contains tables that outline the structure of each
resource and, when applicable, the abstract or subelement information that pertains to the resource structure. The
first column contains the name of the attribute or element. In some cases, a resource will contain an element with
more than one value associated with it. If this is the case, the element name is listed as often as it appears, and a
term in parentheses that identifies the kind of element is included in the column. For an example, see Section 7.2.52
EndSheetGluingParams or 7.2.131 Sheet. An example of the tables in this section is provided below.

Resource Properties Template
Resource class: Defines the resource class or specifies ResourceElement if the element does not inherit

content from a resource class.
Resource referenced by: List of parent resources that contain elements of this type. Only valid for elements.
Example Partition: List of valid partitioning boundaries: BlockName, DocIndex, DocRunIndex,

DocSheetIndex, FountainNumber, LayerIDs, Location, Option, PageNumber,
PartVersion, PreviewType, RibbonName, Run, RunIndex, RunTag, RunPage, Separation,
SetIndex, SheetIndex, SheetName, Side, SignatureName, TileID, WebName If a partition
is specified, the resource may contain nested elements of its own type.
The list of partitions represents a list of example partition keys for the respective
resources. Note that resources may also be partitioned by keys that are not included in the
list, e.g., PartVersion and Location, which is valid for any resource, respectively physical
resource.

Input of processes: List of node types that use the resource as an input resource.
Output of processes: List of node types that create the resource as an output resource

Resource Structure Template
Name Data Type Description
Name of attribute data type of

attribute
Usage of the attribute.

Name of element element Subelements that must be defined locally within the resource.
Name of element refelement Elements that are based on other atomic resources or resource

elements. These may either be in-line elements or instances of
ResourceRef elements (see Section 3.8.6). In case of
ResourceRef elements a "Ref" must be appended to the name
specified in the table column entitled "Name".

Page 282

Page 282

7.2.2 Address
Definition of an address. The structure is derived from the vCard format and, therefore, is comprised of all address
subtypes (ADR:) of the delivery address of the vCard format. The corresponding XML types of the vCard are
quoted in the table.

Resource Properties
Resource class: Parameter
Resource referenced by: Contact, Location (see Table 3-15)
Example: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
City ? string City or locality of address (vCard: ADR:locality).
Country ? string Country of address (vCard: ADR:country).
CountryCode ? string Country of address. This value conforms to the ISO 3166 standard in

which countries are represented as 2-character codes.
PostBox ? string Post office address (vCard: ADR:pobox. For example: P.O. Box 101).
PostalCode ? string Zip code or postal code of address (vCard: ADR:pcode).
Region ? string State or province (vCard: ADR:region).
Street ? string Street address (vCard: ADR:street).
ExtendedAddress ? telem Extended address (vCard: ADR:extadd. For example: Suite 245).

7.2.3 AdhesiveBindingParams
Deprecated in JDF 1.1
This resource describes the details of the following four subprocesses of the AdhesiveBinding process:

• back preparation
• multiple glue applications
• spine taping
• cover application

These subprocesses are identified as instances of the abstract ABOperation element. Although a workflow may exist that
groups these processes according to its own capabilities, it is likely that they will be performed in the order presented. A
description of each follows the table containing the contents of the AdhesiveBindingParams resource.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: AdhesiveBinding
Output of processes: -

Resource Structure
Name Data Type Description
FlexValue ? double Flex quality parameter given in [N/cm].
PullOutValue ? double Pull out quality parameter given in [N/cm].
ABOperation + Element An abstract element which is a placeholder for an operation

(SpinePreparation, GlueApplication, SpineTaping, and
CoverApplication). Each ABOperation element describes the
parameters of one single operation of the complete
AdhesiveBinding process.

Page 283

Page 283

Block

Side gluing on
back side

Side gluing on
front side

Spine gluing

Front side
Back side

X

X

X

Y
Y

Y

Start
position

Glue

Figure 7.1 Parameters and coordinate system for glue application

7.2.4 ApprovalParams
This resource provides the details of an approval process.

Resource Properties
Resource class: Parameter
Resource referenced by: ##ref ProofingIntent[RP270]
Example Partition: -
Input of processes: Approval
Output of processes:

Resource Structure
Name Data Type Description
ApprovalPerson * element List of people (such as a customer, printer, or manager) who can

sign the approval.
MinApprovals =”1” integer Minimum number of ApprovalPersons with

ApproverRole=”Grou”p that must sign the ApprovalSuccess
for the ApprovalSuccess to be Available. Default=”1”.

Page 284

Page 284

Structure of ApprovalPerson Subelement

Name Data Type Description
Obligated ?
Deprecated in JDF 1.2

boolean If true, the person has to sign this approval.
Default = true
In JDF 1.2 and beyond, use ApproverRole.[RP271]

ApproverRole ? enumeration One of
Group: The Approver belongs to a group of which
MinApprovals members must sign.
Obligated: The Approver must sign the Approval. The default.
Informative: The Approver is informed of the Approval process
but not required for success. If he does not approve, the Approval
is still valid.[RP272]

Contact refelement Contact (such as a customer, printer, or manager) who must sign
the approval. One value included in [RP273]the ContactTypes
attribute of this Contact element should be Administrator.

7.2.5 ApprovalSuccess
The signed ApprovalSuccess resource indicates the signature that a resource has been approved. This is
frequently used to model the success of a soft proof, color proof, printing proof, or any other sort of proof.[RP274]

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, DocRunIndex, RunIndex, RunPage, RunTag, SetIndex, SheetName, Side,
SignatureName, TileID
Input of processes: any process
Output of processes: Approval, Verification

Resource Structure
Name Data Type Description
FileSpec ? refelement The file that contains the approval signature. If FileSpec does

not exist, ApprovalSuccess is a logical placeholder.
Contact *
New in JDF 1.2

refelement List of Contacts that have signed off on this Approval.[RP275]

7.2.6 AssetCollectionParams
The AssetCollectionParams resource defines the details of the AssetCollection process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, DocRunIndex, RunIndex, RunPage, RunTag, SetIndex, SheetName, Side,
SignatureName
Input of processes: AssetCollection
Output of processes: -

Page 285

Page 285

Resource Structure
Name Data Type Description[RP276]
FileSpec * refelement Specification of the paths to search when trying to locate the

referenced data. The ResourceUsage attribute must be
“SearchPath”.

7.2.7 AutomatedOverprintParams
This resource provides controls for the automated selection of overprinting of black text or graphics. RGBGray2Black
and RGBGray2BlackThreshold in ##refColorSpaceConversionOp are used by the ColorSpaceConversion
process in determining the allocation of RGB values to the black (K) channel. After the ColorSpaceConversion
process is completed, then the ##refRendering or ##refSeparation process uses AutomatedOverprintParams to
determine overprint behavior for the previously determined K channel.[TNH277]

Resource Properties
Resource class: Parameter
Resource referenced by: RenderingParams, SeparationControlParams
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
OverPrintBlackLineArt ?
Clarified in JDF 1.2

boolean Indicates whether overprint should be set to true for black line art
(vector elements other than text). If true, overprint of black line
art is applied regardless of any values in the PDL. If false,
LineArtBlackLevel is ignored and PDL Line Art overprint
operators are processed. Default = false.

OverPrintBlackText ?
Clarified in JDF 1.2

boolean Indicates whether overprint should be set to true for black text. If
true, overprint of black text is applied regardless of any values in
the PDL. If false, TextSizeThreshold and TextBlackLevel are
ignored and PDL Text overprint operators are processed. Default
= false.[RP278]

TextSizeThreshold ? integer Indicates the point size for text below which black text will be set
to overprint. For asymmetrically scaled text, the minimum point
size between both axes will be used. Default = 99999, i.e., all text
is set to overprint.

TextBlackLevel ? number A value between 0.0 and 1.0 which indicates the minimum black
level for the text stroke or fill colors that cause the text to be set to
overprint. Default = 1

LineArtBlackLevel ? number A value between 0.0 and 1.0 which indicates the minimum black
level for the stroke or fill colors that cause the line art to be set to
overprint. Defaults to the value of TextBlackLevel.

7.2.8 BlockPreparationParams
New in JDF 1.1
This resource describes the settings of a BlockPreparation process. For the tightbacking there are four different
kinds of book forms:

Page 286

Page 286

flat round flat and backed rounded and backed
Flat Round FlatBacked RoundBacked

For the rounding and for the backing there are two additional measurements:

Rounding: rounding way Backing: backing way

Resource Properties
Resource class: Parameter
Resource referenced by:
Example Partition: -
Input of processes: BlockPreparation

Resource Structure
Name Data Type Description
Backing ? number Backing distance in points. Default =system specified.
Rounding ? number Rounding distance in points. Default =system specified.
TightBacking? enumeration Definition of the geometry of the back of the book block. This can be one

of:
Flat: The default.
Round: Rounding way
FlatBacked: Backing way
RoundBacked: Rounding way, backing way

RegisterRibbon* refelement Description of the register ribbons that are included within the book block.

7.2.9 BoxPackingParams
New in JDF 1.1
This resource defines the parameters for packing a box of components. Details of the box used for BoxPacking
can be found in the Component (Box) resource that is also an input of the BoxPacking process.

Resource Properties
Resource class: Parameter
Resource referenced by:
Example Partition: -
Input of processes: BoxPacking
Output of processes: -

Resource Structure
Name Data Type Description
Pattern ? string Name of the box packing pattern. Used to store a predefined

pattern that defines the layers and positioning of individual
component in the box or carton.

Page 287

Page 287

FillMaterial ? NMTOKEN Material to fill boxes that are not completely filled. Includes
Paper
Styrofoam
BlisterPack
Default = None

7.2.10 BufferParams
New in JDF 1.1
This resource provides controls for Buffer process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: Buffer
Output of processes: -

Resource Structure
Name Data Type Description
MinimumWait ? duration Minimum amount of time that an individual resource must be

buffered.

7.2.11 Bundle
New in JDF 1.1
Bundles are used to describe sets of components.

Resource Properties
Resource class: Quantity[RP279]
Resource referenced by: Component
Example Partition: -
Input of processes: -
Output of processes: -

Structure of the Bundle Element
Name Data Type Description
BundleType enumeration One of:

BoundSet: Stack of components that are bound together.
Box
Carton
Palette
Sheet – Multiple individual items printed onto one Sheet.
Stack – Loose stack of components. The default.
WrappedBundle

FolioCount ? integer Total Amount of individual finished pages that this bundle contains. If not
specified, it must be calculated from the individual BundleItems.

ReaderPageCount ? integer Total Amount of individual reader pages that this bundle contains. If not
specified, it must be calculated from the individual BundleItems.

CumulativeAmount ? integer Total Amount of individual products that this bundle contains. If not
specified, it must be calculated from the individual BundleItems.

Page 288

Page 288

Name Data Type Description
BundleItem * refelement References to the individual items that form this Bundle.

Structure of the BundleItem Element
Name Data Type Description
Amount integer Number of this type of items.
ItemName ?
New in JDF 1.2

NMTOKEN Name of the bundle item. Used for referencing individual
BundleItems in a Bundle.

Orientation ? enumeration Named Orientation of the Component respective to the
Bundle coordinate system. Allowed values are:
Rotate0
Rotate90
Rotate180
Rotate0
Flip0
Flip90
Flip180
Flip270
For details, of the semantics of the enumeration, see Table 2-3
Only one of Orientation or Transformation may be specified.

Transformation ? matrix Orientation of the Component respective to the Bundle
coordinate system.

Component refelement Reference to a Component that is part of this Bundle.

The following example code shows a JDF that describes Boxing and Palletizing for 4200 books. The appropriate
Bundle elements are highlighted The resources have not yet been completely filled in.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="Bundle" Type="ProcessGroup" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting"
Version="1.1">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->
 <!-- The BoxPacking process consumes the thing to pack and the boxes-->
 <!-- The BoxPacking process creates packed boxes -->
 <JDF ID="n0235" Type="BoxPacking" Status="Waiting">
 <ResourceLinkPool>
 <ComponentLink rRef="BoxID" Usage="Input" ProcessUsage="Box"/>
 <BoxPackingParamsLink rRef="BoxParamsID" Usage="Input"/>
 <ComponentLink rRef="ComponentID" Usage="Input"/>
 <ComponentLink rRef="PackedBoxID" Usage="Output"/>
 </ResourceLinkPool>
 <!-- The BoxPacking process has the following local resources -->
 <ResourcePool>
 <BoxPackingParams ID="BoxParamsID" Class="Parameter" Status="Available" Quantity="42"/>
 <Component ID="BoxID" Class="Quantity" Amount="100" Status="Available"/>
 </ResourcePool>
 </JDF>
 <ResourcePool>
 <!-- This Component describes a Box with 42 Books -->
 <Component ID="PackedBoxID" Class="Quantity" rRefs="ComponentID" Amount="100"
Status="Unavailable">
 <Bundle BundleType=”Box” CumulativeAmount="42">
 <BundleItem Amount="42">
 <ComponentRef rRef="ComponentID"/>
 </BundleItem>
 </Bundle>
 </Component>
 <Component ID="ComponentID" Class="Quantity" Amount="4200" Status="Available"/>
 <!-- This Component describes the contents of the palette: 100 Boxes with 42 Books -->

Page 289

Page 289

 <Component ID="PaletteContentsID" Class="Quantity" rRefs="PackedBoxID" Amount="10"
Status="Unavailable">
 <Bundle BundleType=”Palette” CumulativeAmount="420">
 <BundleItem Amount="10">
 <ComponentRef rRef="PackedBoxID"/>
 </BundleItem>
 </Bundle>
 </Component>
 </ResourcePool>
 <JDF ID="n0239" Type="Palletizing" Status="Waiting">
 <ResourceLinkPool>
 <ComponentLink rRef="PackedBoxID" Usage="Input"/>
 <PaletteLink rRef="PaletteID" Usage="Input"/>
 <PalletizingParamsLink rRef="PaletteParamsID" Usage="Input"/>
 <ComponentLink rRef="PaletteContentsID" Usage="Output"/>
 </ResourceLinkPool>
 <ResourcePool>
 <Palette ID="PaletteID" Class="Consumable" Amount="10" Status="Available"/>
 <PalletizingParams ID="PaletteParamsID" Class="Parameter" Status="Available"
Quantity="10"/>
 </ResourcePool>
 </JDF>
</JDF>

7.2.12 ByteMap
This resource specifies the structure of bytemaps produced by various processes within a JDF system. A ByteMap
represents a raster of image data. This data may have multiple bits per pixel, may represent a varying set of color
planes, and may or may not be interleaved. A Bitmap is a special case of a ByteMap in which each pixel is
represented by a single bit per color.

Personalized printing requires that certain regions of a given page be dynamically replaced. The optional mask
associated with each band of data allows for omitting certain pixels from the base image represented by the
ByteMap so that they may be replaced.

Resource Properties
Resource class: Parameter
Resource references: RunList
Example Partition: -
Input of processes: Screening
Output of processes: Scanning, Rendering, Screening

Resource Structure
Name Data Type Description
BandOrdering ? enumeration Identifies the precedence given when ordering the produced bands. Possible

values are:
BandMajor – The position of the bands on the page is prioritized over the
color.
ColorMajor – All bands of a single color are played in order before
progressing to the next plane. This is only possible with non-interleaved data.
This field is required for non-interleaved data and is ignored for interleaved
data.

FrameHeight integer Height of the overall image that may be broken into multiple bands
FrameWidth integer Width of overall image that may be broken into multiple columns
Halftoned boolean Indicates whether or not the data has been halftoned.
Interleaved boolean If true, the data is interleaved, or chunky. Otherwise the data is non-

interleaved, or planar.
PixelSkip ? integer Number of bits to skip between pixels of interleaved data.

Page 290

Page 290

Name Data Type Description
Resolution XYPair Output resolution.
Band + element Array of bands containing raster data.
ColorPool ?
New in JDF 1.2

refElement Details of the colors represented in this Bytemap.

FileSpec ? refelement

A FileSpec resource pointing to a location where the raster should be (or
already is) stored. The ResourceUsage attribute of the FileSpec must be
“RasterFileLocation”.

PixelColorant + element Ordered list containing information about which colorants are represented and
how many bits per pixel are used.

Structure of Band Subelement
Name Data Type Description
Data URL Actual bytes of data.
Height integer Height in pixels of the band.
Mask ? URL 1-bit mask of raster data indicating which bits of the band data should

actually be used. It is required that the mask dimensions and resolution be
equivalent to the contents of the band itself.

WasMarked boolean Indicates whether any rendering marks were made in this band. This
attribute allows a band to be skipped if no marks were made in the band.

Width integer Width in pixels of the band.

Structure of PixelColorant Subelement
Name Data Type Description
ColorantName string Name of colorant.
PixelDepth integer Number of bits per pixel for each colorant.

7.2.13 CaseMakingParams
New in JDF 1.1
This resource describes the settings of a CaseMaking process.

Page 291

Page 291

Figure 7.2 CaseMakingParams

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: CaseMaking

Page 292

Page 292

Resource Structure
Name Data Type Description
BottomFoldIn ? number Defines the width of the part of the CoverMaterial on the lower edge

inside of the case. If not specified, defaults to TopFoldIn.
CoverWidth ? number Width of the cover cardboard in points.
CornerType ? NMTOKEN Method of wrapping the corners of the cover material around the

corners of the board. Possible values include:
LibraryCorner: the American Library Corner style.
If not specified defaults to the equipment specific setting.

FrontFoldIn ? number Defines the width of the part of the cover material on the front edges
inside of the case.

Height number Height of the book case in points.
JointWidth number Width of the joint in points as seen when laying the cardboard on the

CoverMaterial.
SpineWidth number Width of the spine cardboard in points.
TopFoldIn ? number Defines the width of the part of the CoverMaterial on the top edge

inside of the case.
GlueLine refelement As the glue is applied to the whole back side of the cover material,

AreaGluing must be set to true.

7.2.14 CasingInParams
New in JDF 1.1
This resource describes the settings of a CasingIn process. The geometry is always centered.

Page 293

Page 293

Figure 7.3 Parameters and Coordinate System for CasingIn

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: CasingIn

Resource Structure
Name Data Type Description
CaseRadius ? number Inner radius of the case spine rounding. If not specified, no

rounding of the case spine is performed.
GlueLine + refelement Properties of the glue used.

7.2.15 ChannelBindingParams
This resource describes the details of the ChannelBinding process. Figure 7.4 depicts the ChannelBinding process.

Page 294

Page 294

Figure 7.4 Parameters used for channel binding

The symbols W, L, and ClampD of Figure 7.4 are described by the attributes ClampD and ClampSize of the table below.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: ChannelBinding
Output of processes: -

Resource Structure
Name Data Type Description
Brand ? string The name of the clamp (or preassembled cover with clamp)

manufacturer and the name of the specific item.
ClampColor ? NamedColor Determines the color of the clamp/cover. If the clamp is inside of a

preassembled cover, then the color of the cover is meant. Default=
Default =system specified.

ClampD ? double The distance of the clamp that was “pressed away” (see Figure 7.4).
ClampSize ? shape The shape size of the clamp. The first number of the shape data type

corresponds to the clamp width W (see Figure 7.4) which is
determined by the final height of the block of sheets to be bound. The
second number corresponds to the length L (see Figure 7.4). The third
corresponds to the spine length (not visible in Figure 7.4. The spine
length is perpendicular on the paper plane).

ClampSystem ? boolean If true the clamp is inside of a pre assembled cover.
Default = false

7.2.16 CIELABMeasuringField
Information about a color measuring field. The color is specified as CIE-L*a*b* value.

Resource Properties
Resource class: Parameter
Resource referenced by: ColorControlStrip, Surface
Example Partition: -
Input of processes: Any printing process
Output of processes: -

Resource Structure
Name Data Type Description
Center XYPair Position of the center of the color measuring field in the

coordinates of the MarkObject that contains this mark. If the
measuring field is defined within a ColorControlStrip, Center
refers to the rectangle defined by Center and Size of the
ColorControlStrip.

Page 295

Page 295

Name Data Type Description
CIELab LabColor L*a*b* color specification.
DensityStandard ?
Deprecated in JDF 1.1

enumeration Density filter standard used during density measurements.
Possible values are:
ANSIA – ANSI Status A
ANSIE – ANSI Status E
ANSII – ANSI Status I
ANSIT – ANSI Status T. The default value
DIN16536
DIN16536NB

Diameter ?
Modified in JDF 1.1

double Diameter of measuring field.

Light
Deprecated in JDF 1.1

NMTOKEN Type of light. Possible values include:
D50
D65

Observer
Deprecated in JDF 1.1

integer Observer in degree (2 or 10)

Percentages ? DoubleList Percentage values for each separation. The number of array
elements must match the number of separations.

ScreenRuling ?

DoubleList Screen ruling values in lines per inch for each separation. The
number of array elements must match the number of separations.

ScreenShape ?

string Shape of screening dots.

Setup ?
Deprecated in JDF 1.1

string Description of measurement setup.

Tolerance ?
Modified in JDF 1.1

double Tolerance in ∆E.

ColorMeasurement-
Conditions ?
New in JDF 1.1

refelement Detailed description of the measurement conditions for color
measurements.

7.2.17 CoilBindingParams
This resource describes the details of the CoilBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: CoilBinding
Output of processes: -

Resource Structure
Name Data Type Description
Brand ? string The name of the coil manufacturer and the name of the specific

item. Default =system specified.
Color ? NamedColor Determines the color of the coil. Default =system specified.

Page 296

Page 296

Name Data Type Description
Diameter ? double The coil diameter to be produced is determined by the height of

the block of sheets to be bound. Default =system specified.
Material ? enumeration The material used for forming the coil binding:

LaqueredSteel
NylonCoatedSteel
PVC
TinnedSteel
ZincsSteel
Default = system specified

Shift ?
Deprecated in JDF
1.2[RP280]

double Amount of vertical shift that occurs as a result of the coil action
while opening the document. It is determined by the distance
between the holes. Default =system specified.
In JDF 1.2 and Beyond, use the value implied by
HoleMakingParams/@HoleType.[RP281]

Thickness ? double The coil’s thickness. Default =system specified.
Tucked ? boolean If true, the ends of the coils are “tucked in”. Default = false
HoleMakingParams ? refElement Details of the holes in CoilBinding.[RP282]

7.2.18 CollectingParams
The Collecting process needs no special attributes. However, this resource is provided as a container for
extensions of the Collecting process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Input of processes: Collecting
Output of processes: -

Resource Structure
Name Data Type Description

Page 297

Page 297

Direction of travel

Collecting chain

Target or operation
coordinate system

Source or component
coordinate system

Width

Height

X

X

Y

Y

Figure 7.5 Coordinate systems used for collecting

7.2.19 Color
JDF describes spot color inks and, along that line, process color (inks). Spot colors are named colors that may either
be separated or converted to process colors. It is important to know the neutral [RP283]density of the colorant (for
trapping) and, in many cases, the Lab values (for representing them on screen). If you know the Lab value, you can
calculate the neutral [RP284]density. When representing colors on screen, a conversion to process colors must be
defined. This conversion is a simple linear interpolation between the CMYK value of the 100% spot color and its
tint.

A color is represented by a Color element. It has a required Name attribute, which represents the name of
either a spot color or a process color. The four names that are reserved for representing process CMYK color names
are Cyan, Magenta, Yellow, and Black. Every colorant can have a Lab and/or CMYK color value. If both are
specified and a system is capable of interpreting both values, the Lab value overrides the CMYK definition, unless the
target device is compatible with CMYK, i.e. ColorantControl/@ProcessColorModel=”DeviceCMYK”. . [RP285]In
this case the CMYK value has precedence.

The Lab value represents the Lab readings of the ink on certain media. This means that spot inks printed on two
different kinds of stocks have different Lab values. Pantone books, for example, provide Lab values for three
[RP286]kinds of paper: coated (not necessarily glossy), matte [RP287]and uncoated. Thus a color of ink should identify the
media for which it is specified. CMYK colors are used to approximate spot colors when they are not separated. This
conversion can be done by a color management system, or there can be fixed CMYK representation defined by
colorbooks such as Pantone.

Resource Properties
Resource class: Parameter

Resource referenced by: ColorPool, Media, TrappingDetails
Input of processes: -
Output of processes: -

Example Partition: -

Page 298

Page 298

Resource Structure
Name Data Type Description
CMYK ? CMYKColor CMYK value of the 100 % tint value of the colorant. Although

optional, it is highly recommended that this value be filled. This
preferred CMYK may be associated with an ICC source profile
defined in the FileSpec element with a
ResourceUsage=“ColorProfile” when the target CMYK is
different from the PDL CMYK. [RP288]

Page 299

Page 299

Lab ? LabColor Lab value of the 100 % tint value of the colorant.
MediaType ? string Specifies the media type. Possible values include:

Coated – pertains to gloss coated.
Matte – pertains to matte or dull coated.
Uncoated[RP295]

Name string Name of the colorant. This is the value that must match the
Name attribute of a SeparationSpec that references this color.

ColorBook ? NMTOKEN Definition of the color identification standard that is used to
represent this color. Examples include:
HKS
PANTONE[RP289]
Toyo
Default = None

ColorBookEntry ? string Definition of the Color within the ColorBook standard. This
entry must exactly match the Colorbook entry as defined by the
ColorBook vendor including capitalization and media type
extension. When using ICC Profiles, this maps [RP290]to the
NCL2 value of a namedColorType tag of an ICC color profile.
Defaults to an empty string. This entry is used to map from the
JDF Color to an ICC namedColorType tag.

ColorBookPrefix ? string Definition of the name prefix of the color book entry within a
named ICC profile. Default = empty string. This entry is used to
map from the JDF Color to an ICC namedColorType tag.

ColorBookSuffix ? string Definition of the name suffix of the color book entry within a
named ICC profile. Default = empty string. This entry is used to
map from the JDF Color to an ICC namedColorType tag.

ColorName ?
New in JDF 1.1

NamedColor Mapping to a color name. Allowed values are defined in the
appendix section A.2.11 NamedColor.

ColorType ? enumeration A name that characterizes the colorant. If no value is specified,
the device must provide a default value. Possible values are:
DieLine – Marks made with colorants of this type are ignored for
trapping. Trapping processes need not generate a color plane for
this colorant. DieLine can be used for auxiliary process
separations. DieLine marks will generally appear on proof output
but will not not be marked on final output, e.g. plates. Note that
the ColorantControl resource must be correctly set up for the
RIP and that ColorType=”DieLine” does not implicitly remove
the DieLine separation from final output.[RP291]
Normal – Marks made with colorants of this type, marks covered
by colorants of this type, and marks on top of colorants of this
type are trapped.
Transparent – Marks made with colorants of this type should be
[RP292]ignored for trapping. Trapping processes should[RP293] not
generate a color plane for this colorant. ColorType
=”Transparent” should[RP294] be used for varnish.
Opaque – Marks covered by colorants of this type are ignored for
trapping. Opaque can be used for metallic inks.
OpaqueIgnore – Marks made with colorants of this type and
marks covered by colorants of this type are ignored for trapping.
OpaqueIgnore can be used for metallic inks.

Page 300

Page 300

Name may also be referenced from
Ink/@ColorName. [RP296]Only one Colorant with any given
Name must be specified in a ColorPool,

NeutralDensity ? number A number in the range of 0.001 to 10 that represents the neutral
density of the colorant, defined as 10*log(1/Y).
Y is the tristimulus value in CIEXYZ coordinates, normalized to
1.0. If no value is specified, the device must provide a default.

RawName ?
New in JDF 1.2

hexBinary Representation of the original 8-bit byte stream of the Color
Name. Used to transport the original byte representation of a
Color name when moving JDF tickets between computers with
different locales. Only one Colorant with any given RawName
must be specified in a ColorPool,

sRGB ? sRGBColor sRGB value of the 100 % tint value of the colorant.
UsePDLAlternateCS
[RP297]?

Boolean If true, the alternate colorspace definition defined in the PDL
must be used for color space transformations when available. If
false, the alternate color space definitions defined in sRGB,
CMYK or DeviceNColor of this Color must be used depending
on the value of ProcessColorModel in ColorantControl.
Default = true

ColorMeasurement-
Conditions ?
New in JDF 1.1

refelement Detailed description of the measurement conditions for color
measurements.

FileSpec ? refElement A FileSpec resource pointing to an ICC named color profile that
describes further details of the color. The ResourceUsage
attribute of the FileSpec must be “ColorProfile”. This ICC
profile is intended as a source profile for the named color whose
equivalent CMYK value is given in the CMYK attribute. [TNH298]

FileSpec ? refElement A FileSpec resource pointing to an ICC profile that defines the
target output device in case the object that uses the Color has
been colorspace converted to a device color space. TargetProfile
applies to the alternate color defined by the value of
UsePDLAlternateCS. The ResourceUsage attribute of the
FileSpec must be “TargetProfile”. See Section 7.2.54 FileSpec.

DeviceNColor * element Elements that defines the colorant in a non-standard device-
dependent process color space.

TransferCurve *
Modified in JDF 1.1

refElement A list of color transfer functions that is used to convert a tint value
to one of the alternative colorspaces. The transfer functions that
are not specified here default to a linear transfer: “0 0 1 1”

Structure of DeviceNColor Subelement
Name Data Type Description
ColorList DoubleList Value of the 100 % tint value of the colorant in the ordered

DeviceN space. The list must have N elements. A value of 0
specifies no ink and a value of 1 specifies full ink. The mapping
of indices to colors is specified in the DeviceNSpace element of
the ColorantControl resource.

N integer Number of colors that define the color space.
Name string Color space name, such as HexaChrome or HiFi. Name must

match the Name attribute of a DeviceNSpace element defined
in a ColorantControl resource.

Page 301

Page 301

Color Example
This is an example of the structure for colorant. The transfer curves in this example are defined for process CMYK
and sRGB, independently.

<Color Name="PANTONE Deep Blue" Density="3.14" MediaType="Coated"
Lab="20. 30. 40." CMYK="0.2 0.3 0.4 0.5" sRGB="0.6 0.7 0.9">
<TransferCurve Separation ="Cyan" Curve="0 0 .5 .4 1 1"/>
<TransferCurve Separation ="Magenta" Curve="0 0 .5 .6 1 1"/>
<TransferCurve Separation ="Yellow" Curve="0 0 1 1"/>
<TransferCurve Separation ="Black" Curve="0 0 1 1"/>
<TransferCurve Separation ="sRed" Curve="0 0 1 1"/>
<TransferCurve Separation ="sGreen" Curve="0 0 1 1"/>
<TransferCurve Separation ="sBlue" Curve="0 0 1 1"/>
<Color/>

7.2.20 ColorantControl
ColorantControl is a resource used to control the use of color when processing PDL pages. The attributes and
elements of the ColorantControl resource describe how color information embedded in PDL pages must be
translated into device colorant information.

Colorants are referenced in ColorantControl by name only. Additional details about individual colorants can
be found in the Color element of the ColorPool resource. ColorantControl resources control which device
colorants will be used as well as how document colors will be converted into device color spaces and how
conflicting color information should be resolved. Separation control is specified by the Separation process being
present.
ColorantControl can be used as follows to define the specific colorants of a DeviceN space:
ColorantControl/ColorPool/@ColorantNameSet matches ColorantControl/DeviceNSpace/Name and a
ColorantControl/ColorPool/Color resource (with correct Name of colorant and other defining attributes) exists for
each colorant of the DeviceNSpace as given in
ColorantControl/DeviceNSpace/SeparationSpec/@Name
ColorantControl can be used as follows to define a spot color and its values in an arbitraty DeviceNSpace:
ColorantControl/ColorantParams names a colorant (perhaps a Pantone spot color).
ColorantControl/DeviceNSpace names a DeviceN color space,
which then the
 ColorantControl/ColorPool/ColorantNameSet matches and then the corresponding

ColorantControl/ColorPool/Color/DeviceNColor/@ColorList attribute gives the set of
DeviceNSpace colorant percent values necessary to construct the

ColorantControl/ColorantParams colorant (also named
ColorantControl/ColorPool/Color/@Name) in using DeviceNSpace colorants.[TNH299]

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of Processes: ColorSpaceConversion, Screening, Separation, Trapping,

ConventionalPrinting, DigitalPrinting[RP300]
Output of processes: ColorSpaceConversion

Page 302

Page 302

Resource Structure
Name Data Type Description
ForceSeparations ? boolean If true, forces all colorants to be output as individual separations,

regardless of any values defined in ColorantControl, i.e., all
separations in a document are assumed to be valid and are output
individually.
Default = false, which means respect the parameters specified in
ColorantControl and elsewhere in the JDF.

ProcessColorModel ?
Modified in JDF 1.1

NMTOKEN Specifies the model to be used for rendering the colorants defined in
color spaces into process colorants. Possible values include:
DeviceCMY
DeviceCMYK
DeviceGray
DeviceN
DeviceRGB
Default = system specified

ColorantAlias * refelement Identify one or more named colorants that should be replaced with a
specified named colorant. The identified colorant remappings in this
ColorantControl/ColorantAlias are consolidated for processing from
the ColorantAlias information received in the LayoutElement
resources with the job content.[TNH301]

ColorantOrder ?
Modified in JDF 1.1a
Clarified in JDF 1.2

element The ordering of named colorants to be processed, for example in the
RIP. All of the colorants named must either occur in the
ColorantParams list, or be implied by the ProcessColorModel.
If present, then only the colorants specified by ColorantOrder must be
output. Colorants listed in the ColorantParams list, or implied by the
ProcessColorModel but not listed in ColorantOrder must not be
output. They must still be processed for side effects in the colorants that
are listed such as knock outs or trapping.
If not present, then all colorants specified in ColorantParams and
implied by ProcessColorModel are output. The explicit or implied
value of ColorantOrder may be modified by an implied partition of the
ColorantControlLink. If one or more
ColorantControlLink/Part/@Separation are specified, ColorantOrder is
reduced to the list. It is an error to specify values of
ColorantControlLink/Part/@Separation that are not explicitly stated or
implied by ColorantOrder.[RP302]

ColorantParams ? element A set of named colorants. This list defines all the colorants that are
expected to be available on the device where the process will be
executed. Named colors found in the PDL that are not listed in
ColorantParams will be implemented through their
ProcessColorModel equivalents. The colorants implied by the value of
ProcessColorModel are assumed and must not be specified in this list.
The spot colors defined in ColorIntent::ColorsUsed will in general be
mapped to ColorantParams as part of any intent to process
conversion.[RP303]

Page 303

Page 303

ColorSpaceSubstitute * element These subelements identify a colorant that should be replaced by another
colorant.

DeviceColorantOrder
[RP304]?

element The ordering of named colorants (i.e., lay down order) to be output on
the device2, such as press modules. All of the colorants named must
occur in ColorantOrder if it is present. If ColorantOrder is not
present, then all of the colorants named must occur in the
ColorantParams list, or be implied by the ProcessColorModel. If the
DeviceColorantOrder element is not specified, the colorant lay down
order defaults to ColorantOrder.[RP305]

DeviceNSpace * element Defines the colorants that make up a DeviceN color space. The
DeviceNSpace attribute is required when the ProcessColorModel
value is DeviceN.[TNH306]

Structure of ColorantAlias Subelement

Name Data Type Description
ReplacementColorantN
ame

string The name of the colorant to be substituted for the colorants named in
the SeparationSpec element list.

SeparationSpec * element The names of the colorants to be replaced in PDL files.

Structure of ColorantOrder, ColorantParams, and DeviceColorantOrder Elements
Name Data Type Description
SeparationSpec * Element The names of the colorants that define the respective lists.

Structure of ColorSpaceSubstitute Subelement

Name Data Type Description
PDLResourceAlias element A reference to a color space description that replaces the color space defined

by TargetColorantName.
SeparationSpec + element A list of names that defines the colorants to be replaced. This could be a

single name in the case of a Separation color space, or more than one name
in the case of a DeviceN color space.

Structure of DeviceNSpace Subelement
Name Data Type Description
Name ? string Color space name, such as HexaChrome or HiFi.
N integer The number of colors that define the color space.

SeparationSpec * element Ordered list of colorant names that define the DeviceN colorspace. The
ordering maps to the ordering of elements in the corresponding
Color::DeviceNColor::ColorList attribute. Note that these colorants must be
specified in the ColorantParams element of the ColorantControl or be
implied by ProcessColorModel . In other words, they must be real physical
colorants.

1 Note that this will generally be an inter-resource link.
2 Note that this must be synchronized with the device output ICC profile.

ColorPool ? refelement Pool of Color elements that define the specifics of the colors named in
ColorantControl.1

Page 304

Page 304

Example output for different values of of ProcessColorModel, ColorantOrder,
ColorantControlLink, ColorantParams, and DeviceColorantOrder Elements

ProcessColor
Model

ColorantParams ColorantOrder ColorantControl
Link/Part/@Sep
atration

Colorants not
shown in the
output.

Separations that
are output
and ordered for
press using
DeviceColorant
Order

DeviceCMYK not present Cyan
Magenta

-

Yellow
Black

Cyan
Magenta
 (If
DeviceColorant
Order is not
present then lay
down order will
be Cyan first,
Black last.)

DeviceCMYK Spot1
Spot2

Cyan
Magenta
Yellow
Black
Spot2

- Spot1 Cyan
Magenta
Yellow
Black
Spot2

DeviceCMYK Spot1
Spot2

Cyan
Magenta
Yellow
Black
Spot2

Cyan
Magenta

Spot1
Spot2
Yellow
Black

Cyan
Magenta

DeviceN (with
example N=2
Colorants as
identified in
DeviceNSpace)

Spot1
Spot2

Spot2
DeviceN 1
DeviceN 2

-

Spot1 DeviceN 1
DeviceN 2
Spot2
The reordering is
accomplished
using
DeviceColorant
Order. [RP307]

7.2.21 ColorControlStrip
This resource describes a color control strip. The type of the color control strip is given in the StripType attribute.
If it is known at the system reading the JDF file, there is no need to define the elements of the strip, and the attribute
DensityMeasuringFields is not needed. Otherwise, this attribute must contain a definition of the contained
measuring fields. The lower left corner of the control strip box is used as the origin of the coordinate system used
for the definition of the measuring fields. It can be calculated using the following formula:

)cos(
2

)sin(
2

)sin(
2

)cos(
2

0

0

ϕϕ

ϕϕ

hwyy

hwxx

−−=

+−=

Page 305

Page 305

where x = X element of the Center attribute
y = Y element of the Center attribute
w = X element of the Size attribute
h = Y element of the Size attribute
ϕ = Value of the Rotation attribute

Resource Properties
Resource class: Parameter
Resource referenced by: Surface
Example Partition: -
Input of processes: Any printing process:
Output of processes: -

Resource Structure
Name Data Type Description
Center XYPair Position of the center of the color control strip in the coordinates of

the MarkObject that contains this mark.
Rotation ? double Rotation in degrees. Positive graduation figures indicate counter-

clockwise rotation; negative figures indicate clockwise rotation.
Size XYPair Size of the color control strip.
StripType ? NMTOKEN Type of color control strip. This attribute can be used for specifying

a predefined, company-specific color control strip.
CIELABMeasuringField *
New in JDF 1.1

refelement Details of a CIELab measuring field that is part of this
ColorControlStrip.

DensityMeasuringField *
New in JDF 1.1

refelement Details of a density measuring field that is part of this
ColorControlStrip.

7.2.22 ColorCorrectionParams
This resource provides the information needed for an operator to correct colors on some PDL pages or content
elements such as image, graphics, or formatted text.
The preferred color adjustment method allows for multi-dimensional adjustments through the use of either an ICC
Abstract profile or an ICC DeviceLink profile. The adjustments are not universally colorimetrically calibrated.
However, when either of the ICC profile adjustment methods are used, these standard ICC profile formats can be
interpreted and applied using generally recognized ICC profile processing techniques. Use of the ICC Abstract
profile adjustment will cause the adjustment to be applied in ICC Profile Connection Space, after each source profile
is applied, in sequence before final target color conversion. Use of the ICC DeviceLink profile adjustment will cause
the adjustment to be applied in final target device space, after the final target color conversion.

In addition to color adjustment using an ICC profile, the AdjustXxxx attributes each provide a direct color
adjustment applied to the interpretation of the PDL data at an implementation dependent point in the processing after
each source profile is applied (if source to destination color conversion is required). The L*a*b* values range from
-100 to +100 to indicate the minimum and maximum of the range that the system supports. A 0 value means no
adjustment. The color adjustment attributes differ from the Tone Reproduction Curve (TRC) attributes that can be
applied later in the processing path in two key ways. First, the AdjustXxx use, even when included in the job, will
vary as a function of job content. Second, the data values associated with the AdjustXxx attributes are arbitrary, and
their interpretation will be printer dependent. For details see Appendix ##ref Appendix Color Adjustment attribute
description.

Note: These color adjustments are not available in any Product Intent Resource, such as ColorIntent. In order to
request such adjustment in a Product Intent Job Ticket supplied to a Print Provider, attach to a Product Intent Node

Page 306

Page 306

an incomplete ColorCorrection Process with a ColorCorrectionParams resource specifying the requested
AdjustXxxx attributes. See the note entitled “Error! Reference source not found.” for this technique. [RP308]

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes: ColorCorrection
Output of processes: -

Resource Structure
Name Data Type Description
ColorManagementSystem
?

string Identifies the preferred ICC color-management system to use when
performing corrections. Overrides the default selection of the
application or the selection contained in any of the profiles when
specified.

FileSpec ? refelement A FileSpec resource pointing to an ICC profile that describes the
characterization of the final output target device. The
ResourceUsage attribute of the FileSpec must be
“FinalTargetDevice”.

FileSpec ?
Deprecated in JDF 1.1

refelement A FileSpec resource pointing to an ICC profile that describes the
assumed characterization of CMYK, RGB and Gray colorspaces.
The ResourceUsage attribute of the FileSpec must be
“WorkingColorSpace”.

ColorCorrectionOp * element List of ColorCorrectionOp subelements.

It is assumed that color correction will be performed by a human operator. No attempt is made to encode specific
types of operations. Subelements of the ColorCorrectionParams resource should contain a Comment to
describe the desired correction operation, and, optionally, to provide a region to be corrected via the Comment::Path
or Comment::Box elements.

Structure of ColorCorrectionOp Subelement
Name Data Type Description
SourceObjects ? enumerations Identifies which class(es) of incoming graphical objects will be

operated on. Possible values are:
All – Default value.
ImagePhotographic – Contone images.
ImageScreenShot – Images largely comprised of rasterized vector
art.
Text
LineArt – Vector objects other than text
SmoothShades – Gradients and blends.

AdjustCyanRed ?
New in JDF 1.2

double Specifies the L*a*b* adjustment in the Cyan/Red axis in the range
-100 (maximum Cyan cast for the system) to + 100 (maximum Red
cast for the system) while maintaining lightness. See explanation
above.

AdjustMagentaGreen ?
New in JDF 1.2

double Specifies the L*a*b* adjustment in the Magenta/Green axis in the
range -100 (maximum Magenta cast for the system) to + 100
(maximum Green cast for the system) while maintaining lightness.
See explanation above.

Page 307

Page 307

AdjustYellowBlue ?
New in JDF 1.2

double Specifies the L*a*b* adjustment in the Yellow/Blue axis in the
range -100 (maximum Yellow cast for the system) to + 100
(maximum Blue cast for the system) while maintaining lightness.
See explanation above.

AdjustContrast ?
New in JDF 1.2

double Specifies the L*a*b* contrast adjustment in the range -100
(minimum constrast for the system, i.e., a solid midtone gray color,) to + 100
(maximum constrast for the system, i.e., either use full color (the maximum is restricted

by the system ink limit) or no color for each of Cyan, Magenta, Yellow, and Black). Increasing the
contrast value increases the variation between light and dark areas
and decreasing the contrast value decreases the variation between
light and dark areas. See explanation above.

AdjustHue ?
New in JDF 1.2

double Specifies the change in the L*a*b* hue in the range -180 to 180 of
all colors by the specified number of degrees of the color circle. See
explanation above.

AdjustLightness ?
New in JDF 1.2

double Specifies the decrease or increase of the L*a*b* lightness in the
range -100 (minimum lightness for the system, i.e., black) to + 100
(maximum lightness for the system, i.e., white). Increasing the
lightness value causes the output to appear lighter and decreasing
the lightness value causes the output to appear darker. See
explanation above.

AdjustSaturation ?
New in JDF 1.2

double Specifies the increase or decrease of the L*a*b* color saturation in
the range -100 (minimum saturation for the system) to + 100
(maximum saturation for the system). Increasing the saturation
value causes the output to contain more vibrant colors and
decreasing the saturation value causes the output to contain more
pastel and gray colors. See explanation above.

FileSpec ?
New in JDF 1.2

refelement A FileSpec resource pointing to an Abstract ICC profile that has
been devised to apply a preference adjustment (see explanation of
adjustment at the beginning of this section). The ResourceUsage
attribute of the FileSpec must be “AbstractProfile”.[RP309]

FileSpec ?
New in JDF 1.2

refelement A FileSpec resource pointing to an ICC profile that describes the
characterization of an Abstract Profile for specifying a preference
adjustment (see explanation of adjustment at the beginning of this
section). The ResourceUsage attribute of the FileSpec must be
“DeviceLinkProfile”.[TNH310]

7.2.23 ColorMeasurementConditions
New in JDF 1.1
This resource contains information about the specific measurement conditions for spectral or densitometric color
measurements. Spectral measurements refer to CIE Publication 15.2 - 1986 "Colorimetry, Second Edition" and ISO
13655:1996 "Graphic technology - Spectral measurement and colorimetric computation for graphic arts images."
The default measurement conditions for spectral measurements are illuminant D50 and 2 degree observer.

Density measurements refer to ISO 5-3:1995 “Photography – Density measurements – Part 3: Spectral
conditions” and ISO 5-4:1995 “Photography – Density measurements – Part 4: Geometric conditions for reflection
density.” The default measurement conditions for densitometric measurements are density standard ISO/ANSI
Status T, calibration to absolute white and using no polarization filter.

Resource Properties
Resource class: Parameter
Resource referenced by: CIELABMeasuringField, Color, DensityMeasuringField
Example Partition: -
Input of processes: -

Page 308

Page 308

Output of processes: -

Resource Structure
Name Data Type Description
DensityStandard ? enumeration Density filter standard used during density measurements. Possible

values are:
ANSIA – ANSI Status A
ANSIE – ANSI Status E
ANSII – ANSI Status I
ANSIT – ANSI Status T. The default value
DIN16536
DIN16536NB

Illumination ? enumeration Illumination used during spectral measurements. Possible values are:
D50 – Default value.
D65
Unknown

InkState ? enumeration State of the ink during color measurements. Possible values are:
Dry – Default value.
Wet
NA

Instrumentation ? string Specific instrumentation used for color measurements, e.g.,
manufacturer, model number and serial number.

MeasurementFilter ? enumeration Optical Filter used during color measurements. Possible values are:
None – No filter used. Default value.
Pol – Polarization filter used
UV – Ultraviolet cut filter used

Observer ? integer CIE standard observer function (2 degree and 10 degree) used during
spectral measurements. Values are in degree (2 or 10).
Default = 2

SampleBacking ? enumeration Backing material used behind the sample during color measurements.
Possible values are:
Black – Default value.
White
NA

WhiteBase ? enumeration Reference for white calibration used for density measurements. Possible
values are:
Absolute – Means the instrument is calibrated to a device specific
calibration target (absolute white) for absolute density measurements.
Default value
Paper – Means the instrument is calibrated relative to paper white

7.2.24 ColorPool
The ColorPool resource contains a pool of all Color elements referred to in the job. In general it will be referenced
as a ResourceRef from within resources that require access to color information. When referenced from
ColorSpaceConversionOp, the ColorPool resource provides the color information for source color object
interpretation. When referenced from ColorantControl, the ColorPool resource provides the color information for
the target colorants[RP311].

Page 309

Page 309

Resource Properties
Resource class: Parameter
Resource referenced by: ColorantControl
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
Color * element Individual named color.
ColorantSetName ? string A string used to identify the named colorant parameter set. This

string will be used to identify a set of color definitions (typically
associated with a particular class of job or a particular press).

7.2.25 ColorSpaceConversionParams
This set of parameters defines the rules for a ColorSpaceConversion process, the elements of which define the
set of operations to be performed. Information inside the ColorSpaceConversionOp elements, described below,
defines the operation and identifies the colorspaces and types of objects to operate on. Other attributes define the
color management system to use, as well as the working color space and the final target device.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes: ColorSpaceConversion, [RP312]
Output of processes: -

Resource Structure
Name Data Type Description
ColorManagementSystem
?
Clarified in JDF 1.2

string Identifies the preferred ICC color management system to use
when performing transformations. Overrides the default
selection of the application or that contained in any of the
profiles when specified. This string should match the ICC
CMMType value.

ConvertDevIndepColors ?
Deprecated in JDF 1.1

boolean When true, incoming device-independent colors are processed to
the selected device space. If the chosen operation is untag and
the characterization data are in the form of an ICC profile, then
the profile is removed. Otherwise, these colors are left
untouched. Default = false. The functionality of ConvertDev-
IndepColors is superceded by including one or more
ColorSpaceConversionOp with SourceCS=”DevIndep” in
JDF 1.1.

ICCProfileUsage ?
New in JDF 1.2

enumeration
[RP313]

This attribute specifies where to obtain the destination profile for
the current iteration of the ColorSpaceConversion process,
i.e., either from the PDL, e.g. PDF/X job content, or supplied in
the JDF ColorSpaceConversionParams resource.
The ColorSpaceConversionParams resource may contain a
profile carried forward from the appropriate LayoutElement
resource, or may contain a profile supplied by the print provider
to match the color-rendering color conversion requirements of
this iteration of the combined process.
ICCProfileUsage provides an order precedence as shown below.
Use the first found profile in the order shown.

Page 310

Page 310

Name Data Type Description
Possible ICCProfileUsage values are:
UsePDL – default:

1. Use the PDL embedded profile
2. Use a profile specified in ElementColorParams.
3. Use the profile specified in

ColorSpaceConversionParams[TNH314]/FileSpec
4. Use the system specified profile

UseSupplied:

1. Use a profile specified in ElementColorParams.
2. Use the profile specified in

ColorSpaceConversionParams[TNH315]/FileSpec
3. Use the system specified profile[TNH316]

FileSpec ?
Clarified in JDF 1.2

refelement A FileSpec resource pointing to an ICC profile that describes a
characterization and color-rendering to be used in transforming
to the color encoding for the output target device.
This item is required when converting, but optional for
tagging or untagging. [RP317]

The ResourceUsage attribute of the FileSpec must be
“FinalTargetDevice”.[RP318]

FileSpec ?
Deprecated in JDF 1.1

refelement

A FileSpec resource pointing to an ICC profile that describes
the assumed characterization of CMYK, RGB and Gray
colorspaces. The ResourceUsage attribute of the FileSpec
must be “WorkingColorSpace”.

ColorSpaceConversionOp
*

ref[RP319]eleme
nt

List of ColorSpaceConversionOp subelements.

Structure of ColorSpaceConversionOp Subelement
Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: ColorSpaceConversion, LayoutElement
Output of processes: -

[RP320]
Name Data Type Description
IgnoreEmbeddedICC ? boolean If true, specifies that embedded source ICC profiles must be ignored

and that the ICC profile [ICC.1] [RP321]defined by SourceProfile
must be used instead. Default = false.

Page 311

Page 311

Name Data Type Description
Operation ?[RP322] enumeration Controls which of five functions the color space conversion utility

performs. Possible values are:
Convert – Transforms graphical elements to final target color space.
Tag – Associates appropriate working space profile with
uncharacterized graphical element.
Untag – Removes all profiles and color characterizations from
graphical elements
Retag –[RP323]Equivalent to a sequence of Untag–> Tag.
ConvertIgnore –[RP324]Equivalent to a sequence of UnTag –>
Convert.
Operation must be specified in the context of
ColorspaceConversionParams and must not be specified in the context
of ElementColorParams.[RP325]
NOTE: The table below describes the effect of this attribute in
combination with the SourceCS and IgnoreEmbeddedICC
attributes.[RP326]

PreserveBlack ?
New in JDF 1.1

boolean Controls how the tints of black (K in CMYK) should be handled. If
PreserveBlack is false, these colors are processed through the standard
ICC workflow. If PreserveBlack is true, these colors should be
converted into other shades of black. The algorithm is
implementation-specific.
Default = false

RenderingIntent =”
ColorSpaceDependent”
Modified in JDF 1.2

enumeration If the SourceRenderingIntent attribute is NOT present then
RenderingIntent identifies the rendering intent transform elements to
be selected from the source and destination profiles.
If the SourceRenderingIntent attribute is present then
RenderingIntent identifies the rendering intent transform element to
be selected from the destination profile.
RenderingIntent is used to color-render objects of type identified by
the SourceObjects and SourceCS attributes.[TNH327]Possible ICC-
defined [ICC.1] [TNH328]rendering intent values are:
Saturation
Perceptual Modified in JDF 1.2
RelativeColorimetric
AbsoluteColorimetric
ColorSpaceDependent – the Default.The default has changed in JDF
1.2. The default behavior is that RelativeColorimetric rendering intent
is used for both the source and destination rendering intents when both
the source and destination color encodings are CMYK encodings. For
other cases, the default behavior is that Perceptual rendering intent is
used for both the source and destination rendering intents.. [RP329]

Page 312

Page 312

Name Data Type Description
RGBGray2Black ?
Clarified in JDF 1.2

boolean This feature controls what happens to gray values (R = G = B) when
converting from RGB to CMYK for the incoming graphical objects
indicated by SourceObjects. In the case of MS Office applications
and screen dumps, there are a number of gray values in the images
and line art. Printers do not want to have CMY under the K (causes
registration problems). Therefore, they prefer to have K only, so the
Printer converts the gray values to K. Gray values that exceed the
RGBGray2BlackThreshold are not converted. RGBGray2Black
and RGBGray2BlackThreshold are used by the
ColorSpaceConversion process in determining how to allocate
RGB values to the Black (K) channel. After the
ColorSpaceConversion process is completed, then the
Rendering process uses AutomatedOverprintParams to
determine overprint behavior for the previously determined K
channel.
Default = false

RGBGray2BlackThresh
old ?
New in JDF 1.2

number A value between 0.0 and 1.0 which specifies the threshold value
above which the Device must not convert gray (R = G = B) to black
(K only) when RGBGray2Black is true. So a 0 value means
convert only R = G = B = 0 (black) to K only. Default = 1 (all
values of R = G = B are converted to K if RGBGray2Black is true.
[RP330]

Page 313

Page 313

Name Data Type Description
SourceCS
Modified in JDF 1.2

enumeration Identifies which of the incoming color spaces will be operated on.
Possible values are:
Calibrated – Operates on CalGray and CalRGB color spaces. New
in JDF 1.2
CIEBased – Operates on CIE-Based color spaces (CIEBasedA,
CIEBasedABC, CIEBasedDEF, CIEBasedDEFG). New in JDF
1.2
CMYK – Operates on deviceCMYK.
DeviceN – Identifies the source color encoding as a DeviceN color
space. The specific DeviceN color space to operate on is defined in
the DeviceNSpace resource. If this value is specified then the
DeviceNSpace and ColorPool refelements must also be present.
New in JDF 1.2
DevIndep– Operates on device independent colorspaces
(equivalent to Calibrated or CIEBased or ICCBased or Lab or
YUV). Clarified in JDF 1.2
Gray – Operates on deviceGray.
ICCBased – Operates on color spaces defined using ICC profiles.
ICCBased includes EPS, TIFF or PICT files with embedded ICC
profiles. See [ICC.1].
If IgnoreEmbeddedICC is true then nominally ICCBased files or
elements should be treated as being encoded in the Alternate or
underlying color space, and a ColorSpaceConversionOp where
SourceCS=DevIndep will not be applied, unless that color space is
also device independent. New in JDF 1.2

Lab – Operates on Lab. New in JDF 1.2

RGB – Operates on deviceRGB Modified in JDF 1.2
Separation – Operates on Separation color spaces (spot colors). The
specific separation(s) to operate on are defined in the
SeparationSpec resource(s). If no SeparationSpec is defined,
the operation will operate on all the separation color spaces in the
input RunList. New in JDF 1.2
YUV – Operates on YUV (Also known as YCbCr). See [CCIR601-
2] New in JDF 1.2

NOTE: JDF 1.1 defined that CalRGB be treated as RGB, CalGray
as Gray and ICCBased color spaces as one of Gray, RGB or
CMYK depending on the number of channels.

NOTE: see table below for a description on how the SourceCS
values map into the most relevant file.

SourceCS enumeration Identifies which of the incoming color spaces will be operated on.
Possible values are:
CMYK – Operates on deviceCMYK or 4-component ICC-based
colorspaces.
DevIndep– Operates on device independent colorspaces.
RGB – Operates on deviceRGB, calRGB or 3-component ICC-based
colorspaces
Gray – Operates on deviceGray, calGray or 1-component ICC-based
colorspaces.

Page 314

Page 314

Name Data Type Description
SourceObjects ? enumerations List of object classes that identifies which incoming graphical objects

will be operated on. Possible values are:
All – Default value.
ImagePhotographic – Contone images.
ImageScreenShot – Images largely comprised of rasterized vector art.
Text
LineArt – Vector objects other than text.
SmoothShades – Gradients and blends.

SourceRenderingIntent
?
New in JDF 1.2

enumeration Identifies the rendering intent transform element to be selected from
the source profile. SourceRenderingIntent will be used to
interpret objects of type identified by the SourceObjects and
SourceCS attributes. Possible ICC-defined [ICC.1] rendering
intent values are:
Saturation
Perceptual
RelativeColorimetric
AbsoluteColorimetric
ColorSpaceDependent – the Default. The default behavior is that
RelativeColorimetric rendering intent is used for both the source
and destination rendering intents when both the source and
destination color encodings are CMYK encodings. For other cases,
the default behavior is that Perceptual rendering intent is used for
both the source and destination rendering intents.
If not specified, SourceRenderingIntent inherits the value of
RenderingIntent.
Note: The SourceRenderingIntent will pertain to the source profile
used in a particular ColorSpaceConversion process (e.g., source
colorspaces may be the native original color space, an intermediate
working color space, or an Reference Output simulation color
space).[RP331]

DeviceNSpace ?

New in JDF 1.2
refelement DeviceNSpace resource that describe the DeviceN color space on

which to operate when SourceCS=DeviceN. Individual colorant
definitions for the colorant names given in DeviceNSpace are
provided in the ColorPool resource, which must also be present.

[RP332]

FileSpec? refelement A FileSpec resource pointing to an ICC profile [ICC.1] [RP333]that
describes the assumed source color space. The default is to use
embedded profiles. See IgnoreEmbeddedICC . The
ResourceUsage attribute of the FileSpec must [RP334]be
“SourceProfile”.

SeparationSpec *
New in JDF 1.2

refelement SeparationSpec resource(s) defining on which separation(s) to
operate when SourceCS=Separation[RP335]

Notes:
DevIndep has been retained for backwards compatibility with JDF 1.1, and because there will probably be cases
where the same processing should be applied to all device independent spaces. An equivalent “DevDep” has not
been added because it’s less likely that all device dependent spaces should be treated in the same way.
The following table summarizes how the SourceCS attribute is mapped to/from different file formats.

Page 315

Page 315

Table 7-17-2 –Mapping of SourceCS enumeration values to color spaces in the most common input file formats.Appendix XXX
[RP336]contains [amc337]a detailed description of the color spaces supported by each one of these formats.

SourceCS File format Color space(s)
PDF(2) DeviceRGB(1)
PostScript DeviceRGB

RGB

TIFF PhotometricInterp = 2
PDF(2) DeviceCMYK(1)
PostScript(2) DeviceCMYK

CMYK

TIFF PhotometricInterp = 5,
Samples per pixel = 4

PDF(2) DeviceGray(1)
PostScript(2) DeviceGray

Gray

TIFF PhotometricInterp = 0 or 1
PDF(2) N/a
PostScript(2) N/a

YUV

TIFF PhotometricInterp = 6
PDF(2) CalGray, CalRGB
PostScript(2) N/a

Calibrated

TIFF N/a
PDF(2) N/a
PostScript(2) CIEBasedABC, CIEBasedA, CIEBasedDEF,

CIEBasedDEFG

CIEBased

TIFF N/a
PDF(2) LAB
PostScript(2) N/a

LAB

TIFF PhotometricInterp = 8 (CIELab 1976
“normal” encoding) or PhotometricInterp = 9
(CIELab 1976 using ICC profile v4 encoding)

PDF(2) ICCBased
PostScript(2) N/a

ICCBased

PostScript/EPS The EPS file has an embedded ICC profile
 TIFF The TIFF file has an embedded ICC profile

PDF(2) Separation
PostScript(2) Separation

Separation

TIFF PhotometricInterp = 5
(applies only to one of the planes in the
separated image)

PDF(2) DeviceN
PostScript(2) DeviceN

DeviceN

TIFF PhotometricInterp = 5,
Samples per pixel != 4

Page 316

Page 316

(1)DeviceCMYK, DeviceRGB and DeviceGray in PDF files should be mapped through DefaultCMYK, DefaultRGB or DefaultGray color
spaces, if present, before determining whether this operation should be applied.
(2) Where a Pattern or Indexed color space has been used the base color space is used to determine whether this
operation should be applied.[RP338]

Table 7-37-4 - Effect of color space [RP339]conversion operations on color spaces.

SourceCS Opera
tion

Ignore
Embedde
d
ICC

FileSpec
(SourceProfile)

Description

false CMYK ICC profile Changes the CMYK color spaces (i.e. those
without ICC profiles) in the RunList to an
ICCBased color space using the SourceProfile ICC
profile.

Tag

true CMYK ICC profile Changes the CMYK color spaces and all ICCBased
color spaces with four components (CMYK) in the
RunList to an ICCBased color space using the
SourceProfile ICC profile.

Untag N/a N/a N/a
false CMYK ICC profile Converts the objects and/or images in CMYK color

spaces (i.e. those without ICC profiles) using the
SourceProfile ICC profile as input profile and the
FinalTargetDevice ICC profile as output profile.

CMYK

Convert

true CMYK ICC profile Converts the objects and/or images in CMYK color
spaces and in four components (CMYK)
ICCBased color spaces, using the SourceProfile
ICC profile as input profile and the
FinalTargetDevice ICC profile as output profile.

Tag false RGB ICC profile Changes the RGB color spaces (i.e. those without
ICC profiles) in the RunList to an ICCBased color
space using the SourceProfile ICC profile.

 true RGB ICC profile Changes the RGB color spaces and all ICCBased
color spaces with three components (RGB) in the
RunList to an ICCBased color space using the
SourceProfile ICC profile.

Untag N/a N/a N/a
false RGB ICC profile Converts the objects and/or images in RGB color

spaces (i.e. those without ICC profiles) using the
SourceProfile ICC profile as input profile and the
FinalTargetDevice ICC profile as output profile.

RGB

Convert

true RGB ICC profile Converts the objects and/or images in RGB color
spaces and in three components (RGB) ICCBased
color spaces, using the SourceProfile ICC profile
as input profile and the FinalTargetDevice ICC
profile as output profile.

Gray Tag false Monochrome ICC
profile

Changes the Gray color spaces (i.e. those without
ICC profiles) in the RunList to an ICCBased color
space using the SourceProfile ICC profile.

Page 317

Page 317

 true Monochrome ICC
profile

Changes the Gray color spaces and all ICCBased
color spaces with one component (Gray) in the
RunList to an ICCBased color space using the
SourceProfile ICC profile.

Untag N/a N/a N/a
false Monochrome ICC

profile
Converts the objects and/or images in Gray color
spaces (i.e. those without ICC profiles) using the
SourceProfile ICC profile as input profile and the
FinalTargetDevice ICC profile as output profile.

Convert

true Monochrome ICC
profile

Converts the objects and/or images in Gray color
spaces and in one component (Gray) ICCBased
color spaces, using the SourceProfile ICC profile
as input profile and the FinalTargetDevice ICC
profile as output profile.

Tag N/a Lab or YUV ICC
profile

Changes the YUV or Lab color spaces in the
RunList to an ICCBased color space using the
SourceProfile ICC profile. If SourceProfile is a
YUV profile only YUV color spaces are affected; if
SourceProfile is an Lab profile only Lab color
spaces are affected.

Untag N/A N/a This operation does not have any effect.

YUV, Lab

Convert N/a N/a Converts the objects and/or images in the specified
color spaces using the source definition embedded
in the file and the FinalTargetDevice ICC profile
as output profile.

Tag N/a RGB or
Monochrome ICC
profile

Changes the Calibrated color spaces in the
RunList to an ICCBased color space using the
SourceProfile ICC profile. If SourceProfile is an
RGB profile only CalRGB color spaces are
affected; if SourceProfile is a monochrome profile
only CalGray color spaces are affected.

Untag N/A N/a Changes CalRGB color spaces to RGB color space
and CalGray color spaces to Gray color space.

Calibrated

Convert N/a N/a The corresponding objects in the specified color
space(s) are converted using the source definition
embedded in the file and the FinalTragetDevice
ICC profile as output profile.

Tag N/a N/a This operation does not have any effect.
Untag N/A N/a This operation does not have any effect.

CIEBased

Convert N/a N/a The corresponding objects in the specified color
space(s) are converted using the source definition
embedded in the file and the FinalTragetDevice
ICC profile as output profile.

ICCBased Tag N/a N/a N/a
NOTE: in order to change the profile associated to
an ICCBased, an Untag operation (see below)
should be performed before tagging. These two
operations can be combined in a Retag operation

Page 318

Page 318

Untag N/a N/a The ICC profiles in the input RunList are removed.
The resulting color spaces depend on the input file
format:
• PDF: use the corresponding

alternate color space.
• EPS: use the PostScript file color spaces;

the ICC profile comment in the EPS header is
removed

• TIFF: use the color space defined by the
photometric interpretation tag.

False N/a The ICCBased color spaces are converted using
the corresponding embedded ICC profile as input
profile and the FinalTargetDevice ICC profile as
output profile

Convert

True N/a This operation does not have any effect (to ignore
embedded ICC profiles when converting, the
CMYK, RGB or Gray SourceCS enumeration
values must be used with the IgnoreEmbbededICC
flag set to true. Each SourceCS value will require a
different ColorSpaceConversionOp instance, with
the corresponding ICC profile.

Tag N/a N/a This operation does not have any effect. The
specific SourceCS enumeration values have to be
used to select the color spaces to tag.

Untag N/a N/a Untags ICCBased and Calibrated color spaces in
the RunList. It does not have any effect on the
other device independent color space

False N/a Converts all the device independent color spaces
(CIEBased, Lab, YUV, Calibrated and ICCBased)
using the corresponding characterizations
embedded in the file and the FinalTargetDevice
ICC profile as output profile

DevIndep

Convert

True N/a This operation does not have any effect. The
specific SourceCS enumeration values have to be
used to select the color spaces to convert.

Named color ICC
profile

In PostScript or PDF, it sets the alternate color
space to an ICCBased color space with the given
ICC profile.

Tag N/a

No profile
specified

In PostScript or PDF, it sets the alternate color
space to the color definition in the ColorPool (if
present). If there is no color definition in the
ColorPool, this operation does not have any effect.

Untag N/a N/a This operation does not have any effect.

False N/a The specified separation(s) are converted using the
alternate color space definitions in the RunList.

Separation

Convert

True Named color ICC
profile

Converts the specified separation(s) using the
SourceProfile profile as input profile and the
FinalTargetDevice ICC profile as output profile.

Page 319

Page 319

 No profile
specified

Converts the specified separation(s) using the
color definition in the ColorPool and the
FinalTargetDevice ICC profile if needed.

Tag N/a N component ICC
profile

Changes the DeviceN color spaces in the RunList
to ICCBased color spaces using the SourceProfile
ICC profile. This operation only affects the
selected DeviceN color spaces that have exactly
the same number of components than the
SourceProfile.

Untag N/a N/a This operation does not have any effect.

False N/a In PostScript or PDF, the specified DeviceN color
spaces are converted using the alternate color
space.

DeviceN

Convert

True N component ICC
profile

Converts the specified DeviceN color spaces using
the SourceProfile ICC profile as input profile and
the FinalTargetDevice ICC profile as output
profile. This operation only affects the selected
DeviceN color spaces that have exactly the same
number of components than the SourceProfile.

NOTE: if the correct ICC profile is not specified for an operation that requires it, the operation does not have any
effect.

7.2.26 ComChannel
A communication channel to a person or company such as an email address, phone number, or fax number.

Resource Properties
Resource class: Parameter
Resource referenced by: Contact, Person
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
ChannelType enumeration Type of the communication channel. Possible values are:

Phone – Telephone number.
Email – E-mail address.
Fax – Fax machine.
WWW – WWW home page or form.
JMF – JMF messaging channel.

ChannelUsage ? enumeration Business: The communication channel is used mainly for business
purposes.
Private: The communication channel is used mainly for private
purposes.
BusinessPrivate: The communication channel is used for business
and private purposes.
[RP340]

Page 320

Page 320

Name Data Type Description
Locator string Locator of this type of channel in a form such as a phone number

or an email address.

7.2.27 Company
Specifies contacts to a company including detailed information about contact persons and addresses. This structure
can be used in many situations where addresses or contact persons are needed. Examples of contacts are customer,
supplier, company, and addressees. The structure is derived from the vCard format. It comprises the organization
name and organizational units (ORG) of the organizational properties defined in the vCard format. The
corresponding XML types of the vCard are quoted in the table.

Resource Properties
Resource class: Parameter
Resource referenced by: Contact
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
OrganizationName string Name of the organization or company (vCard: ORG:orgnam. For

example: ABC, Inc.).
Contact *
Deprecated in JDF 1.1

refelement A contact of the company.

OrganizationalUnit * telem Describes the organizational unit (vCard: ORG:orgunit. For
example, if two elements are present: 1. “North American
Division” and 2. “Marketing”).

7.2.28 Component
Component is used to describe the various versions of semi-finished goods in the press and postpress area, such as
a pile of folded sheets that have been collected and must then be joined and trimmed. Nearly every postpress process
has a Component resource as an input as well as an output. Typically the first components in the process chain are
some printed sheets or ribbons, while the last component is a book or a brochure. Component resources are grouped
by kind in much the same way that nodes are classified as Combined, Process, or Product. The five categories of
Component resources are: Ribbon, Sheet, Block, PartialProduct, and FinalProduct. These categories are defined
in greater detail below:

Ribbon Part of the web that enters the folder, divider etc. In case the web is not slit, the web and the
ribbon are identical.

Sheet This source type is appropriate if a flat sheet, e.g., a postcard to be glued in, is used as an input
component. "Flat" in this case means that the sheet has not been folded or cut before the
operation.

Block This source type is appropriate if a folded sheet, a cut portion of the sheet, or a cut and folded
portion of a sheet is used as an input component.

PartialProduct This source type is appropriate if a partial product should be used as an input component.

FinalProduct This source type is appropriate if this Component is the final product.

Terms and Definitions for Components
The descriptions of Component-specific attributes use some terms whose meaning depends on the culture in which
they are used. For example, different cultures mean different things when they refer to the “front” side of a magazine.
Other terms, such as binding, are defined by the production process and therefore do not depend on the culture.

Page 321

Page 321

Whenever possible, this specification endeavors to use culturally independent terms. In cases where this is not
possible, Western style (left-to-right writing) is assumed. Please note that these terms may have a different meaning
in other cultures, e.g., those writing from right to left.

Product front edge

Product top
d

Product bottom

Binding edge
(spine)

Book-like partial product viewed from first page
(front side)

Product front side

Product front edge

Binding edge
(spine)

Calendar-like partial product viewed from first page
(front side)

Product front side

Figure 7.6 Terms and definitions for components

The table below describes the terms used to define the components.
Table 7-5 Terms and definitions for components

Edge Description
Binding edge The edge on which the (partial) product is glued or stitched. This edge is also

often called working edge or spine.
Product front edge The side, where you open the (partial) product. This edge is opposite to the

binding edge.
Registered edge A side on which a collection of sheets or partial products is aligned during a

production step. All production steps require two registered edges, which must
not be opposite to each other. The two registered edges define the coordinate
system used within the production step. When there is a binding edge, this is
one of the registered edges.

Resource Properties
Resource class: Quantity
Resource referenced by: -
Example Partition: RibbonName, SheetName, SignatureName, WebName
Input of processes: Many
Output of processes: Many

Page 322

Page 322

Resource Structure
Name Data Type Description
ComponentType
Modified in JDF 1.2

enumerations
[RP341]

Specifies the categories[RP342] of the component. Possible values are:
Ribbon: The Component is a ribbon on a web press.
Sheet: Single layer sheet of paper.[RP343]
Block: Folded or stacked product, e.g. a book block.[RP344]
Proof: The Component is a Proof.
Web: The Component is a web on a web press.
Further details of the component are specified in ProductType. Only
one of FinalProduct or PartialProduct may be specified in addition to
one of the 5 enumerations specified above. [RP345]
FinalProduct: The Component is the final product that was ordered
by the customer.[RP346]
PartialProduct: The Component has been partially
processed.[RP347]

Dimensions ? shape The dimensions of the component. These dimensions differ from the
original size of the original product. For example, the dimensions of a
folded sheet may not be equal to the dimensions of the sheet before it
was folded. The dimension is always the bounding box around the
Component. Default = 0 0 0, which specifies unknown. In this case
a portrait orientation (Y>X) is assumed
Note: It is crucial for postpress to specify the dimensions unless they
really are unknown.

IsWaste ? boolean If true, the component waste may be used to set up a machine.
Default = false

MaxHeat ? double Maximum temperature the Component can resist (in degrees
centigrade). Default = no restriction in terms of heat, e.g., fusers in
electrophotographic process or shrink wrapping.

Overfold ?
New in JDF 1.1

double Expansion of the overfold of a Component. This attribute may be
needed for the Inserting or other postpress processes.
Default = 0

OverfoldSide ?
New in JDF 1.1

enumeration Specifies the longer side of a folded component. One of “Front” or
“Back”. Default = Front

Page 323

Page 323

Name Data Type Description
ProductType ? NMTOKEN Type of product that this component specifies. Possible values

include:
BackCover
Book
BookBlock
BookCase
Box – Convenience packaging that is not envisioned to be protection
for shipping.
Brochure
BusinessCard
Carton – Protection packaging for shipping.
Cover
FrontCover
Jacket – Hard cover case jacket.
Label
Poster
Default = unknown

ReaderPageCount ?
New in JDF 1.1

integer Total Amount of individual reader pages that this Component
contains. Count of –1 means “unknown.”
Default = -1, i.e., unknown.

SheetPart ? rectangle Only useful when ComponentType = Block and when SourceSheet
is present. Part of the Sheet in SurfaceContentsBox coordinates
used in this Component.

SourceRibbon ? string Only required when ComponentType = Ribbon. RibbonName of
the ribbon used in this Component.

SourceSheet ? string Only required when ComponentType = Sheet or Block.
SheetName of the sheet used in this Component.

SourceWeb ? string Only required when ComponentType = Ribbon. WebName of the
ribbon used in this Component.

SurfaceCount ?
New in JDF 1.1

integer Total Amount of individual surfaces that this Component contains.
Count of –1 means “unknown.”
Default =-1, i.e., unknown

Transformation ?
Deprecated in JDF 1.1

matrix Matrix describing the transformation of the orientation of a component
for the process using this resource as input. This is needed to convert
the coordinate system of the component to the coordinate system of
the process. When this attribute is not present, the identity matrix (1 0
0 1 0 0) is assumed.
In version 1.1 and beyond, use ResourceLink::Transformation or
ResourceLink::Orientation.

Bundle ?
New in JDF 1.1

refelement Description of a bundle of Components if the Component represents
multiple individual items. If no Bundle is present, the Component
represents an individual item. Note that it is essential to keep a
reference of the child Components that comprise a Component,
as this information is useful to postpress processes.

Disjointing ? refelement A stack of components can be processed using physical separators.
This is useful in operations such as feeding.
Default = no physical separators

Page 324

Page 324

Name Data Type Description
Sheet ? refelement The Sheet resource that describes the details of this Component if

ComponentType = Sheet or Block.

7.2.29 Contact
Element describing a contact to a person or address.

Resource Properties
Resource referenced by: ApprovalParams, , ArtDeliveryIntent, DeliveryIntent, DeliveryParams,

DropIntent
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
ContactTypes NMTOKENS Classification of the contact. Possible values include:

Administrator – Person to contact for queries concerning the execution of the
job.
Accounting – Address of where to send to the bill.
Billing – Contact information that refers to a payment method, e.g., credit card.
Customer – The end customer.
Delivery – Delivery address for all products of this job.
DeliveryCharge – The Contact is charged for delivery of this job.[RP348]
Owner – The owner of a resource.
Pickup – The pickup address for all products of this job.
Supplier – Address of a supplier of needed goods.
SurplusReturn – Return delivery or pickup address for surplus products of this
job.
ArtReturn – Return delivery or pickup address for artwork of this job.

Address ? refelement Element describing the address.
ComChannel * refelement Communication channels to the contact.
Company ?
New in JDF 1.1

refelement Company that this Contact is associated with.

Person ? refelement Name of the contact person.

7.2.30 ContactCopyParams
New in JDF 1.1
Element describing the parameters of 6.4.4ContactCopying.

Resource Properties
Resource referenced by: ContactCopying.
Example Partition: -

Resource class: Parameter

Resource class: Parameter

Page 325

Page 325

Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
ContactScreen ? boolean True, if a halftone screen on film should be used to produce

halftones.
Default="false".

Cycle ? integer Number of exposure light units to be used. The amount depends
on the subject to be exposed.

Diffusion ? enumeration The diffusion foil setting. Possible values are:
On
Off

PolarityChange ? boolean True, if the copy should change polarity w.r.t. the original image.
Default=”true”.

RepeatStep ? XYPair Number of copies in each direction for a Step/Repeat camera.
Default = 1 1

Vacuum ? double Amount of vacuum pressure to be used. Measured in bars.
ScreeningParams ? refelement Properties of the halftone screen on film. Ignored if

ContactScreen =”false”.

7.2.31 ConventionalPrintingParams
This resource defines the attributes and elements of the ConventionalPrinting process. The specific parameters
of individual printer modules are modeled by using the standard partitioning methods. These methods are described
in Section 3.9.2.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: BlockName, FountainNumber, RibbonName, Separation, SheetName, Side,

SignatureName, WebName,PartVersion
Input of processes: ConventionalPrinting
Output of processes: -

Resource Structure
Name Data Type Description
DirectProof ? Boolean If true, the proof is directly produced and subsequently an

approval may be given by a person such as the customer,
foreman, or floor manager shortly after the first final-quality
printed sheet is printed. The approval is not required for setup,
but it is required for the actual print run. If the
ConventionalPrinting process is waiting for a DirectProof,
the JDF node´s [RP349]Status is switched to Stopped with the
StatusDetails = WaitForApproval. Default = false.

Page 326

Page 326

Name Data Type Description
Drying ? Enumeration The way in which ink is dried after a print run. Possible values

are:
UV – Ultraviolet dryer
Heatset – Heatset dryer
IR – Infrared dryer
On – Use the device default drying unit.
Off – Default value.

FirstSurface ? Enumeration Printing order of the surfaces on the sheet. Possible values are:
Either – Default value. The printer may choose.
Front
Back

FountainSolution ? Enumeration State of the fountain solution module in the printing units.
Possible values are:
On
Off
If not specified use the system specified setting, which may be
either On or Off.

MediaLocation ? String Identifies the location of the Media. The value identifies a
physical location on the press, such as unwinder 1, unwinder 2,
and unwinder 3.
If the media resource is partitioned by Location (see also Section
3.9.2.6 Locations of Physical Resources) there should be a match
between one Location partition key and this MediaLocation
value.

ModuleAvailableIndex ?
New in JDF 1.1

IntegerRange-
List

Zero-based list of print modules that are available for printing. In
some cases modules are not available because the print module is
replaced with in-line tooling, e.g. a perforating unit. Default = 0~-
1, i.e., all modules are used for printing. The list is based on all
modules of the printer and is not influenced by the value of
ModuleIndex.

ModuleDrying ? Enumeration The way in which ink is dried in individual modules. Possible
values are:
UV – Ultraviolet dryer
Heatset – Heatset dryer
IR – Infrared dryer
On – Use the device default drying unit.
Off – The default.

ModuleIndex ? IntegerRange-
List

Zero-based, ordered list of print modules that are used. The list is
based on all modules of the printer and is not influenced by the
value of ModuleAvailableIndex. Defaults to system specified.

PerfectingModule ?
New in JDF 1.1

integer Index of the perfecting module if WorkStyle = Perfecting and
multiple perfecting modules are installed. Default = 0, i.e., the
first installed perfecting module.

Powder ? double Quantity of powder (in %).

Page 327

Page 327

Name Data Type Description
PrintingType enumeration Type of printing machine. Possible values are:

SheetFed
WebFed
The principal difference between SheetFed and WebFed is the
shape of the paper each is equipped to accept. Presses that
execute WebFed processes use substrates that are continuous and
cut after printing is accomplished. Most newspapers are printed
on web-fed presses. SheetFed printing, on the other hand, accepts
precut substrates.

SheetLay ? enumeration Lay of input media. Reference edge of where paper is placed in
feeder. Possible values are:
Left
Right
Center
Default is the system specified value.

Speed ? number Maximum print speed in sheets/hour (sheet fed) or meters/hour
(web fed). Defaults to device specific full speed.

WorkStyle ? enumeration The direction in which to turn. Possible values are:
Simplex – No turning
WorkAndBack – This WorkStyle describes the printing on both
sides of the substrate with a different plate (set) in the second run.
After the first run the side lays are altered but the front lays stay
as they were. Lays can be turned by hand or using a pile reverser.
Two-plate sets are necessary for WorkAndBack.
Perfecting – Many sheetfed printing presses have perfecting
cylinder(s) built in. The leading edge of the print sheet changes
as the sheet is turned by the perfecting cylinder, but the side lays
remain unaltered. In this regard, this WorkStyle is similar to
WorkAndTumble, but Perfecting is an in-line operation during
the press run. Therefore, an additional plate (set) is required
during this press run.
WorkAndTurn – Refers to the turning of the first-run sheet for
subsequent perfecting. The front lays remain unchanged but the
side lays must be altered. The alteration can be made by hand or
using a pile turner. Turning happens after the first press run and
the plate (set) is used again in the second press run, imaging the
other sheet surface.[RP350]

WorkAndTumble – The WorkAndTumble method is also used for
perfecting. The leading edge of the print sheet changes as the
sheet is turned, but the side lays remain unaltered. Tumbling
happens after the first press run and the plate (set) is used again in
the second press run, imaging the other sheet surface.
WorkAndTwist – Done between two press runs. The palette is
twisted 180 degree before the second run is performed so that the
front lay and the side lay both change. The surface to be imaged
is the same at both runs. Each run prints only part of the surface.
The plate (set) stay in the machine. This WorkStyle is used for
saving plate or film material. It is no longer a common
WorkStyle.

Page 328

Page 328

Name Data Type Description
ApprovalParams ?
New in JDF 1.2

refelement Details of the direct approval process, when
DirectProof=”true”[RP351]

Ink ? refelement Kind of varnishing. Defines the varnish to be used for coatings
on printed sides. Coatings are applied after printing all the colors.
Other coating sequences must use the partition mechanism of this
parameter resource.
Selective varnishing in print modules has to use a separate
separation for the respective varnish. If both Ink and
ExposedMedia(Plate) are specified for Separation=”Varnish”,
spot varnishing is specified.If only Ink and not
ExposedMedia(Plate) is specified for Separation=”Varnish”,
overall varnishing is specified.[RP352]
Note: The color inks are direct input resources of the
ConventionalPrinting process.

7.2.32 CostCenter
This resource describes an individual area of a company that has separated accounting.

Resource Properties
Resource class: ResourceElement
Resource referenced by: Device, Employee
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
CostCenterID string Identification of the cost center
Name ? string Name of the cost center.

7.2.33 CoverApplicationParams
New in JDF 1.1
CoverApplicationParams define the parameters for applying a cover to a book block.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: CoverApplication
Output of processes: -

Resource Structure
Name Data Type Description
CoverOffset XYPair Position of the cover in relation to the book block given in the

cover-sheet coordinate system.
GlueApplication * refelement Describes where and how to apply glue to the book block.
Score * element Describes where and how to score the cover.

Page 329

Page 329

Structure of Score Subelement
Name Data Type Description
Offset double Position of scoring given in the operation coordinate system.
Side enumeration Specifies the side from which the scoring tool works. Possible

values are:
FromInside – The default.
FromOutside

Figure 7.7 Parameters and coordinate system for cover application

7.2.34 CreasingParams
New in JDF 1.1
CreasingParams define the parameters for creasing or grooving a sheet .

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: BlockName, RibbonName, SheetName, SignatureName, WebName
Input of processes: Creasing
Output of processes: -

Resource Structure
Name Data Type Description
Crease * element definition of one or more Crease lines.

Crease
Crease defines an individual crease line on a Component.

Page 330

Page 330

Name Data Type Description
Depth ? number Depth of the Crease in microns. If not specified, the value is

system specified.
Travel ? double Distance of the reference edge relative to From. If both Travel and

RelativeTravel are specified, RelativeTravel is ignored. At least
one[RP353] of Travel or RelativeTravel must be specified.

RelativeTravel ?
new in JDF 1.2

double Relative distance of the reference edge relative to From in the
coordinates of the incoming Component. RelativeTravel is always
based on the complete size of the input Component and not on the
size of an intermediate state of the folded sheet. The allowed value
range is from 0.0 to 1.0, which specifies the full length of the the
input component.

RelativeStartPosition ?
new in JDF 1.2

XYPair Relative starting position of the tool.
RelativeStartPosition is always based on the complete
size of the input Component and not on the size of an
intermediate state of the folded sheet. The allowed value
range is from 0.0 to 1.0 for each component of the
XYPair, which specifies the full size of the the input
Component. [RP354]

RelativeWorkingPath ?
new in JDF 1.2

XYPair Relative working path of the tool beginning at
RelativeStartPosition. Since the tools can only work
parallel to the edges, one coordinate must be zero.
RelativeWorkingPath is always based on the complete
size of the input Component and not on the size of an
intermediate state of the folded sheet. The allowed value
range is from 0.0 to 1.0 for each component of the
XYPair, which specifies the full size of the the input
Component. [RP355]

StartPosition ? XYPair Starting position of the tool. If both StartPosition and
RelativeStartPosition are specified,
RelativeStartPosition is ignored. At least one of
StartPosition or RelativeStartPosition must be
specified.[RP356]

WorkingPath ? XYPair Working path of the tool beginning at StartPosition.
Since the tools can only work parallel to the edges, one
coordinate must be zero. . If both WorkingPath and
RelativeWorkingPath are specified,
RelativeWorkingPath is ignored. At least one of
WorkingPath or RelativeWorkingPath must be
specified.[RP357]

WorkingDirection enumeration Direction from which the tool is working. Possible
values are:
Top – from above
Bottom – from below

7.2.35 CutBlock[RP358]
Defines a cut block on a sheet. It is possible to define a block that contains a matrix of elements of equal size. In
this scenario, the intermediate cut dimension is calculated from the information about element size, block size and
the number of elements in both directions. Each cut block has its own coordinate system, which is defined by the
BlockTrf attribute.

Page 331

Page 331

Resource Properties
Resource referenced by: CuttingParams
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
BlockElementSize ? XYPair Element dimension in X and Y direction. Default = BlockSize
BlockElementType ? enumeration Element type. Possible values are:

CutElement – Cutting element.
PunchElement – Punching element.
Default = system specified

BlockName[RP359] NMTOKEN Name of the block. Used for reference by the CutMark resource. Note
that CutBlock resources are not partitioned although they are nested.
The semantics of nested CutBlocks is different.

BlockSize XYPair Size of the block.
BlockSubdivision ? XYPair Number of elements in X and Y direction. Default = (1,1,) i.e., no

subdivision.
BlockTrf matrix Block transformation matrix. Defines the position and orientation of

the block relative to the Component coordinate system.
Default = identity

BlockType enumeration Block type. Possible values are:
CutBlock – Block to be cut.
SaveBlock – Protected block, cut only via outer contour.
TempBlock – Auxiliary block that is not taken into account during
cutting.
MarkBlock – Contains no elements, only marks.

7.2.36 CutMark
This resource, along with CutBlock, provides the means to position cut marks on the sheet. After printing, these
marks can be used to adapt the theoretical block positions (as specified in CutBlock) to the real position of the
corresponding blocks on the printed sheet.

Resource Properties
Resource class: Parameter
Resource referenced by: CuttingParams, Surface
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
Blocks ?
Modified in JDF 1.1

NMTOKENS Values of the BlockName partition attributes of the blocks
defined by the CutMark resource.

Resource class: Parameter

Page 332

Page 332

Name Data Type Description
MarkType enumeration Mark type. Possible values are:

CrossCutMark
TopVerticalCutMark
BottomVerticalCutMark
LeftHorizontalCutMark
RightHorizontalCutMark
LowerLeftCutMark
UpperLeftCutMark
LowerRightCutMark
UpperRightCutMark

Position XYPair Position of the logical center of the cut mark in the coordinates of
the MarkObject that contains this mark.
Note: The logical center of the cut mark does not always directly
specify the center of the visible cut mark symbol.

Position of symbol

Centered at logical positionCrossCutMark

Symbol Name

Slightly above logical positionTopVerticalCutMark

BottomVerticalCutMark Slightly below logical position

Slightly to the left of logical position

RightHorizonalCutMark

LeftHorizonalCutMark

Slightly to the right of logical position

LowerLeftCutMark Corner at logical position

UpperLeftCutMark Corner at logical position

LowerRightCutMark Corner at logical position

Corner at logical positionUpperRightCutMark

Figure 7.8 Cut mark types

7.2.37 CuttingParams
New in JDF 1.1

Page 333

Page 333

This resource describes the parameters of a Cutting process that uses nested CutBlocks as input.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: BlockName, RibbonName, SheetName, SignatureName, WebName
Input of processes: Cutting
Output of processes: -

Resource Structure
Name Data Type Description
CutBlock * refelement One or several CutBlocks can be used to find the Cutting

sequence. Only one of CutBlock or Cut may be specified.
CutMark * refelement CutMark resources can be used to adapt the theoretical cut

positions to the real positions of the corresponding blocks on the
Component to be cut.

Cut * element Cut elements describe an individual cut. Only one of CutBlock or
Cut may be specified.

Structure of the Cut Subelement
Cut describes one straight cut with an arbitrary tool.

Name Data Type Description
RelativeStartPosition ?
new in JDF 1.2

XYPair Relative starting position of the tool.
RelativeStartPosition is always based on the complete
size of the input Component and not on the size of an
intermediate state of the folded sheet. The allowed value
range is from 0.0 to 1.0 for each component of the
XYPair, which specifies the full size of the the input
Component. [RP360]

RelativeWorkingPath ?
new in JDF 1.2

XYPair Relative working path of the tool beginning at
RelativeStartPosition. Since the tools can only work
parallel to the edges, one coordinate must be zero.
RelativeWorkingPath is always based on the complete
size of the input Component and not on the size of an
intermediate state of the folded sheet. The allowed value
range is from 0.0 to 1.0 for each component of the
XYPair, which specifies the full size of the the input
Component. [RP361]

StartPosition ? XYPair Starting position of the tool. If both StartPosition and
RelativeStartPosition are specified,
RelativeStartPosition is ignored. At least one of
StartPosition or RelativeStartPosition must be
specified.[RP362]

WorkingPath ? XYPair Working path of the tool beginning at StartPosition.
Since the tools can only work parallel to the edges, one
coordinate must be zero.[RP363]

WorkingDirection enumeration Direction from which the tool is working. Possible values are:
Top – from above
Bottom – from below

Page 334

Page 334

7.2.38 DBMergeParams
This resource specifies the parameters of the DBTemplateMerging process.

Resource Properties
Resource class: Parameter
Resource references: -
Resource inheritance: -
Example Partition: -
Input of processes: DBTemplateMerging
Output of processes: -

Resource Structure
Name Data Type Description
SplitDocuments ? integer Indicates how often to split documents to create a new file.
FileSpec ? refelement URL of the generated destination file. This is most often a printable

file type, such as PDF of PPML. If FileSpec is not specified,
DBMergeParams must be a Pipe resource.

7.2.39 DBRules
This resource specifies the rules that should be applied to convert a database record into a graphic element. It is
described by a text element with a human-readable description of the selection rules. For example:

insert the “Age” field behind the birthday;
 if income>100,000 use Porsche.gif, else use bicycle.jpeg for image #2.

The internal representation of the mapping of database fields to graphic content within the document template is
implementation-dependent. It can vary from fully variable, multi-page, automated document layout to simply
inserting some line-feed characters between database records in an address field. Therefore, DBRules is defined as
a simple human-readable text element.

Resource Properties
Resource class: Parameter
Resource references: -
Resource inheritance: -
Example Partition: -
Input of processes: DBDocTemplateLayout, Inserting, Collecting, Gathering
Output of processes: -

Resource Structure
Name Data Type Description
Comment + telem Human-readable description of the database rules that map

database fields to image or text content.

7.2.40 DBSchema
This resource specifies the formal structure of a database record, regardless of type. It is encoded as a text element
with a human-readable description of the database schema.

Resource Properties
Resource class: Parameter
Resource references: -
Resource inheritance: -
Example Partition: -
Input of processes: DBDocTemplateLayout, Verification
Output of processes: -

Page 335

Page 335

Resource Structure
Name Data Type Description
DBSchemaType enumeration Database type. Possible values are:

CommaDelimited
SQL
XML

Comment + telem Human-readable description of the database schema.

7.2.41 DBSelection
This resource specifies a selection of records from a database.

Resource Properties
Resource class: Parameter
Resource references: -
Resource inheritance: -
Example Partition: -
Input of processes: DBTemplateMerging, Inserting, Collecting, Gathering, Verification
Output of processes: Verification

Resource Structure
Name Data Type Description
DataBase URL URL of the database
Records ? IntegerRangeList The indices of the database records.
Select ? string Database selection criteria in the native language of the database, e.g.,

SQL.

7.2.42 DeliveryParams
Provides information needed by a Delivery process. A Delivery process consists of sending a quantity of a
product to a specific location at, in some cases, a required date and time.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: Delivery
Output of processes: -

Resource Structure
Name Data Type Description
Earliest ? dateTime Specifies the earliest time after which the delivery may be made.
Method ? string Identifies a required delivery method, such as ExpressMail or

InterofficeMail. It is recommended to use a string without blanks that is
compatible with the NMTOKEN datatype.[RP364]

Pickup ? boolean If true, the merchandise is picked up. If false, the merchandise is
delivered.
Default = false

Required ? dateTime Specifies the time by which the delivery must be made.
Company ?
Deprecated in JDF 1.1

refelement Address and further information of the addressee.

Page 336

Page 336

Contact *
New in JDF 1.1

refelement Address and further information of the Contact responsible for this
delivery.

Drop + element All locations where the product will be delivered.

Structure of the Drop Subelement
Name Data Type Description
Earliest ? dateTime Specified the earliest time after which the delivery may be made. Default

= Earliest in the root DeliveryParams.
Method ? string Identifies a required delivery method, such as ExpressMail or

InterofficeMail. . It is recommended to use a string without blanks that is
compatible with the NMTOKEN datatype.[RP365]Default = Method in
the root DeliveryParams.

Pickup ? boolean If true, the merchandise is picked up. If false, the merchandise is
delivered. Default = Pickup in the root DeliveryParams.

Required ? dateTime Specifies the time by which the delivery must be made. Default =
Required in the root DeliveryParams.

Company ?
Deprecated in JDF 1.1

refelement Address and further information of the addressee. Defaults to the value of
Company specified in the root DeliveryParams resource.

Contact *
New in JDF 1.1

refelement Address and further information of the Contact responsible for this
delivery.

DropItem + element A Drop may consist of multiple products, which are represented by their
respective Component resources. Each DropItem describes an
individual resource that is part of this Drop.

Structure of the DropItem Subelement

Name Data Type Description
Amount ? integer Specifies the number of Components ordered. If Amount is not

specified, defaults to the total amount of the Component that is referenced
by rRef.

Unit ? string Unit of measurement for the Amount specified in ComponentLink. Defaults
to the value of Unit defined in the Component resource linked by rRef.

PhysicalResource
Modified in JDF 1.2

refelement Description of the individual item to be delivered. It can be any kind of
physical resource.
This was ##ref Component prior to JDF 1.2.[RP366]

7.2.43 DensityMeasuringField
This resource contains information about a density measuring field.

Resource Properties
Resource class: Parameter
Resource referenced by: ColorControlStrip, Surface
Example Partition: -
Input of processes: Any printing process
Output of processes: -

Page 337

Page 337

Resource Structure
Name Data Type Description
Center XYPair Position of the center of the density measuring field in the

coordinates of the MarkObject that contains this mark. If the
measuring field is defined within a ColorControlStrip, Center
refers to the rectangle defined by Center and Size of the
ColorControlStrip.

Density
Modified in JDF 1.1A

DoubleList Density value for each process color measured with filter.
The data type was modified to DoubleList in JDF 1.1A in order to
accommodate density values >1.0.

Diameter double Diameter of measuring field.
DotGain double Percentage of dot gain.
Percentage double Film percentage or equivalent.
Screen string Description of the screen.
Separation string Reference to separation.
Setup ? string Description of measurement setup.
ToleranceCyan XYPair Upper and lower cyan tolerance (in density units).
ToleranceMagenta XYPair Upper and lower magenta tolerance (in density units).
ToleranceYellow XYPair Upper and lower yellow tolerance (in density units).
ToleranceBlack XYPair Upper and lower black tolerance (in density units).
ToleranceDotGain XYPair Upper and lower tolerance (in percentage).
ColorMeasurement-
Conditions ?
New in JDF 1.1

refelement Detailed description of the measurement conditions for color
measurements.

7.2.44 DevelopingParams
New in JDF 1.1
DevelopingParams specifies information about the chemical and physical properties of the developing and fixing
process for film and plates. Includes details of preheating, postbaking and postexposure.

Preheating is necessary for negative working plates. It hardens the exposed areas of the plate to make it durable
for the following developing process. The stability and uniformity of the preheat temperature influence the
evenness of tints and the run length of the plate on press.

Postbaking is an optional process of heating that is applied to most polymer plates to enhance the run length of
the plate. A factor 5 to 10 can be gained compared to plates that are not postbaked.

Postexposure is an optional exposure process for photopolymer plates to enhance the run length of the plate. A
factor of 5 to 10 can be gained compared with plates that are not postexposed.

Note: Postbaking and postexposure are mutually exclusive.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: ContactCopying, FilmToPlateCopying, ImageSetting
Output of processes: -

Page 338

Page 338

Resource Structure
Name Data Type Description
PreHeatTemp ? number Temperature of the preheating process in °C. Default = 0, i.e., no preheating.
PreHeatTime ? duration Duration of the preheating process. Default = 0M, i.e., no preheating.
PostBakeTemp ? number Temperature of the post baking process in °C. Default = 0, i.e., no post process

baking.
PostBakeTime ? duration Duration of the post baking process. Default = 0M, i.e., no post process baking.
PostExposeTime ? duration Duration of the post exposing process. Default = 0M, i.e., no post process

baking.
Note: Only one of PostBakeTime and PostExposeTime may be non-zero.

7.2.45 Device
Information about a specific device. This optionally includes information about the devices capabilities. For more
information, see Section 3.7.1.3 Implementation Resources and 4.8 Describing Capabilities with JDF.

Resource Properties
Example Partition: -
Input of processes: any process
Output of processes: -

Resource Structure
Name Data Type Description
DeviceFamily?
Deprecated in JDF 1.1

string Manufacturer family type ID. DeviceFamily is replaced by the
appropriate ModelXXX attributes in this list.

DeviceID string Name of the device. This is a unique name within the workflow.
Must be the same over time for a specific device instance, i.e.,
must survive reboots. Equivalent to the UPNP:UDN.

DeviceType ? string Manufacturer type ID, including a revision stamp.
Directory ?
New in JDF 1.1

URL Defines a directory where the URLs that are associated with this
Device can be located. If Directory is not specified, all URLs must
be completely specified.

FriendlyName ?
New in JDF 1.1

string Short user-friendly title

JDFErrorURL ?
New in JDF 1.2

URL URL of the device where JDF output jobtickets with an error status
will be located. If this is a directory, it specifies the device default
error output folder. If not specified, it defaults to the value of
JDFOutputURL.

JDFInputURL ?
New in JDF 1.2

URL URL of the device that will accept JDF input job tickets. If this is a
directory, it specifies the device default directory. The persistence
of JDF tickets in this location is implementation dependent. If not
specified, the Device does not accept JDF without a JMF
SubmitQueueEntry.

JDFOutputURL ?
New in JDF 1.2

URL URL of the device where completed JDF output job tickets will be
located. If this is a directory, it specifies the device default output
folder. If not specified, it defaults to the value of
JDFInputURL.[RP367]

Resource class: Implementation
Resource referenced by: -

Page 339

Page 339

Name Data Type Description
JDFVersions ?
New in JDF 1.1

string Whitespace separated list of supported JDF versions that this
device supports, e.g, “1.0 1.1” specifies that both the 1.0 and 1.1
version are supported.

JMFSenderID ?
New in JDF 1.1

string ID of the controller will process JMF messages for the device.
This corresponds to the SenderID attribute that must be specified
for the device in JMF messages.

JMFURL ?
New in JDF 1.1

URL URL of the device port that will accept JMF messages.

KnownLocalizations ?

New in JDF 1.2

languages A list of all language codes supported by the device for localization.
If not specified, then the device supports no localizations.[RP368]

Manufacturer ?
New in JDF 1.1

string Manufacturer name

ManufacturerURL ?
New in JDF 1.1

string Web site for manufacturer

ModelDescription ?
New in JDF 1.1

string Long description for end user

ModelName ?
New in JDF 1.1

string Model name

ModelNumber ?
New in JDF 1.1

string Model number

ModelURL ?
New in JDF 1.1

string Web site for model.

SerialNumber ?
New in JDF 1.1

string Serial number of the device.

PresentationURL ?
New in JDF 1.1

string URL to presentation for device It is a URL to a device-provided UI
for user configuration, status, etc. Thus, if the device has an
embedded Web server, this is a URL to the configuration page
hosted on that Web server.[RP369]

UPC ?
New in JDF 1.1

string Universal Product Code for the device. A 12 -digit, all-numeric
code that identifies the consumer package. Managed by the
Uniform Code

CostCenter ? element MIS cost center ID.
DeviceCap *
New in JDF 1.1

element Description of the capabilities of the device. The DeviceCap
elements are combined with a logical OR, i.e., if a JDF resides
within any parameter space defined by a DeviceCap, the device
can process the job. For details see 7.3 Device Capability
Definitions.

IconList ?
New in JDF 1.1

element List of locations of icons that can be used to represent the device.

Structure of the IconList Subelement
New in JDF 1.1
The IconList is a list of individual icon descriptions.

Name Data Type Description
Icon + refelement Individual icon description.

Structure of the Icon Subelement
New in JDF 1.1

Page 340

Page 340

An Icon represents a device in the user interface.
Name Data Type Description
Size XYPair Height and width of the icon.
BitDepth integer Bit depth of one color
IconUsage ? enumerations Definition of the Status of the device that this Icon represents.

Any combination of:
Unknown – No link to the device exists
Idle
Down
Setup
Running
Cleanup
Stopped
Defaults to all of the above. The meaning of the individual
enumerations is described in the DeviceInfo message element.
See 5.5.1.3 KnownDevices

FileSpec element Details of the file containing the icon data.

7.2.46 DigitalPrintingParams
This resource contains attributes and elements used in executing the DigitalPrinting process. The PrintingType
attribute in this resource defines two types of printing: SheetFed and WebFed. The principal difference between
them is the shape of the paper each is equipped to accept. Presses that execute WebFed processes use substrates that
are continuous and cut after printing is accomplished. Most newspapers are printed on web-fed presses. SheetFed
printing, on the other hand, accepts precut substrates.

7.2.46.1 Coordinate systems in DigitalPrinting
Figure ##ref2.10 in chapter ##ref coordinate systems defines the coordinate system for ConventionalPrinting and
DigitalPrinting. Note that the paper feed direction of the idealized process is towards the X-axis which
corresponds to bottom edge first. [RP370]

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: BlockName, DocRunIndex, DocSheetIndex, PartVersion, Run, RunIndex, RunTag,

SheetIndex, Separation, SheetName, Side, SignatureName, DocIndex

Input of processes: DigitalPrinting
Output of processes: -

Resource Structure
Name Data Type Description
Collate ?
New in JDF 1.1

enumeration Determines the sequencing of the sheets in the document and the documents in the
job when multiple copies of a document or a job are requested as output. Document
copies can be requested by specifying RunList:DocCopies and job copies can be
requested by specifying the output Component Amount.
None – Do not collate sheets in the document or document(s) in the job.
Sheet – Collate the sheets in each document; do not collate the documents in the job.
The result of Sheet and SheetAndSet is the same when there is one document in the
set. The result of Sheet and SheetSetAndJob is the same when there is one document
in the set and one set in the job.

Page 341

Page 341

Name Data Type Description
SheetAndSet – Collate the sheets in the document and collate the documents in the
set. Do not collate the sets in the job. The result of SheetAndSet and SheetSetAndJob
is the same when there is one set in the job.
SheetSetAndJob – Collate the sheets in the document and collate the documents in
the set and collate the sets in the job.
SystemSpecified – Collate as defined by system
Default = SystemSpecified
The following example consists of 2 documents, A and B, each having 2 sheets, A1,
A2 and B1, B2. The number of document copies requested is 1 for both documents
and the number of job copies requested is 3 (Component Amount=3). The job
contains no document set boundaries.
If Collate=None, the sheet order will be:
A1A1A1 A2A2A2 B1B1B1 B2B2B2
If Collate=Sheet, the sheet order will be:
A1A2 A1A2 A1A2 B1B2 B1B2 B1B2
If Collate=SheetAndSet or SheetSetAndJob, the sheet order will be:
A1A2 B1B2 A1A2 B1B2 A1A2 B1B2

DirectProofAmou
nt ?
New in JDF 1.2

integer If >0, a set of proofs is directly produced and subsequently an approval may be
given by a person such as the customer, foreman, or floor manager shortly after the
first final-quality printed sheet is printed. The approval is not required for setup, but
it is required for the actual print run. If the DigitalPrinting process is waiting for a
DirectProof, the JDF node’s [RP371]Status is switched to Stopped with the
StatusDetails = WaitForApproval. Default = 0.

ManualFeed ?
New in JDF 1.1

boolean Indicates whether the media will be fed manually. Default = false

NonPrintableMargi
nBottom ?
New in JDF 1.2

number The width in points of the bottom margin measured inward from the edge of the
media (before trimming, if any) with respect to the idealized process coordinate
system of the DigitalPrinting process. The DigitalPrinting process must put marks up
to, but not in, the non-printable margin area. The Media’s origin is unaffected by
NonPrintableMarginBottom.
These margins are independent of the PDL content.
If not specified, the system specified bottom margin is applied.

NonPrintableMargi
nLeft ?
New in JDF 1.2

number Same as NonPrintableMarginBottom except for the left margin.

NonPrintableMargi
nRight ?
New in JDF 1.2

number Same as NonPrintableMarginBottom except for the right margin.

NonPrintableMargi
nTop ?
New in JDF 1.2

number Same as NonPrintableMarginBottom except for the top margin.[RP372]

OutputBin ?
New in JDF 1.1

NMTOKEN Specifies the bin to which the finished document should be output. Suggested
values are defined in table ##ref 3.28 Locations within Printers.:
[RP373]

PageDelivery ?
New in JDF 1.1

enumeration Indicates how pages are to be delivered to the output bin or finisher. Possible values
are:

Page 342

Page 342

Name Data Type Description
FanFold – The output is alternating face-up, face down.
SameOrderFaceUp – Order as defined by the RunList, with the “front” sides of the
media up.
SameOrderFaceDown – Order as defined by the RunList, with the “front” sides of
the media down[RP374].
ReverseOrderFaceUp – Order reversed, as defined by the RunList, with the “front”
sides of the media up.
ReverseOrderFaceDown – Order reversed, as defined by the RunList, with the
“front” sides of the media down.
SystemSpecified – Order and face-up/face-down as defined by the system.
Default = SystemSpecified

PrintingType ?
Modified in JDF
1.1

enumeration Type of printing machine. Possible values are:
SheetFed
WebFed
SystemSpecified
Default = SystemSpecified

PrintQuality ?
Deprecated in JDF
1.1

enumeration Indicates how pages are to be delivered to the output bin or finisher. Possible values
are:
High – Highest quality available on the printer.
Normal – The default quality provided by the printer.
Draft – Lowest quality available on the printer
Default = SystemSpecified
Replaced by InterpretingParams:PrintQuality

SheetLay ? enumeration Lay of input media. Reference edge of where paper is placed in feeder. Possible
values are:
Left
Right
Center
SystemSpecified = The device-specific machine default
Default = SystemSpecified

Component ?
New in JDF 1.1

refelement Describes the preprocessed media to be used. For any given partition, only one of
Media or Component may be specified.

ApprovalParams ?
New in JDF 1.2

refelement Details of the direct approval process, when
DirectProofAmount>0[RP375]

Disjointing ?
New in JDF 1.1

refelement Describes how individual components are separated from one another in the output
bin.

Media ?
New in JDF 1.1

refelement Describes the media to be used. For any given partition, only one of Media or
Component may be specified.

MediaSource ?
Deprecated in JDF
1.1

refelement Describes the media to be used. For any given partition, only one of MediaSource
or Component may be specified. Replaced with Media in JDF 1.1.

Page 343

Page 343

7.2.47 Disjointing
The Disjointing resource describes how individual components are separated from one another on a stack.

Resource Properties
Resource class: Parameter
Resource referenced by: Component, DigitalPrintingParams GatheringParams
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
Number ? integer Number of sheets that make up one component. Default = -1, i.e.

unknown
Offset ? XYPair Offset dimension in X- and Y-dimensions that separates the

components. Default = system specified.
OffsetAmount ? integer The number of components that are shifted in OffsetDirection

simultaneously. Default = 1
OffsetDirection =”None”
Clarified in JDF 1.2

enumeration Offset-shift action for the first component. A component can be
offset to one of two positions, Left or Right. Possible values are:
Alternate – The position of the first component is opposite to the
position of the previous component and subsequent components are
each offset to alternating positions. For example, if the last item in
the stack was positioned to the right then the subsequent items will
be positioned to the left, right, left, right, etc.
Left – Offset consecutive components sideways to the left, next to
the right.
None – Do not offset consecutive components. The position of all
components is the same as the position of the previous component.
The default.
Right – Offset consecutive components sideways to the right, next
to the left.
Straight – Same as None.
SystemSpecified – Offset consecutive components to a system
specified position, which may be None.[RP376]

Overfold ?
Deprecated in JDF 1.1

double Expansion of the overfold of a sheet. This attribute may be needed
for the Inserting or other postpress processes.
Moved to Component.

IdentificationField *
Modified in JDF 1.1

element Marks that identify the range of sheets to be used in a process. A
scanner will scan the sheets and detect a component boundary by
scanning a mark, such as a bar code, that matches the description in
the IdentificationField element.

InsertSheet ? refelement Some kind of physical marker (such as a paper strip or a yellow
paper sheet) that separates the components.
Default = no physical marker

7.2.48 DividingParams
Deprecated in JDF 1.1.
This resource contains attributes and elements used in executing the Dividing process.

Page 344

Page 344

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: RibbonName, SheetName, SignatureName, WebName
Input of processes:
Dividing
Output of processes: -

Resource Structure
Name Data Type Description
DividePositions DoubleList Array containing the cross cut positions in y-direction (direction of

web traveling).

7.2.49 ElementColorParams
New in JDF 1.2
This resource provides a container for color metadata applicable to a LayoutElement. [RP377]

Resource Properties
Resource class: Parameter
Resource referenced by: Layo[TNH378]utElement, PageList
Example Partition:
Input of processes: -
Output of processes: -

Resource Structure

ColorManagementSystem
?

NMTOKEN Identifies the preferred ICC color management system to use when
performing color transformations on the particular LayoutElement.
When specified, this attribute overrides any default selection of a color
management system by an application and overrides the ‘CMM Type’
value (bytes 4-7 of an ICC Profile Header) in any of the job related ICC
profiles. This string attribute value identifies the manufacturer of the
preferred CMM and must match one of the registered four-character ICC
CMM Type values. See the ICC Manufacturer's Signature Registry at
http://www.color.org. Example values: "ACME" for the Acme Corp.
CMM.
If not specified, a system specifiedvalue is assumed.

ICCOutputProfileUsage ?

enumeration This attribute specifies the usage of the output intent profile or specified
printing condition from the PDL.
Possible values are:
PDLActual – The embedded PDL output printing condition defines the
actual output intent profile, e.g. the final press output.
PDLReference The embedded PDL output printing condition defines the
reference output intent profile, e.g. the press profile for proofing.
IgnorePDL –The embedded ICC output profile is incorrect and should
be ignored.

AutomatedOverPrintPar
ams ?

refelement A resource that provides controls for the automated selection of
overprinting of black text or graphics.

ColorantAlias *

refelement Each resource instance specifies a replacement colorant name string to
be used instead of one or more named colorant strings found in the
layout element.

Page 345

Page 345

ColorSpaceConversion
Op *
New in JDF 1.2

refelement List of ColorSpaceConversionOp subelements, each of which
identifies a type of object, defines the source colorspace for that type of
object, and specifies the behavior of the conversion operation for that
type of object. If not present, the default conversion behavior is derived
from ColorStandard. ColorSpaceConversionOp/@Operation is
ignored in the context of ElementColorParams.

FileSpec ?
New in JDF 1.2

refelement A FileSpec resource pointing to an ICC profile that describes the
characterization of an actual output target device. The ResourceUsage
attribute of the FileSpec must be "ActualOutputProfile".

FileSpec ?
New in JDF 1.2

refelement A FileSpec resource pointing to an ICC profile that describes a
Reference Output print condition behavior that should be simulated as a
part of a requested color transformation. The ResourceUsage attribute
of the FileSpec must be "ReferenceOutputProfile".
This profile corresponds to the output intent contained in a PDF/X file. It
should be a specific implementation of ##ref
ColorIntent/@ColorStandard. [RP379]

7.2.50 EmbossingParams
New in JDF 1.1
This resource contains attributes and elements used in executing the Embossing process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: BlockName, RibbonName, SheetName, SignatureName, WebName
Input of processes: Embossing
Output of processes: -

Resource Structure
Name Data Type Description
Emboss * refelement One Emboss element is specified for each impression.

Structure of the Emboss Subelement

Name Data Type Description
Direction enumeration The direction of the image. Possible values are:

Both – Both debossing and embossing in one stamp.
Raised – Embossing,
Depressed – Debossing

EdgeAngle ? number The angle of a beveled edge in degrees. Typical values are an angle
of: 30, 40, 45, 50 or 60 degrees. For EdgeAngle to exist, EdgeShape
= Beveled must be specified.

EdgeShape ? enumeration The transition between the embossed surface and the surrounding
media may be rounded or beveled (angled). Possible values are:
Rounded – The default.
Beveled

Page 346

Page 346

Name Data Type Description
EmbossingType enumeration Possible values include

BlindEmbossing – Embossed forms that are not inked or foiled. The
color of the image is the same as the paper.
EmbossedFinish – The overall design or pattern impressed in
laminated paper when passed between metal rolls engraved with the
desired pattern. Produced on a special embossing to create finishes
such as linen.
FoilEmbossing – Combines embossing with foil stamping in one
single impression.
FoilStamping – Using a heated die to place a metallic or pigmented
image from a coated foil on the paper.
RegisteredEmbossing – Creates an embossed image that exactly
registers to a printed image.

Height ? number The height of the levels. This value specifies the vertical distance
between the highest and lowest point of the stamp, regardless of the
value of Direction.

ImageSize ? XYPair The size of the bounding box of one single image.

Level ? enumeration The level of embossing. Possible values are:
SingleLevel
MultiLevel
Sculpted

Position ? XYPair Position of the lower left corner of the bounding box of the
embossed image in the coordinate system of the Component.

7.2.51 Employee
Information about a specific device or machine operator (see Section 3.7.1.3 Implementation Resources).
Employee is also used to describe the contact person who is responsible for executing a node, as defined in the
NodeInfo field of a JDF node.

Resource Properties
Resource class: Implementation
Resource referenced by: -
Example Partition: -
Input of processes: Any process
Output of processes: -

Page 347

Page 347

Resource Structure
Name Data Type Description
PersonalID ? string ID of the relevant MIS employee.
Roles ? NMTOKENS

[RP380]
Defines the list of roles that the employee fills. Values include:
Apprentice: employee that is in training3.
Assistant: assistant operator.
Craftsman: trained employee4.
Manager: manager.
Master: highly trained employee5.
Operator: operator.
ShiftLeader: the leader of the shift.

Shift ? string Defines the shift to which the employee belongs.
CostCenter ? element MIS cost center ID.
Person ? refelement Describes the employee. If no Person element is specified, the

Employee resource represents any employee who fulfills the
selection criteria.

7.2.52 EndSheetGluingParams
This resource describes the attributes and elements used in executing the EndSheetGluing process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: EndSheetGluing
Output of processes: -

Resource Structure
Name Data Type Description
EndSheet (Front) element Information about the front-end sheet. The Side attribute of this

element must be Front.
EndSheet (Back) element Information about the back-end sheet. The Side attribute of this

element must be Back.

Structure of EndSheetGluingParams Elements
EndSheet

Name Data Type Description
Offset XYPair Offset of end sheet in X and Y direction.
Side enumeration Location of the end sheet. Possible values are:

Front
Back

GlueLine element Description of the glue line.

3 German: Auszubildender/Auszubildende
4 German: Geselle/Facharbeiter
5 German: Meister

Page 348

Page 348

Y

X

Back end

Binding
edge

Front end sheet
Y offset

Block

Glue line
start position

Glue line
working length

X offset

Figure 7.9 Parameters and coordinate system used for end-sheet gluing

The process coordinate system is defined as follows: The y-axis is aligned with the binding edge of the book block.
It increases from the registered edge to the edge opposite to the registered edge. The x-axis is aligned with the
registered edge. It increases from the binding edge to the edge opposite the binding edge, i.e., the product front
edge.

7.2.53 ExposedMedia
This resource represents a processed Media-based handling resource such as film, plate, or paper proof. It is also
used as an input resource for the Scanning process.

Resource Properties
Resource class: Handling
Resource referenced by: -
Example Partition: DocIndex, RunIndex, RunTag, Separation, SheetName, Side, SignatureName, TileID,

WebName
Input of processes: ContactCopying, ConventionalPrinting, PreviewGeneration, DigitalPrinting,

Scanning
Output of processes: ContactCopying, ImageSetting, FilmToPlateCopying, Proofing

Resource Structure
Name Data Type Description
ColorType ? enumeration Possible values are:

Color
GrayScale
Monochrome – Black and white.

Polarity ? boolean False if the media contains a negative image. Default = true
ProofName ? string When this ExposedMedia specifies a proof, ProofName is the

name of the ProofingIntent/ProofItem that specified this Proof
in the Product Intent section.[RP381]

Page 349

Page 349

Name Data Type Description
ProofQuality ? enumeration This attribute is present if the ExposedMedia resource describes a

proof. Possible values are:
None – Not a proof or the quality is unknown. Default value.
Halftone – The halftones are emulated.
Contone – No halftones, but exact color.
Conceptual – Color does not match precisely.

ProofType ? enumeration None – Not a proof or the type is unknown. Default value.
Page – Page proof
Imposition – Imposition proof.

PunchType ? string Name of the registration punch scheme. Possible values include,
but are not limited to:
Bacher
Stoesser
Default = no punch holes.

Resolution ? XYPair Resolution of the output.
FileSpec ? refelement A FileSpec resource pointing to an ICC profile that describes the

output process for which this media was exposed. The
ResourceUsage attribute of the FileSpec must be
“OutputProfile”.

Media refelement Describes media specifics such as size and type.
ScreeningParams ? refelement Used to describe the screening in case of rasterized media

7.2.54 FileSpec
Specification of a file or a set of files.

Resource Properties
Resource class: Parameter
Resource referenced by: DBMergeParams, LayoutElement, PDLResourceAlias, ScanParams
Example Partition: Separation
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
Application ? string Creator application, such as Photoshop.
AppOS ? enumeration Operating system of the application that created the file. Possible

values are:
Unknown – Default value
Mac
Windows
Linux
Solaris
IRIX
DG_UX
HP_UX

AppVersion ? string Version of the value of the Application attribute.

Page 350

Page 350

Name Data Type Description
CheckSum ?
New in JDF 1.1
Modified in JDF 1.1A

hexBinary Checksum of the file being referenced using the RSA MD5
algorithm. In JDF 1.1a, the term RSA MD was completed to RSA
MD5. The data type was modified to hexBinary to accommodate the
128 bit output of the MD5 algorithm.

Compression ? enumeration Indicates how the file is compressed. Possible values are:
None – The file is not compressed. Default value.
Deflate – The file is compressed using ZIP public domain
compression (RFC 1951)
Gzip – GNU zip compression technology (RFC 1952)
Compress – UNIX compression (RFC 1977)

Disposition ?
Deprecated in JDF
1.2[RP382]

enumeration Indicates what the device should do with the file when the process
that uses this resource as an input resource completes. Possible
values are:
Unlink – The device should release the file.
Delete – The device should attempt to delete the file.
Retain – The device should do nothing with the file. Default value.
In JDF 1.2 and beyond, retention of assets is specified in the
Retention element.[RP383]

DocumentNaturalLang ? language The natural language of the document this FileSpec refers to.
FileFormat ? string A formatting string used with the FileTemplate[RP384] attribute to

define a sequence of filenames in a batch process.
If neither URL nor UID are present, both FileFormat and
FileTemplate must be present, unless the resource is a pipe. For
more information, see the text following this table.

FileSize ? integer Size of the file in Byte.
FileTemplate ? string A template, used with FileFormat, to define a sequence of

filenames in a batch process. If neither URL nor UID is present,
both FileFormat and FileTemplate must be present, unless the
resource is a pipe.

FileVersion ?
New in JDF 1.1

string Version of the file referenced by this FileSpec.

MimeType ? string Mime type of the file.
OSVersion ? string Version of the operating system.
PageOrder ? enumeration Indicates whether the pages in the file are in reverse order. Possible

values are:
Ascending – The first page in the file is the lowest numbered page.
Descending – The first page in the file is the highest numbered
page.

ResourceUsage ? NMTOKEN If an element uses more than one FileSpec subelement, this
attribute is used to refer from the parent element to a certain child
element of this type, for example, see
ColorSpaceConversionParams.

Page 351

Page 351

Name Data Type Description
UID ?
New in JDF 1.1

string Unique internal ID of the referenced file. This attribute is dependent
on the type of file that is referenced:
PDF: Variable unique identifier in the ID field of the PDF file’s
trailer.
ICC Profile: Profile ID in byte 84-99 of the ICC profile header.
Others – Format specific.

URL ? URL Location of the file. If URL is not present, and neither FileFormat
nor FileTemplate are present, the referencing resource must be a
pipe.

UserFileName ? string A user-friendly name which may be used to identify the file.
FileAlias * element Defines a set of mappings between file names that may occur in the

document and URLs (which may refer to external files or parts of a
MIME message).

##refRetention?
Added in JDF 1.2

refElement Indicates what the device should do with the file when the process
that uses this resource as an input resource completes. If not
specified, the file specified by this FileSpec is retained
indefinitely. [RP385]

Structure of FileAlias Subelement
Name Data Type Description
Alias string The filename which is expected to occur in the file.
Disposition enumeration Indicates what the device should do with the file referenced by this

alias when the process that uses this resource as an input resource
completes. Possible values are:
Unlink – The device should release the file.
Delete – The device should attempt to delete the file.
Retain – The device should do nothing with the file.

MimeType ? string Mime type of the file.
URL URL The URL which identifies the file the alias refers to.

Usage of Format and Template
The function defined when using the attributes FileFormat and FileTemplate is drawn from the same root as the
standard C print function and, therefore, overtly resembles the model of that function. FileFormat is the first
argument and FileTemplate is a comma-separated list of the additional arguments. FileTemplate may contain the
following operators : +,-,*,/,%,(,) which are evaluated using standard C-operator precedence and the variables
defined in the following table:

Table 7-6 Predefined variables used in FileTemplate

Name Description
element Integer iterator over all elements in a given page. Restarts at 0 for each page.
i Integer iterator over all files produced by this process. 0-based numbering.
page Integer iterator over the page number of a document. This is equivalent to r for the case that

each run contains exactly one page.
r Integer iterator over all RunList partitions with a partition key of “Run” in an input RunList.
ri Integer iterator over all indices in an input Run of a RunList. This index is equivalent to

looping over a RunIndex.

Page 352

Page 352

Name Description
sep Separation as defined in the separation PartIDKey of a partitioned resource.
surf Surface string, “Front” or “Back”
SheetName SheetName string of a partitioned resource.
SignatureName SignatureName string of a partitioned resource.
TileX X coordinate of a Tile
TileY Y coordinate of a Tile
PartVersion PartVersion string of a partitioned resource.
jobPartID JobPartID string
jobID Job ID string
jobName DescriptiveName of the Node that is being processed.
Time Current Time in ISO 8601 format.
Date Current Date in ISO 8601 format.
CustomerID CustomerID

Example:
<FileSpec FileFormat = “file://here/next/%s/%4.i/m%4.i.pdf” FileTemplate =
“JobID,i/100,i%100”/>

with JobID = “j001” and a RunList defining 2023 created files will iterate all created files and place them into:
“file://here/next/j001/0000/m0000.pdf”
…
“file://here/next/j001/0020/m0023.pdf”

7.2.55 FitPolicy
New in JDF 1.1
This resource specifies how to fit content into a receiving container, e.g., a RunList entry into a PlacedObject, or
image onto media.

Resource Properties
Resource class: Parameter
Resource referenced by: InterpretingParams, LayoutPreparationParams
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
ClipOffset ? XYPair Defines the offset (position) of the imaged area in the non-rotated source

image when SizePolicy is ClipToMaxPage. The values 0.0 0.0 mean that the
imaged area starts at the lower left point of the job. If absent, the imaged area
is taken from the center of the image source. If FitPolicy is defined in the
context of a PageCell ClipOffset is ignored when PageCell::ImageShift is
specified.

GutterPolicy ?

enumeration Allows printing of NUp grids even if the media size does not match the
requirements of the data. One of:
Distribute: The gutters may grow or shrink to the value specified in
MinGutter.
Fixed: The gutters are fixed. The default.

Page 353

Page 353

Name Data Type Description
MinGutter ? XYPair Minimum width in points of the horizontal and vertical gutters formed

between rows and columns of pages of a multi-up sheet layout.
The first value specifies the width of all horizontal gutters and the second
value specifies the minimum width of all vertical gutters.
If not specified, the gutter may be reduced to 0.

RotatePolicy ? enumeration Specifies the policy for the device to automatically rotate the image to
optimize the fit of the image to the container.
NoRotate – The default
RotateOrthogonal – Rotate by 90° in either direction.
RotateClockwise – Rotate clockwise by 90°.
RotateCounterClockwise – Rotate counter-clockwise by 90°.

SizePolicy ?
Modified in JDF
1.1A

enumeration Allows printing even if the container size does not match the requirements of
the data.
ClipToMaxPage – The page contents should be clipped to the size of the
container. The printed area is either centered in the source image, if no Clip-
Offset key is given, or from that position which is determined by ClipOffset.
Abort – Emit an error and abort printing. Default value.
FitToPage – The page contents should be scaled up or down to fit the
container[RP386]. The aspect ratio is maintained.
ReduceToFit – The page contents should be scaled down but not scaled up to
fit the container[RP387]. The aspect ratio is maintained.
Tile – the page contents should be split into several tiles, each printed on its
own surface.

7.2.56 Fold
New in JDF 1.1
Fold describes an individual folding operation of the Component.

Resource Properties
Resource class: Parameter
Resource referenced by: FoldingIntent, FoldingParams
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
From enumeration Edge from which the page is folded. Possible values are:

Front
Left

To enumeration Direction in which it is folded. Possible values are:
Up – upwards
Down – downwards

Travel ? double Distance of the reference edge relative to From. If both Travel and
RelativeTravel are specified, RelativeTravel is ignored. At least
on of Travel or RelativeTravel must be specified.

Page 354

Page 354

RelativeTravel ?
new in JDF 1.2

double Relative distance of the reference edge relative to From in the
coordinates of the incoming Component. RelativeTravel is always
based on the complete size of the input Component and not on the
size of an intermediate state of the folded sheet. The allowed value
range is from 0.0 to 1.0, which specifies the full length of the the
input component.

7.2.57 FoldingParams
This resource describes the folding parameters, including the sequence of folding steps. It is also possible to execute
the predefined steps of the folding catalog. After each folding step of a folding procedure, the origin of the
coordinate system is moved to the lower left corner of the intermediate folding product. For details see section ##ref
CS (2.5.4)[RP388]

The specification of reference edges (Front, Rear, Left, and Right) for the description of an operation (such as
the positioning of a tool) is done by means of determined names. These names are case-sensitive. They must be
written exactly as shown in Figure 7.9, below.

Y

XSheet lay

 Front Rear

Right

Left

Figure 7.10 Names of the reference edges of a sheet in the FoldingParams resource

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: BlockName, RibbonName, SheetName, SignatureName, WebName
Input of processes: Folding
Output of processes: -

Resource Structure
Name Data Type Description
DescriptionType ?
Deprecated in JDF 1.2

enumeration How the folding operations are described. Possible values are:
FoldProc – Detailed description of each individual fold.
FoldCatalog – Selection of fold procedure from FoldCatalog.
In JDF 1.2 and beyond, the FoldCatalog defines the topology of the
Folding scheme. The specifics of each individual Fold may be described
using Fold elements. If both FoldCatalog and Fold are specified, Fold
takes precedence.[RP389]

Page 355

Page 355

Name Data Type Description
FoldCatalog ?
Modified in JDF 1.2

string Description of the type of fold according to the folding catalog in the
format “Fx-y” or “Px-y” as shown in Figure 7.11.
The prefix “F” defines production folds for imposed pages. Production
Folds define finished pages. Production folds define finished pages.
Thus a page with a “F6-2” Z-fold is comprised of 6 finished pages.
The prefix “P” defines product folds, e.g. z-Folds that are used to fold
finished products. Product folds do NOT define finished pages. Thus a
page with a “P6-2” Z-fold is comprised of 2 finished pages.
Required when DescriptionType = FoldCatalog. [RP390]

FoldSheetIn ?
Deprecated in JDF 1.1

XYPair Input sheet format. If the specified size does not match the size of the X
and Y dimensions of the input Component, all coordinates of the
folding procedure are scaled accordingly. The scaling factors in X and Y
direction may differ.
Implementation note: This attribute should always match the Size
attribute of the input component, which is the default.

SheetLay ? enumeration Lay of input media. Possible values are:
Left – The default.
Right

Fold *
New in JDF 1.1

element This describes the folding operations in the sequence in which they
should be carried out.
At least one Fold is required when DescriptionType = FoldProc. It is
recommended to specify a set of subsequent Fold operations as multiple
Fold elements in one Folding procedure, rather than specifying a
Combined process that combines multiple Folding processes. If both
FoldCatalog and Fold elements are specified, the Fold elements have
precedence and the FoldCatalog specifies only the topology. For
instance a z-Fold with a page size ratio of ½ to ¼ to ¼ would still be
defined as an F6-1.[RP391]

FoldOperation *
Deprecated in JDF 1.1

element This describes the folding operations in the sequence in which they
should be carried out. Replaced by Fold * in JDF 1.1.

Page 356

Page 356

Page 357

Page 357

Figure 7.11 Fold Catalog part 1[RP392]

Page 358

Page 358

Figure 7.12 Fold Catalog part 2

7.2.58 FontParams
This resource describes how fonts must be handled when converting PostScript files to PDF.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes: PSToPDFConversion
Output of processes: -

Resource Structure
Name Data Type Description
AlwaysEmbed ? NMTOKENS One or more names of fonts that are always to be embedded in the

PDF file. Each name must be the PostScript language name of the
font. An entry that occurs in both the AlwaysEmbed and
NeverEmbed lists constitutes an error.
Default = an empty list.

CannotEmbedFontPolicy
?

enumeration Determines what occurs when a font cannot be embedded. Possible
values are:
Error – Log an error and abort the process if any font can not be
found or embedded.
Warning – Warn and continue if any font cannot be found or
embedded. The default.
OK – Continue without warning or error if any font can not be
found or embedded.

EmbedAllFonts ? boolean If true, specifies that all fonts, except those in the NeverEmbed
list, are to be embedded in the PDF file. Default = false

MaxSubsetPct ? integer The maximum percentage of glyphs in a font that can be used
before the entire font is embedded instead of a subset. This value is
only used if SubsetFonts = true.

NeverEmbed ? NMTOKENS One or more names of fonts that are never to be embedded in the
PDF file. Each name must be the PostScript language name of the
font. An entry that occurs in both the AlwaysEmbed and
NeverEmbed lists constitutes an error.

SubsetFonts? boolean If true, font subsetting is enabled. If false, it is not. Font subsetting
embeds only those glyphs that are used, instead of the entire font.
This reduces the size of a PDF file that contains embedded fonts. If
font subsetting is enabled, the decision whether to embed the entire
font or a subset is determined by number of glyphs in the font that
are used, and the value of MaxSubsetPct.
Note: Embedded instances of multiple master fonts are always
subsetted, regardless of the setting of SubsetFonts. The
AlwaysEmbed and NeverEmbed fonts lists are restored to their
default values between each job.

7.2.59 FontPolicy
This resource defines the policies that devices must follow when font errors occur while PDL files are being
processed. When fonts are referenced by PDL files but are not provided, devices may provide one of the following
two fallback behaviors:

Page 359

Page 359

1. The device may provide a standard default font which is substituted whenever a font cannot be found.

2. The device may provide an emulation of the missing font.
If neither fallback behavior is requested, i.e., both UseDefaultFont and UseFontEmulation are false, then the job
will fail if a referenced font is not provided. FontPolicy allows jobs to specify whether or not either of these
fallback behaviors should be employed when missing fonts occur.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes: IDPrinting Interpreting, [RP393]
Output of processes: -

Resource Structure
Name Data Type Description
PreferredFont NMTOKEN The name of a font to be used as the default font for this job. It is not

an error if the device cannot use the specified font as its default font.
UseDefaultFont boolean If true, the device must resort to a default font if a font cannot be

found. This is the normal behavior of the PostScript interpreter, which
defaults to courier when a font cannot be found.

UseFontEmulation boolean If true, the device must emulate a required font if a font cannot be
found.

7.2.60 FormatConversionParams
New in JDF 1.1
This resource defines the parameters needed for generic FormatConversion of digital files.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, RunIndex, RunTag
Input of processes: FormatConversion
Output of processes: -

Resource Structure
Name Data Type Description
FileSpec ?
Deprecated in JDF 1.2

refelement The format of the original file is specified in a FileSpec with
ResourceUsage = InputFormat. No URL should be specified,
because the list of files is given by the input RunList of the
FormatConversion process.

FileSpec ?
Deprecated in JDF 1.2

refelement The format of the converted file is specified in a FileSpec with
ResourceUsage = OutputFormat. No URL should be specified,
because the list of files is given by the output RunList of the
FormatConversion process.

Page 360

Page 360

7.2.61 GatheringParams
This resource contains the attributes of the Gathering process.

Direction of
travel

Gathering channel

Target or operation
coordinate system

Source or component
coordinate system

X

Y

X

Y

Figure 7.13 Coordinate system used for gathering

Resource Properties

Resource class: Parameter

Input of processes: Gathering

Resource Structure
Name Data Type Description
Disjointing ? element Description of the separation properties between individual

components on a gathered pile. Default = no physical separation.

7.2.62 GlueApplication
New in JDF 1.1
This resource specifies glue application in hard and soft cover book production.

Resource Properties
Resource class: Parameter
Resource referenced by: CoverApplicationParams, SpineTapingParams
Input of processes: -

Resource referenced by: -

Output of processes: -

Page 361

Page 361

Resource Structure
Name Data Type Description
GluingTechnique enumeration Type or technique of gluing application. Possible values are:

SpineGluing
SideGluingFront
SideGluingBack

GlueLine refelement Structure of the glue line.

Block

Side gluing on
back side

Side gluing on
front side

Spine gluing

Front side
Back side

X

X

X

Y
Y

Y

Start
position

Glue

Figure 7.14 Parameters and coordinate system for glue application

7.2.63 GluingParams
New in JDF 1.1
GluingParams define the parameters applying a generic line of glue to a component.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: Gluing
Output of processes: -

Output of processes: -

Page 362

Page 362

Resource Structure
Name Data Type Description
Glue * element Definition of one or more Glue line applications.

Properties of the Glue Element
The Glue element describes how to apply a line of glue.

Name Data Type Description
WorkingDirection enumeration Direction from which the tool is working. Possible values are:

Top – from above
Bottom – from below

GlueApplication element Description of the glue application.

7.2.64 GlueLine
This resource provides the information to determine where and how to apply glue.

Resource Properties
Resource class: Parameter
Resource referenced by: CaseMakingParams; EndSheetGluingParams, FoldingParams,

CoverApplicationParams, InsertingParams, SpineTapingParams,
ThreadSewingParams

Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
AreaGlue ?
New in JDF 1.1

boolean Specifies that this GlueLine should cover the complete width of the
Component it is applied to. Default=false.

GlueBrand ? string Glue brand. Default = empty string, i.e., system specified
GlueLineWidth ? double Width of the glue line. Default = equipment-specific setting

Note: In extreme cases the glue line could cover the input
component over the hole width.

GluingPattern ? XYPair Glue line pattern defined by the length of a glue line segment (X
element) and glue line gap (Y element). A solid line is expressed by
the pattern (1 0), the default.

GlueType ? enumeration Glue type. Possible values are:
ColdGlue – Any type of glue that needs no heat treatment.
Hotmelt – Hotmelt EVA (Ethyl-Vinyl-Acetat-Copolymere)
PUR – Polyurethane
Default = equipment specific setting

MeltingTemperature ? integer Required temperature for melting the glue (in degrees centigrade).
Used only when GlueType = Hotmelt or GlueType = PUR.
Default = equipment-specific setting

Page 363

Page 363

RelativeStartPosition ?
new in JDF 1.2

XYPair Relative starting position of the tool.
RelativeStartPosition is always based on the complete
size of the input Component and not on the size of an
intermediate state of the folded sheet. The allowed value
range is from 0.0 to 1.0 for each component of the
XYPair, which specifies the full size of the the input
Component. [RP394]

RelativeWorkingPath ?
new in JDF 1.2

XYPair Relative working path of the tool beginning at
RelativeStartPosition. RelativeWorkingPath is
always based on the complete size of the input
Component and not on the size of an intermediate state
of the folded sheet. The allowed value range is from 0.0
to 1.0 for each component of the XYPair, which
specifies the full size of the the input Component.
[RP395]

StartPosition ?[RP396] XYPair Start position of glue line. The start position is given in the
coordinate system of the mother sheet. Default = (0 0). If both
StartPosition and RelativeStartPosition are specified,
RelativeStartPosition is ignored. At least one of StartPosition or
RelativeStartPosition must be specified.[RP397]

WorkingPath ?[RP398] XYPair Relative working path of the gluing tool. Default = equipment-
specific setting. If both WorkingPath and RelativeWorkingPath
are specified, RelativeWorkingPath is ignored. At least one of
WorkingPath or RelativeWorkingPath must be specified.[RP399]

7.2.65 HeadBandApplicationParams
This resource specifies how to apply headbands in hard cover book production.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: HeadBandApplication
Output of processes: -

Resource Structure
Name Data Type Description
BottomBrand ? string Bottom head band brand. If not specified, defaults to TopBrand.
BottomColor ? NamedColor Color of the bottom head band. If not specified, defaults to

TopColor.
BottomLength ? double Length of the carrier material of the bottom head band along

binding edge. If not specified, both head bands are on one carrier.
TopBrand ? string Top head band brand. Default =system specified.
TopColor ? NamedColor Color of the top head band. Default =system specified.
TopLength ? double Length of carrier material of the top head band along binding edge.

If not specified, both head bands are on one carrier which has the
length of the book block.

New in JDF 1.1

Page 364

Page 364

StripMaterial ? enumeration Strip material. Possible values are:
Calico
Cardboard
CrepePaper
Gauze
Paper
PaperlinedMules
Tape
Default =system specified.

Width ? number Width of the head bands and carrier.
GlueLine * refelement The carrier may be applied to the bookblock with glue. The

coordinate system for the GlueLine is defined in the Section 7.2.52

7.2.66 Hole
The Hole element describes an individual hole.

Resource Properties
Resource class: Parameter
Resource referenced by: HoleLine, HoleMakingIntent, HoleMakingParams
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
Center XYPair Position of the center of the hole relative to the Component

coordinate system. For more information, see Section 6.6.46.2.
Extent XYPair Size (Bounding Box) of the hole in points. If Shape is Round, only

the first entry of Extent is evaluated and defines the hole diameter.
Shape
Modified in JDF 1.1

enumeration Shape of the hole. Possible values are:
Elliptic
Round
Rectangular

7.2.67 HoleLine
New in JDF 1.1
Line Hole Punching generates a series of holes with identical distance (pitch) running parallel to the edge of a web,
which is mainly used to transport paper through continuous-feed printers and finishing devices (form processing).
The final product typically is a web with two lines of holes, one at each edge of the web. The parameters for one
line of Holes are specified in the HoleLine element. The distance between holes within each line of holes is
identical (constant pitch).

Resource Properties
Resource class: Parameter
Resource referenced by: HoleMakingIntent, HoleMakingParams
Example Partition: -
Input of processes: -
Output of processes: -

Page 365

Page 365

However, sometimes Line Hole Punching is performed for multiple webs before dividing the web after the
HoleMaking process as illustrated below:

The parameters of the HoleLine element are:

Page 366

Page 366

Resource Structure
Name Data Type Description
Pitch number Center-hole to center-hole distance within a line of holes.
Hole element Size and position of the first hole in the HoleLine.

7.2.68 HoleMakingParams
This resource specifies where to make a hole of what shape in components. This information is used by the
HoleMaking process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: SheetName
Input of processes: HoleMaking,
Output of processes: -

Resource Structure
Name Data Type Description
Center ?
Modified in JDF 1.1

XYPair Position of the center of the hole pattern relative to the Component
coordinate system if HoleType is not equal Explicit. If not specified, it
defaults to the value implied by HoleType.

CenterReference ?
New in JDF 1.1

enumeration Defines the reference coordinate system for Center. One of:
TrailingEdge – Physical coordinate system of the component. The
default.
RegistrationMark – The center is relative to a registration mark.

Extent ?

XYPair Size (Bounding Box) of the hole in pt if HoleType is not equal Explicit.
If Shape is Round, only the first entry of Extent is evaluated and
defines the hole diameter. If not specified, it defaults to the value
implied by HoleType.

HoleReferenceEdge ?
New in JDF 1.1
Deprecated in JDF
1.2[RP400]

enumeration The edge of the media relative to where the holes should be punched.
Use with HoleType. Possible values are:
Left
Right
Top
Bottom
Pattern – Specifies that the reference edge implied by the value of
HoleType in Appendix L JDF/CIP4 Hole Pattern Catalog is used. The
default if HoleType is Explicit, otherwise Left.
HoleReferenceEdge has been replaced with an explicit
Transformation or Orientation of the input Component. If both
Transformation/Orientation and HoleReferenceEdge are specified,
the result is the matrix product of both transformations.
Transformation/Orientation must be applied first.[RP401]

HoleType
New in JDF 1.1

enumerations Predefined hole pattern. Multiple hole patterns are allowed, e.g., 3-hole
ring binding and 4-hole ring binding holes on one piece of media. For
details of the hole types, refer to Appendix L JDF/CIP4 Hole Pattern
Catalog.
Allowed values are:

Page 367

Page 367

Name Data Type Description
R2-generic
R2m-DIN
R2m-ISO
R2i-US-a
R2i-US-b
R3-generic
R3i-US
R4-generic
R4m-DIN-A4
R4m-DIN-A5
R4m-swedish
R4i-US
R5-generic
R5i-US-a
R5i-US-b
R5i-US-c

R6-generic
R6m-4h2s
R6m-DIN-A5
R7-generic
R7i-US-a
R7i-US-b
R7i-US-c
R11m-7h4s
P12m-rect-0t
P16_9i-rect-0t
W2_1i-round-0t
W2_1i-square-0t
W3_1i-square-0t
C9.5m-round-0t
Explicit – Holes are defined in an
array of Hole or HoleLine elements.

The following values are deprecated from JDF 1.0
2HoleEuro – Replace by either R2m-DIN or R2m-ISO.
3HoleUS – Replace by R3I-US
4HoleEuro – Replace by R4m-DIN-A4 or R4m-DIN-A5

Shape ?
Modified in JDF 1.1

enumeration Shape of the holes if HoleType is not equal Explicit.. Possible values
are:
Elliptic
Round
Rectangular
If not specified, it defaults to the value implied by HoleType.

Hole * element Description of individual Hole elements.
HoleLine *
New in JDF 1.1

element Description of HoleLine elements.

Page 368

Page 368

Name Data Type Description

7.2.69 RegisterMar
kQualityCo
ntrolParams

This set of parameters
identifies how the
QualityControl process
should operate.
QualityControlParams
defines the generic set of
parameters for the quality
control process. The
specific measurement
conditions are defined in
specialized subelements
such as
BindingQualityParams.

Resource
Properties
Resource class: P
Resource referenced by: -
Example Partition: -
Input of processes: Q
Output of processes: -

Resource Structure
Name

TimeInterval? d

SampleInterval? I
BindingQualityParams?

Structure of the
BindingQualityPara
ms element

Name D
FlexValue? d

PullOutValue? d

7.2.70 QualityCont
rolResult

This set of parameters
returns results of a
QualityControl process.
QualityControlResult
defines the generic set of
results from the quality

Refelement Reference to the registration mark that defines the origin and
orientation of the [RP402]coordinate system.

Page 369

Page 369

Name Data Type Description
control process. The
specific measurements are
returned in specialized
subelements such as
BindingQualityParams.
Additional detailed
quality control result
types are anticipated in
future versions of the JDF
specification.

Resource
Properties
Resource class: P
Resource referenced by: -
Example Partition: -
Input of processes: Q
Output of processes: -

Resource Structure
Name Data Type Description

Failed ? integer Total number of failed measurements.

Passed ? integer Total number of passed measurements.

BindingQualityParams
?

refElement Reference to the measurement setup definition.

FileSpec ? refElement Location of an external file that contains details of the quality
control measurement.

QualityMeasuremen
t *

element One individual measurement result.

Structure of the
QualityMeasurement
element
QualityMeasurement
elements describe an
individual measurement.

Page 370

Page 370

Name Data Type Description

BindingQualityMeasur
ement ?

element Details of the BindingQualityMeasurement.

Structure of the
BindingQualityMeasur
ement element

Name Data Type Description
FlexValue? double Flex quality parameter result [N/cm]

PullOutValue? double Pull out quality parameter result [N/cm]
RegisterMark ?
New in JDF 1.1

7.2.71 IdentificationField
This resource contains information about a mark on a document, such as a bar code, used for OCR-based
verification purposes or document separation.

Resource Properties
Resource class: Parameter
Resource referenced by: Disjointing, Sheet, Surface, any physical resource
Example Partition: -
Input of processes: Verification, Inserting, Collecting, Gathering,
Output of processes: -

Resource Structure
Name Data Type Description
BoundingBox ? rectangle Box that provides the boundaries in the coordinate system of the mark

that indicates where the component is to be placed. If no
BoundingBox is defined, the complete visible surface must be
scanned for an appropriate bar code.

Encoding enumeration Encoding of the information. Possible values are:
ASCII – Plain-text font.
BarCode1D – One-dimensional bar code.
BarCode2D – Two-dimensional bar code.

Page 371

Page 371

Name Data Type Description
EncodingDetails NMTOKEN Details about the encoding type. An example is the bar code scheme.

Possible values are:
Code39
Interleave25
Plessey
EAN

Format ? string Regular expression6 that defines the expected format of the
expression, such as the number of digits, alphanumeric, or numeric.
Note that this field may also be used to define constant fields, such as
the end of document markers or packaging labels.
Default is that any expression is valid (Format = “*”).

Orientation ? matrix Orientation of the contents within the field. The coordinate system is
defined in the system of the sheet or component where the
IdentificationField resides.
Default = identity matrix.

Position ? enumeration Position with respect to the instance document or physical resource to
which the IdentificationField resource refers. Possible values are:
Header – Sheet before the document.
Trailer – Sheet after the document.
Page – A page of the document.
Top – The top of the resource.
Bottom – The bottom of the resource.
Left – The left side of the resource.
Right – The right side of the resource.
Front – The front side of the resource.
Back – The back side of the resource.
Any: the default.

Page ? integer If Position = Page, this refers to the page where the
IdentificationField can be found. Negative values denote an offset
relative to the last page in a stack of pages.

Purpose ? enumeration Purpose defines the usage of the field. Possible values are:
Label – The default, used to mark a product or component.
Separation – used to separate documents.
Verification – used for verification of documents.

Value ?
New in JDF 1.1

string Fixed value of the IdentificationField, e.g., on a label.

7.2.72 IDPrintingParams
Deprecated in JDF 1.1
This resource contains the parameters needed to control the IDPrinting process.

Resource Properties
Resource class: Parameter

6 This is a regular expression as in UNIX grep.

Page 372

Page 372

Resource referenced by: -
Example Partition: DocIndex, DocRunIndex, DocSheetIndex, PartVersion, Run, RunIndex, RunTag,
SheetIndex, SheetName, Side
Input of processes: IDPrinting
Output of processes: -

Resource Structure
Name Data Type Description
AttributesNaturalLang ? language Language selected for communicating attributes.

Default = US English
IDPAttributeFidelity ? boolean Indicates whether or not the device must reject the job if there are attribute

values or elements that it does not support.
Default = false

IPPJobPriority ? integer The scheduling priority for the job where 100 is the highest and 1 is the
lowest. Amongst the jobs that can be printed, all higher priority jobs must
be printed before any lower priority ones.
Default = 50

IPPVersion ? XYPair A pair of numbers indicating the version of the IPP protocol to use when
communicating to IPP devices. The X value is the major version number.
Default = system specified

OutputBin ? NMTOKEN Specifies the bin to which the finished document should be output. Possible
values are:
Top – The bin that, when facing the device, can best be identified as "top”.
Middle – The bin that, when facing the device, can best be identified as
“middle”.
Bottom – The bin that, when facing the device, can best be identified as
“bottom”.
Side – The bin that, when facing the device, can best be identified as “side”.
Left – The bin that, when facing the device, can best be identified as “left”.
Right – The bin that, when facing the device, can best be identified as
“right”.
Center – The bin that, when facing the device, can best be identified as
“center”.
Rear – The bin that, when facing the device, can best be identified as “rear”.
FaceUp – The bin that can best be identified as “face up” with respect to the
device.
FaceDown –The bin that can best be identified as “face down” with respect
to the device.
FitMedia – Requests the device to select a bin based on the size of the
media.
LargeCapacity – The bin that can best be identified as the “large capacity”
bin (in terms of the number of sheets) with respect to the device.
Mailbox-N – The job will be output to the bin that is best identified as
“Mailbox-1”, “Mailbox-2”…etc.
Stacker-N –The job will be output to the bin that is best identified as
“Stacker-1’, ‘Stacker-2” …etc.
Tray-N – The job will be output to the tray that is best identified as “Tray-
1”, “Tray-2” … etc.
SystemSpecified - The job will be output to the tray that is best identified as

Page 373

Page 373

Name Data Type Description
“SystemSpecified”
Default = SystemSpecified

PageDelivery ? enumeratio
n

Indicates how pages are to be delivered to the output bin or finisher.
Possible values are:
SameOrderFaceUp – Order as defined by the RunList, with the “front”
sides of the media up.
SameOrderFaceDown – Order as defined by the RunList, with the “front”
sides of the media up.
ReverseOrderFaceUp – Order reversed, as defined by the RunList, with the
“front” sides of the media up.
ReverseOrderFaceDown – Order reversed, as defined by the RunList, with
the “front” sides of the media down.
SystemSpecified – Order and face-up/face-down as defined by the system.
Default = SystemSpecified

PrintQuality ? enumeratio
n

Indicates how pages are to be delivered to the output bin or finisher.
Possible values are:
High – Highest quality available on the printer.
Normal – The default quality provided by the printer.
Draft – Lowest quality available on the printer
SystemSpecified – System specified default print quality.
Default = SystemSpecified

SheetCollate ? boolean Determines whether the sequencing of the pages in the output of the job.
If true, pages for each copy of the document are sequenced together,
followed by the pages for the next copy.
If false, all copies of the first page are sequenced, followed by the second
and subsequent pages.
SheetCollate describes the order of the final pages, but does not prescribe
the order in which they are produced.
Default = system specified.

Cover * element 0, 1 or 2 Cover elements.
Default = no cover

IDPFinishing ? refelement This element provides the details of how media for each instance document
should be finished.
Default = system specified

IDPLayout ? refelement This element provides the details of how page contents will be imaged onto
media.
Default = system specified

JobSheet * element A set of sheets which must be produced with the job.
Default = no job sheets produced

MediaIntent ? refelement A MediaIntent element. This element is ignored if a MediaSource
resource is present and can be honored for the IDPrinting process. If
MediaSource is absent or cannot be honored, this element describes the
intended media for the job to allow the device to select from among the
available media.

MediaSource? refelement Describes the source and physical orientation of the media to be used.

Page 374

Page 374

Structure of the Cover Subelement
Deprecated in JDF 1.1
This element describes the cover requested for the job. Covers may be applied to the whole job, or to each instance
document in the job. Note that front and back covers may be specified.

Name Data Type Description
BackSide ? boolean The next page from the RunList is imaged onto the back of this cover.

This would be the inside of a Front cover and outside of a Back cover.
Default = false

CoverType ? enumeration Specifies whether this Cover element specifies the front or back cover.
Front – The front cover.
Back – The back cover.
Default = Front

FrontSide ? boolean The next page from the RunList is imaged onto the front of this cover.
This would be the outside of a Front cover and inside of a Back cover.
Default = false

IDPFinishing? refelement An IDPFinishing element that describes the finishing options for the
cover.

IDPLayout ? element This element provides the details of how page contents will be imaged
onto the cover.

MediaIntent ? refelement A MediaIntent element. This element describes the media to be used
for the job. This element is ignored if a MediaSource resource is
present and can be honored for the IDPrinting process.
If MediaSource is absent or cannot be honored, this element
describes the intended media for the job to allow the device to select
from among the available media.

MediaSource? refelement Describes the source and physical orientation of the media to be used.

Properties of the IDPFinishing Subelement
Deprecated in JDF 1.1
IDPFinishing elements describe finishing operations that should be applied to sets of pages that are output by the
IDPrinting process. The finishings are applied to the entire job when there are no instance documents. Otherwise,
each instance document is finished separately. Operation-specific subelements may also be present when a device
provides controls for a finishing operation. Additional subelements are expected to be defined over time. Also, more
detail will be added to the currently defined elements.

Page 375

Page 375

Name Data Type Description
Finishings ? IntegerList A set of finishing operations to apply to the job. The operations are encoded as

an enumeration:
Possible values are:
3 – (none) Perform no finishing
4 – (staple) Bind the document(s) with one or more staples. The exact number
and placement of the staples is site-defined.
5 – (punch) This value indicates that holes are required in the finished
document. The exact number and placement of the holes is site-defined The
punch specification may be satisfied (in a site- and implementation-specific
manner) either by drilling/punching, or by substituting predrilled media.
6 – (cover) This value is specified when it is desired to select a non-printed (or
preprinted) cover for the document. This does not supplant the specification of a
printed cover (on cover stock medium) by the document itself.
7 – (bind) This value indicates that a binding is to be applied to the document;
the type and placement of the binding is site-defined.
8 – (saddle-stitch) Bind the document(s) with one or more staples (wire stitches)
along the middle fold. The exact number and placement of the staples and the
middle fold is implementation and/or site-defined.
9 – (edge-stitch) Bind the document(s) with one or more staples (wire stitches)
along one edge. The exact number and placement of the staples is
implementation and/or site-defined.
10 – (fold) Fold the document(s) with one or more folds. The exact number and
orientations of the folds is implementation and/or site-defined.
11 – (trim) Trim the document(s) on one or more edges. The exact number of
edges and the amount to be trimmed is implementation and/or site-defined.
12 – (bale) Bale the document(s). The type of baling is implementation and/or
site-defined.
13 – (booklet-maker) Deliver the document(s) to the signature booklet maker.
This value is a short cut for specifying a job that is to be folded, trimmed and
then saddle-stitched.
14 – (jog-offset) Shift each copy of an output document from the previous copy
by a small amount which is device dependent. This value has no effect on the
"job-sheet." This value should not have an effect if each copy of the job consists
of one sheet.
50 – (bind-left) Bind the document(s) along the left edge. The type of the
binding is site-defined.
51 – (bind-top) Bind the document(s) along the top edge. The type of the
binding is site-defined.
52 – (bind-right) Bind the document(s) along the right edge. The type of the
binding is site-defined.
53 – (bind-bottom) Bind the document(s) along the bottom edge. The type of
the binding is site-defined.

IDPFolding ? refelement Provides details of how to fold the set of pages (or document). When this
element is present, Finishings is ignored.

IDPHoleMaking ? refelement Provides details of how to punch holes in the set of pages (or document). When
this element is present, Finishings is ignored.

IDPStitching ? refelement Provides details of how to stitch the set of pages (or document). When this
element is present, Finishings is ignored.

Page 376

Page 376

Name Data Type Description
IDPTrimming ? refelement Provides details of how to trim the set of pages (or document). When this

element is present, Finishings is ignored.

Structure of IDPFolding Subelement
Deprecated in JDF 1.1
This element describes the folding requested for a set of pages in the document.
Name Data Type Description
FoldingParams ? Refelement Describes the details of how to fold the media.

Structure of IDPHoleMaking Subelement
Deprecated in JDF 1.1
This element describes the hole making requested for a set of pages in the document.
Name Data Type Description
HoleMakingParams ? refelement Describes the details of the holes to be punched into the Media.

Structure of the IDPLayout Subelement
Deprecated in JDF 1.1
Name Data Type Description
Border ? number A real number that indicates the width of a border, in points, which

will be drawn around the page images on the media.
Default = 0, i.e., no border will be drawn.

FinishedPageOrientation
?

enumeration Indicates the desired orientation of the finished page. This value is
used with PresentationDirection to determine how pages will be
imaged onto the media. Possible values are:
Portrait – The short edges of the media are the top and bottom.
Landscape – The long edges of the media are the top and bottom.
Default = Portrait.

ForceFrontSide ? DoubleRangeLi
st

A set of numbers which identify a set of pages in the RunList that
should always be imaged on the front side of a piece of media.

ImageShift ? element Element which describes how page images should be placed onto the
media. When NumberUp is present and is not “1,1”, NumberUp is
applied before the ImageShift, and all contents for each surface are
shifted the same amount.

NumberUp ? XYPair The number of pages to impose onto a single side of media. The way
in which the pages are to be imaged onto the media is determined by
the values of FinishedPageOrientation and PresentationDirection.
FinishedPageOrientation indicates how the page will be oriented,
and PresentationDirection indicates how page images will be
distributed, given that orientation.

PresentationDirection ? enumeration Indicates the order in which the requested NumberUp pages will be
imaged onto the media. The value of FinishedPageOrientation is used
to define “top”, “left”, “right” and “bottom” for the media. Possible
values are:
 ToBottomToRight – Pages are imaged in successive columns, from
left to right, starting at the top of each column.
 ToBottomToLeft – Pages are imaged in successive columns, from
right to left, starting at the top of each column.
ToTopToRight – Pages are imaged in successive columns, from left to
right, starting at the bottom of each column.
ToTopToLeft – Pages are imaged in successive columns, from right to

Page 377

Page 377

Name Data Type Description
left, starting at the bottom of each column.
ToRightToBottom – Pages are imaged in successive rows, from top to
bottom, starting at the left of each row.
ToRightToTop – Pages are imaged in successive rows, from bottom to
top, starting at the left of each row.
ToLeftToBottom – Pages are imaged in successive rows, from top to
bottom, starting at the right of each row.
ToLeftToTop – Pages are imaged in successive rows, from bottom to
top, starting at the right of each row.
Default = SystemSpecified

Rotate ? number A number of degrees which the page contents are to be rotated prior to
being imaged onto page contents. A positive value is taken to mean
an counter-clockwise rotation. The page contents will be scaled to fit
the printable area of the media after the rotation.
Note: Text will be reflowed in cases where the PDL for the page
allows reflow by the device.
Default = 0

Sides ? enumeration Indicates how pages should be imposed onto sides of the medium.
Possible values are:
OneSided – Page contents will only be imaged on one side of the
media. The default.
TwoSidedLongEdge – Impose pages upon the front and back sides of
media sheets so that the orientation of the pages on each side is
appropriate for binding along the long edge. Equivalent to “work-
and-turn”.
TwoSidedShortEdge – Impose pages upon the front and back sides of
media sheets so that the orientation of the pages on each side is
appropriate for binding along the short edge. Equivalent to “work-
and-tumble”.

Structure of IDPStitching Subelement
Deprecated in JDF 1.1
This element describes the stitching requested for a set of pages in the document.

Page 378

Page 378

Name Data Type Description
StitchingPosition ? enumeration Specifies the location for stitching. All locations are interpreted as if

the document were a portrait document. Ignored if StitchingParams
is present. Possible values are:
None – The document is not to be stitched.
TopLeft – Bind the document with one or more staples in the top left
corner.
BottomLeft – Bind the document with one or more staples in the
Bottom left corner.
TopRight – Bind the document with one or more staples in the top
right corner.
BottomRight – Bind the document with one or more staples in the
bottom right corner.
LeftEdge – Bind the document with one or more staples across the left
edge.
TopEdge – Bind the document with one or more staples across the top
edge.
RightEdge – Bind the document with one or more staples across the
right edge.
BottomEdge – Bind the document with one or more staples across the
bottom edge.
DualLeftEdge – Bind the document with two staples across the left
edge.
DualTopEdge – Bind the document with two staples across the top
edge.
DualRightEdge – Bind the document with two staples across the right
edge.
DualBottomEdge – Bind the document with two staples across the
bottom edge.

StitchingReferenceEdge
?

enumeration The edge of the output media relative to which the stapling or
stitching must be applied. If StitchingParams is present,
StitchingReferenceEdge defines the BindingEdge. Possible values
are:
Bottom – The bottom edge coincides with the x-axis of the coordinate
system.
Top – The top edge is opposite and parallel to the bottom edge.
Left – The left edge coincides with the y-axis of the coordinate system.
Right – The right edge is opposite and parallel to the left edge.

StitchingParams ? refelement A StitchingParams element which provides detailed control of the
stitching. StitchingReferenceEdge must be present if
StitchingParams is provided.

Structure of IDPTrimming Subelement
Deprecated in JDF 1.1
This element describes the trimming requested for a set of pages in the document.
Name Data Type Description
TrimmingParams ? Refelement Describes the details of how to trim the media.

Structure of the ImageShift Subelement

Page 379

Page 379

ImageShift elements describe how page contents will be imaged onto media. All attributes refer to positioning
along the “X” or “Y” axis. The “X” dimension is the first number of the Media Dimension attribute; “Y” is the
second number.

Name Data Type Description
PositionY ? enumeration Indicates how page images should be positioned vertically on the

surface. Shifts are applied after positioning. Values are:
Bottom – Position the bottom edge of the page images so they is
coincident with the bottom edge of the printable area of the surface.
Center – Center the page images horizontally on the surface without
regard to limitations of the printable area.
None – Place the page images wherever the print data specifies (the
default).
Top – Position the top edge of the page images so they is coincident
with the top edge of the printable area of the surface.

ShiftX ? integer The image is to be shifted along the x axis on both sides of the media.
ShiftY ? integer The image is to be shifted along the y axis on both sides of the media.
ShiftXSide1 ? integer The image is to be shifted along the x axis on the front side of the

media.
ShiftXSide2 ? integer The image is to be shifted along the x axis on the back side of the

media.
ShiftYSide1 ? integer The image is to be shifted along the y axis on the front side of the

media.
ShiftYSide2 ? integer The image is to be shifted along the y axis on the back side of the

media.

Structure of the JobSheet Subelement
Deprecated in JDF 1.1
This element describes a job sheet which may be produced along with the job. Job sheets include separators, sheets,
and error sheets. The information provided on the sheet depends on the type of sheet. In addition, any sheet type
may include an optional message as a comment subelement for the sheet element. Such a message comment must
have a Name attribute with the value ‘SheetMessage’.

Deprecated in JDF 1.1

PositionX ? enumeration Indicates how page images should be positioned horizontally on the
surface. Shifts are applied after positioning. Values are:
Center – Center the page images horizontally on the surface without
regard to limitations of the printable area.
Left – Position the left edge of the page images so they is coincident
with the left edge of the printable area of the surface.
None – Place the page images wherever the print data specifies (the
default).
Right – Position the right edge of the page images so they is
coincident with the right edge of the printable area of the surface.

Page 380

Page 380

Name Data Type Description
SheetFormat ? NMTOKEN Identifies the format of the JobSheet. The default is ‘Standard’, but

site-specific values may be defined.
SheetOccurrence enumeration Indicates when the sheet is to be produced and inserted into the set of

output pages. Possible values are:
Always – Valid for ErrorSheet or AccountingSheet. The sheet is
always produced at the end of the job.
End – Valid for JobSheet or SeparatorSheet. The sheet is produced at
the end of the job (for JobSheet) or at the end of each copy of each
instance document (for SeparatorSheet).
OnError – Valid for ErrorSheet. The sheet is produced at the end of
the job when an error or warning occurs.
Slip – Valid for SeparatorSheet. The sheet is produced between each
copy of each instance document.
Start – Valid for JobSheet or SeparatorSheet. The sheet is produced at
the start of the job (for JobSheet) or at the start of each copy of each
instance document (for SeparatorSheet).
Both – Valid for JobSheet or SeparatorSheet. The sheet is produced at
the beginning and end of the job (for JobSheets) or at the beginning
and end of each copy of each instance document (for
SeparatorSheets).
None – Valid for any SheetType.

SheetType enumeration Identifies the type of sheet. Possible values are:
AccountingSheet – A sheet that reports accounting information for the
job.
ErrorSheet – A sheet that reports errors for the job.
JobSheet – A sheet that delimits the job.
SeparatorSheet – A sheet that delimits one copy (set) of the job.

IDPFinishing ?

refelement An IDPFinishing element that describes the finishing options for the
job sheet.

IDPLayout ?

element This element provides the details of how page contents will be imaged
onto the job sheet.

MediaIntent ?

refelement A MediaIntent element. This element describes the media to be used
for the job sheets. This element is ignored if a MediaSource
resource is present and can be honored. If MediaSource is absent or
cannot be honored, this element describes the intended media for the
job sheets to allow the device to select from among the available
media.

MediaSource? refelement Describes the source and physical orientation of the media to be used.

Overriding IDPrintingParams using Partitioning
IDPrintingParams may be overridden using partitioning mechanisms as described in 3.9.2 Description of
Partitionable Resources. Overrides may apply to a set of instance documents, set of copies of instance documents, or
to a set of pages, output surfaces, sheets of media in a personalized printing job, or header or trailer insert sheets
added by a RunList. Note: If more than one override refers to the same content, the lowest level override takes
precedence. The following list defines partitioning precedence, from lowest to highest, i.e., the lower entries in the
list take precedence:

Job level partitioning (lowest priority):
PartVersion, Run, SheetName, Side, RunTag

Page 381

Page 381

Page level partitioning:
RunIndex
SheetIndex
Instance document level partitioning (highest priority):
DocCopies
DocIndex
DocSheetIndex
DocRunIndex
Note: It is strongly discouraged to mix page level partitions and instance document level partitions. Cover elements
in IDPrintingParams are counted when calculating DocSheetIndex or DocRunIndex.

Example of a partitioned IDPrinting Node
The following example shows how partitioning can be used to describe a fairly complex example. Three color
models (ColorantControl partitions) are applied to a set of sheets using the DocSheetIndex key;

1.) DeviceN: DocSheetIndex = “0” defines the cover;
2.) DeviceCMYK: DocSheetIndex = “1” defines the first sheet (non cover);
3.) DeviceGray: DocSheetIndex = “2~-1” defines all other sheets;

The cover is selected from a different input tray using the Location key. The same key is used to describe the
Media in each tray.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="HDM20010402140111" Type="IDPrinting" JobID="HDM20010402140111" Status="Waiting"
Version="1.0">
 <ResourcePool>
 <Media ID="Link0003" Class="Consumable" Locked="false" Status="Available" Dimension="700 900"
MediaType="Paper" PartIDKeys="Location">
 <Media Weight="90" Location="Tray 1"/>
 <Media Weight="120" Location="Tray 2"/>
 </Media>
 <RunList ID="Link0004" Class="Parameter" Locked="false" Status="Available" PartIDKeys="Run">
 <RunList Run="Run0005" Pages="0">
 <LayoutElement>
 <FileSpec URL="Cover.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Run="Run0006" Pages="0~7">
 <LayoutElement>
 <FileSpec URL="File2.pdf"/>
 </LayoutElement>
 </RunList>
 </RunList>
 <IDPrintingParams ID="Link0008" Class="Parameter" rRefs="Link0003" Locked="false"
Status="Available">
 <IDPLayout NumberUp="2 2"/>
 <MediaSource MediaLocation="Tray 1">
 <MediaRef rRef="Link0003"/>
 </MediaSource>
 <Cover CoverType="Front" FrontSide="true">
 <IDPLayout NumberUp="1 1"/>
 <MediaSource MediaLocation="Tray 2">
 <MediaRef rRef="Link0003"/>
 </MediaSource>
 </Cover>
 </IDPrintingParams>
 <ColorantControl ID="Link0009" Class="Parameter" Locked="false" Status="Available"
PartIDKeys="DocSheetIndex">
 <ColorantControl DocSheetIndex="0" ProcessColorModel="DeviceN"/>
 <ColorantControl DocSheetIndex="1" ProcessColorModel="DeviceCMYK"/>
 <ColorantControl DocSheetIndex="2~-1" ProcessColorModel="DeviceGray"/>
 </ColorantControl>
 </ResourcePool>
 <ResourceLinkPool>

Page 382

Page 382

 <MediaLink rRef="Link0003" Usage="Input"/>
 <RunListLink rRef="Link0004" Usage="Input"/>
 <IDPrintingParamsLink rRef="Link0008" Usage="Input"/>
 <ColorantControlLink rRef="Link0009" Usage="Input"/>
 </ResourceLinkPool>
</JDF>

7.2.73 ImageCompressionParams
This resource provides information describing how images are to be compressed in PDF files.

Resource Properties
Resource class: Parameter
Resource referenced by: Sheet
Example Partition: DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes: ImageReplacement, Preflight
Output of processes: -

Resource Structure
Name Data Type Description
ImageCompression * Element Specifies how images are to be compressed.

Structure of ImageCompression Subelement
Name Data Type Description
AntiAliasImages ? Boolean If true, anti-aliasing is permitted on images. If false, anti-aliasing is

not permitted.
Anti-aliasing increases the number of bits per component in
downsampled images to preserve some of the information that is
otherwise lost by downsampling. Anti-aliasing is only performed if
the image is actually downsampled and if ImageDepth has a value
greater than the number of bits per color component in the input
image.
Default = false

AutoFilterImages ?
Modified in JDF1.1A

Boolean Used only if EncodeImages is true. This attribute is not used if
ImageType = monochrome.
If true, the DCTEncode filter is applied to photos and the
FlateEncode filter is applied to screen shots. If false, the
ImageFilter compression method is applied to all images. This
parameter is ignored for monochrome images.
Default = true

ConvertImagesToIndexed
?

Boolean If true, the application converts images that use fewer than 257
colors to an indexed colorspace for compactness. This attribute is
used only when ImageType = color.

DCTQuality ? Number A value between 0 and 1 that indicates “how much” the process
should compress images when using a DCTEncode filter. 0.0
means “do as loss-less compression as possible.” 1.0 means “do the
maximum compression possible.” Default = 0

DownsampleImages ?
Modified in JDF1.1A

Boolean If true, sampled color images are downsampled using the resolution
specified by ImageResolution. If false, downsampling is not
carried out and the image resolution in the PDF file is the same as
that in the source file. Defaults = false

Page 383

Page 383

Name Data Type Description
EncodeColorImages ?
Deprecated in JDF 1.1

Boolean If true, color images are encoded using the compression filter
specified by the value of the ImageFilter key. If false, no
compression filters are applied to color sampled images. Default =
false

EncodeImages ?
New in JDF 1.1
Modified in JDF1.1A

Boolean If true, images are encoded using the compression filter specified by
the value of the ImageFilter key. If false, no compression filters
are applied to sampled images. Default = false

ImageAutoFilterStrategy =
“JPEG”
New in JDF 1.2

NMTOKEN If true, selects what image compression strategy to employ if
passing through an image that is not already compressed. Possible
values are
JPEG - Lossy JPEG compression for low-frequency images and
lossless Flate compression for high-frequency images.
JPEG2000 – Lossy JPEG2000 compression for low-frequency
images and lossless JPEG2000 compression for high-frequency
images. [GCM403]

ImageDepth ? Integer Specifies the number of bits per component in the downsampled
image when DownsampleImages = true. Default = -1, which
forces the downsampled image to have the same number of bits per
sample as the original image.

ImageDownsampleThresh
old ?

Number Sets the image downsample threshold for images. This is the ratio
of image resolution to output resolution above which downsampling
may be performed. Allowable values must be between 1.0 through
10.0, inclusive. If the threshold is set out of range, the value reverts
to a default of 2.0. The following short examples provide a
hypothetical configuration:
To use ImageDownsampleThreshold, set the following attributes
to the values indicated:
ImageResolution = 72
ImageDownsampleThreshold = 1.5
The input image would not be downsampled unless it has a
resolution greater than trunc ((72 * 1.5) + .5) = 108dpi

ImageDownsampleType ? enumeration Downsampling algorithm for images. Possible values are:
Average – The program averages groups of samples to get the new
downsampled value.
Bicubic – The program uses bicubic interpolation on a group of
samples to get a new downsampled value.
Subsample – The program picks the middle sample from a group of
samples to get the new downsampled value.

ImageFilter ?
Modified in JDF 1.2[RP404]

NMTOKEN
[RP405]

Specifies the compression filter to be used for images. Ignored if
AutoFilterImages = true or if EncodeImages = false. Possible
values are:
CCITTFaxEncode – Used to select CCITT Group 3 or 4 facsimile
encoding. Used only if ImageType = monochrome.
DCTEncode – Used to select JPEG compression.
FlateEncode – Used to select ZIP compression.
Note that in JDF 1.1.and below, the datatype was enumeration. It
has been extended to NMTOKEN in order to allow for
extensions.[RP406]
.

Page 384

Page 384

Name Data Type Description
ImageResolution ? Number Specifies the minimum resolution for downsampled color images in

dots per inch. This value is used only when DownsampleImages
is true. The application downsamples only images that are above
that resolution [amc407]to that actual resolution. [RP408]

ImageType enumeration Specifies the kind of images that are to be manipulated. Possible
values are:
Color
Grayscale
Monochrome

JPXQuality ?[GCM409]
New in JDF 1.2

integer Specifies the required image quality. Valid values are greater than or
equal to 1 and less than or equal to 100. 1 means lowest quality
(highest compression), 99 means visually lossless compression, and
100 means numerically lossless compression.

XXXParamss element Elements that specify details of the compression.

7.2.74 ImageReplacementParams
This resource specifies parameters required to control image replacement within production workflows.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes: ImageReplacement
Output of processes: -

Resource Structure
Name Data Type Description
ImageReplacementStrate
gy

enumeration Identifies how externally referenced images will be handled within
the associated process. Possible values are:
Omit – Complete process maintaining only references to external
data.
Proxy – Complete process using available proxy images.
Replace – Replace external references with image data during
processing.
AttemptReplacement – Attempt to replace external references with
image data during processing. If replacement fails, complete the
process using available proxy images.

MaxResolution ?
Deprecated in JDF 1.1

double Reduces the resolution of images with a resolution higher than
MaxResolution.
Default = 0, which means “do not downsample.”
Replaced with a link to ImageCompressionParams in the
process.

MinResolution ?

double Specifies the minimum resolution that an image must have in order
to be embedded.
Default = 0, which means “don’t care”

Page 385

Page 385

Name Data Type Description
ResolutionReductionStrat
egy ?
Deprecated in JDF 1.1

enumeration Identifies the mechanism used for reducing the image resolution.
Possible values are:
Downsample – Default value.
Subsample
Bicubic
Replaced with a link to ImageCompressionParams in the
process.

IgnoreExtensions ? NMTOKENS Identifies a set of filename extensions that will be trimmed during
searches for high-resolution images. These extensions are what will
be stripped from the end of an image name to find a base name. The
leading dot “.” is included. Examples include:
.lay
.e
.samp
Default = an empty list

MaxSearchRecursion ? integer Identifies how many levels of recursion in the search path will be
traversed while trying to locate images. A value of 0 indicates that
no recursion is desired.

FileSpec +
New in JDF 1.1

refelement Specification of the paths to search when trying to locate the
referenced data. The ResourceUsage attribute must be
“SearchPath”. Filespec replaces the SearchPath text element.

SearchPath +
Deprecated in JDF 1.1

telem String that identifies the paths to search when trying to locate the
referenced data.

7.2.75 ImageSetterParams
This resource specifies the settings for the imagesetter. A number of settings are OEM-specific, while others are so
widely used they may be supported between vendors. Both filmsetter settings and platesetter settings are described
with this resource.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: ImageSetting
Output of processes: -

Resource Structure
Name Data Type Description
AdvanceDistance ? double Additional media advancement beyond the media dimensions on a

roll-fed device.
BurnOutArea ?
New in JDF 1.1

XYPair Size of the burnout area. The area defined by BurnOutArea is
exposed, regardless of the size of the image. Default = 0 0, i.e., only
the area defined by the image is exposed.

Page 386

Page 386

Name Data Type Description
CenterAcross ? enumeration This attribute specifies the axis around which a device may center

an image, if the device is capable of doing so. Possible values are:
None – Default value.
FeedDirection – Image is centered around the feed-direction axis.
MediaWidth – Image is centered around the media-width axis.
Both – Image is centered around both axes.

CutMedia ? boolean Indicates whether or not to cut the media (roll-fed). Default =
system specified.

ManualFeed ?
New in JDF 1.2

boolean Indicates whether the media will be fed manually. Default = false

MirrorAround ? enumeration This attribute specifies the axis around which a device may mirror
an image, if the device is capable of doing so. Possible values are:
None – Used if the device is incapable of mirroring an image.
Default value.
FeedDirection – Image is mirrored around the feed-direction axis.
MediaWidth – Image is mirrored around the media-width axis.
Both – Image is mirrored around both possible axes.

Polarity ? enumeration Some devices can invert the image (in hardware). Possible values
are:
Positive – Default value.
Negative

Punch ? boolean If true, indicates that the device may create registration punch holes.
Default = false

PunchType ? string Name of the registration punch scheme, e.g., Bacher.
Resolution ? XYPair Resolution of the output
RollCut ? double Length of media to be cut off of a roll in points.
TransferCurve ? TransferFuncti

on
Area coverage correction of the device.

Sides ? enumeration Indicates whether the content layout should be imaged on one or both
sides of the media. Must only be used when ImageSetting describes
output to a proofer. Possible values are:
OneSidedBackFlipX– Page content is imaged on the back side of media
so that the corresponding page cells back up to a blank front cell when
flipping around the X axis. Equivalent to ‘WorkAndTumble’ with a blank
front side.
OneSidedBackFlipY– Page content is imaged on the back side of media
so that the corresponding page cells back up to a blank front cell when
flipping around the Y axis. Equivalent to ‘WorkAndTurn’ with a blank
front side.
OneSidedFront – Page content is imaged on the front side of media. This
is the only value that is valid for filmSetting and plateSetting. The default.
TwoSidedFlipX – Page content is imaged on both the front and back sides
of media sheets so that the corresponding page cells back up to each other
when flipping around the X axis. Equivalent to ‘WorkAndTumble’’.
TwoSidedFlipY– Page content is imaged on both the front and back sides
of media sheets so that the corresponding page cells back up to each other
when flipping around the Y axis. Equivalent to ‘WorkAndTurn’.

Page 387

Page 387

Name Data Type Description
SourceWorkStyle ?
New in JDF 1.2

enumeration When proofing in a RIP once, output Many (ROOM) workflow,
SourceWorkStyle specifies the direction in which the Bytemaps
have been prepared for press. The device should use this
information to calculate a transformation that results in a proof
that is identical to the press sheet. Allowed values are identical to
##ref ConventionalPrintingParams/@WorkStyle:[RP410]

Media ?
New in JDF 1.1

refelement Describes the media to be used.

FitPolicy ? refelement Describes the hardware image fitting algorithms. Allows printing
even if the size of the imagable area of the media does not match the
requirements of the data.[RP411]

7.2.76 Ink
Resource describing what kind of ink or other colorant (such as toner or varnish) is to be used during printing or
varnishing. The default unit of measurement for Ink is Unit = “g” (gram).

Resource Properties
Resource class: Consumable
Resource referenced by: ConventionalPrintingParams
Example Partition: FountainNumber, Separation, SheetName, Side, SignatureName, WebName
Input of processes: ConventionalPrinting, DigitalPrinting
Output of processes: -

Resource Structure
Name Data Type Description
ColorName ? string Link to a definition of the color specifics. The value of ColorName

color should match the Name attribute of a Color defined in a
ColorPool resource that is linked to the process using the Ink
resource.

Family ? NMTOKEN Ink family. Possible values include:
HKS
PANTONE
Toyo[RP412]
ISO
[RP413]
InkJet
It is also possible to specify liquids that are similar to ink. Possible
values of this type include:
Varnish
Silicon
Toner

InkName ?
Modified in JDF 1.1

string The name of ink is dependent on its Family. For example, the
InkName 138 CVC is a member of the Pantone Family.

SpecialInk ? NMTOKEN Specific ink attributes. Possible values include:
Metallic

SpecificYield ? double Weight per area at total coverage in g/m2.

Page 388

Page 388

7.2.77 InkZoneCalculationParams
This resource specifies the parameters for the InkZoneCalculation process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: TileID, WebName
Input of processes: InkZoneCalculation
Output of processes: -

Resource Structure
Name Data Type Description
FountainPositions ? DoubleList Even number of positions. Each pair specifies the begin and end of

the ink slides belonging to a certain fountain. The positions are in
coordinates of the printable width along the cylinder axis. The first
pair is associated to the first fountain position (corresponds to the
partition FountainNumber = 0), the second to the second position
(FountainNumber = 1), etc.

PrintableArea ? rectangle Position and size of the printable area of the print cylinder in the
coordinates of the Preview resource.
The Partition TileID must be used for each plate together with this
attribute in case of multiple plates per cylinder. Multiple plates per
cylinder may be used in web printing.
Default = the complete image

ZoneHeight ? double The width of one zone in the feed direction of the printing machine
being used.

ZoneWidth ?
Modified in JDF 1.2[RP414]

double The width of one zone of the printing machine being used.
Typically, the width of a zone is the width of an ink slide.

Zones ?
Modified in JDF 1.2[RP415]

integer The number of ink zones of the press.

ZonesY ? integer Number of ink zones in feed direction of the press.
Default = 0, which means not required.

7.2.78 InkZoneProfile
This resource specifies ink zone settings that are specific to the geometry of the printing device being used.
InkZoneProfiles are independent of the device details.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: FountainNumber, Separation, SheetName, Side, SignatureName, WebName
Input of processes: ConventionalPrinting
Output of processes: InkZoneCalculation

Resource Structure
Name Data Type Description
ZoneHeight ? double The width of one zone in the Y-Direction of the printing machine

being used.

Page 389

Page 389

ZoneSettingsX DoubleList Each entry of the ZoneSettingsX attribute is the value of one ink
zone. The first entry is the first zone, and the number of entries
equals the number of zones of the printing device being used.
Allowed values are in the range [0..1] where 0 is no ink and 1 is
100% coverage.

ZoneSettingsY ? DoubleList Each entry of the ZoneSettingsY attribute is the value of one ink
zone in Y-Direction. The first entry is the first zone and the
number of entries equals the number of zones of the printing
device being used. Allowed values are in the range [0..1] where 0
is no ink and 1 is 100% coverage.

ZoneWidth double The width of one zone of the printing machine being used.

7.2.79 InsertingParams
This resource specifies the parameters for the Inserting process. Figure 7.13 shows the various components
involved in an inserting process, and how they interact.

Figure 7.15 Parameters and Coordinate system used for Inserting

The process coordinate system is defined as follows: The Y-axis is aligned with the binding edge and increases from
the registered edge to the edge opposite the registered edge. The X-axis, meanwhile, is aligned with the registered
edge. It increases from the binding edge to the edge opposite the binding edge, which is the product front edge.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: Inserting
Output of processes: -

Resource Structure
Name Data Type Description
SheetOffset ?[RP416]
Deprecated in JDF 1.1

XYPair Offset between the sheet to be inserted and the “mother” sheet.
SheetOffset is implied by the Transformation matrix in
ResourceLink:Transformation of the child’s ComponentLink.

Page 390

Page 390

Location enumeration Where to place the “child” sheet. Possible values are:
Front:
Back:
OverfoldLeft:
OverfoldRight:[RP417]

GlueLine * element Array of all GlueLine elements. The coordinate system is defined
by the mother Component.

7.2.80 InsertSheet
InsertSheet resources define device generated images and sheets which may be produced along with the job.
InsertSheets include separators sheets, error sheets, accounting sheets, and job sheets. The information provided
on the sheet depends on the type of sheet. In some cases, an Imposition process may encounter RunList elements
that do not provide enough pages to complete a Layout resource or its children. InsertSheet resources are used to
provide a standard way of completing such Layout resources. InsertSheet resources may also be used to start
new Sheet resources, e.g., to ensure that a new chapter starts on a right-hand page. In addition, InsertSheet may
specify whether new media should be inserted, once the current Sheet, Signature, instance document, or job is
completed.
InsertSheets may be used at the beginning or end of RunLists with a SheetUsage attribute of Header or
Trailer. When an InsertSheet appears both in a RunList and in a Layout and/or Sheet, the following
precedence applies:

1. The InsertSheet with Usage FillSurface from the RunList is applied first.
2. The InsertSheet with Usage FillSheet from the RunList is applied.
3. The InsertSheet with Usage FillSignature from the RunList is applied.
4. After completely processing the RunList InsertSheets once, apply the Surface, Sheet, and

Signature InsertSheets.

If the InsertSheet’s RunList does not supply enough content to fill a Sheet, Signature, or Surface, the
RunList will be reapplied until no PlacedObject slots remain to be filled. When an InsertSheet is used in a
RunList of a process that does not use a Layout or LayoutPreparationParams resource, i.e., that process has
not been combined with Imposition or LayoutPreparation, only Usage Header or Trailer are valid.

Resource Properties
Resource class: Parameter
Resource referenced by: Disjointing, Layout, LayoutPreparationParams, RunList, Sheet
Example Partition: -
Input of processes: -
Output of processes: -

Page 391

Page 391

Resource Structure
Name Data Type Description
IncludeInBundleItem ?
New in JDF 1.2

enumeration Specifies whether the insert sheet is to be included in a bundle item
for purposes of finishing the insert sheet with other sheets. Possible
values are:
After - the InsertSheet is to be included in the BundleItem that occurs
after the InsertSheet. If IncludeInBundleItem is set to After and a
BundleItem is not defined after the insert sheet then
IncludeBundleItem is ignored.
Before - the InsertSheet is to be included in the BundleItem that
occurs before the InsertSheet. If IncludeInBundleItem is set to
Before and a BundleItem is not defined before the insert sheet then
IncludeInBundleItem is ignored.
None - the InsertSheet is not to be included in a BundleItem.
New - the InsertSheet is to start a new BundeItem.[RP418]

IsWaste ? boolean Specifies whether the InsertSheet is waste that should be removed
from the document before further processing. Default = true, i.e., the
InsertSheet is to be discarded when finishing the document.

MarkList ?
New in JDF 1.1

NMTOKENS List of marks that should be marked on this InsertSheet. Ignored if
a Sheet is specified in this InsertSheet. Values include:
CIELABMeasuringField
ColorControlStrip
ColorRegisterMark
CutMark
DensityMeasuringField
IdentificationField
JobField
PaperPathRegisterMark
RegisterMark
ScavengerArea

SheetFormat ?
New in JDF 1.1

NMTOKEN Identifies that device-dependent information is to be included on the
InsertSheet. Possible values include:
Blank
Brief
Full
Standard
SystemSpecified
Default = SystemSpecified

SheetType
New in JDF 1.1

enumeration Identifies the type of sheet. Possible values are:
AccountingSheet – A sheet that reports accounting information for
the job.
ErrorSheet – A sheet that reports errors for the job.
FillSheet – A sheet that fills ContentObjects with no matching
entry in the content RunList.
InsertSheet – A sheet that is inserted to the job, e.g. a preprinted
cover .
JobSheet – A sheet that delimits the job.

Page 392

Page 392

Name Data Type Description
SeparatorSheet – A sheet that delimits pages, sections, copies or
instance documents of the job.

SheetUsage
New in JDF 1.1

enumeration Indicates where this InsertSheet is to be produced and inserted into
the set of output pages. Possible values are:
FillForceBack - Valid for SheetType = FillSheet. Contents of the
RunList of the InsertSheet are used to fill the current sheet before
forcing the next page of the content Runlist to the back side of the
next sheet if not already on a back surface.
FillForceFront - Valid for SheetType = FillSheet. Contents of the
RunList of the InsertSheet are used to fill the current sheet before
forcing the next page of the content Runlist to the front side of the
next sheet if not already on a front surface.
FillSheet – Valid for SheetType = FillSheet. Contents from the
RunList of the InsertSheet are used to fill the current sheet.
FillSignature – Valid for SheetType = FillSheet. Contents from the
RunList of the InsertSheet are used to fill the current signature.
FillSurface – Valid for SheetType = FillSheet. Contents from the
RunList of the InsertSheet are used to fill the current surface.
Header – Valid for SheetType = InsertSheet, JobSheet,
SeparatorSheet. The sheet is produced at the begin of the job (for
JobSheet) or at the begin of each copy of each instance document
(for SeparatorSheet) or is prepended before the current sheet,
signature, layout, or RunList as defined by its context. Contents for
the Sheet are drawn from the RunList included in this
InsertSheet resource, if one is included. If a RunList is not
included, the inserted sheet filled with system specified content
defined by SheetType.
Interleaved – Valid for SeparatorSheet. The sheet is produced after
each page. Used e.g. to insert sheets under transparencies. Contents
for the Sheet are drawn from the RunList included in this
InsertSheet resource, if one is included. If a RunList is not
included, the inserted sheet filled with system specified content
defined by SheetType = SeparatorSheet.
OnError – Valid for SheetType = ErrorSheet. The sheet is
produced at the end of the job only [RP419]when an error or warning
occurs. Note: Use SheetType=”ErrorSheet” and
SheetUsage=”Trailer” to always produce a sheet that contains error
or success information even if no errors or warnings occurred.[RP420]
Slip– Valid for SeparatorSheet. The sheet is produced between each
copy of each instance document. Contents for the Sheet are drawn
from the RunList included in this InsertSheet resource, if one is
included. If a RunList is not included, the inserted sheet filled with
system specified content defined by SheetType = SeparatorSheet.
Trailer – Valid for SheetType = AccountingSheet, ErrorSheet,
InsertSheet, JobSheet, SeparatorSheet. The sheet is produced at the
end of the job (for AccountingSheet, ErrorSheet, JobSheet) or at the
end of each copy of each instance document (for SeparatorSheet) or
is appended after the current sheet, signature, layout, or RunList as
defined by its context. Contents for the Sheet are drawn from the
RunList included in this InsertSheet resource, if one is included.
If a RunList is not included, the inserted sheet filled with system

Page 393

Page 393

Name Data Type Description
specified content defined by SheetType.

Usage ?
Deprecated in JDF 1.1

enumeration Replaced by SheetUsage.

RunList ? refelement A RunList that provides the content for the InsertSheet. Any
InsertSheet resources referenced by this RunList are ignored.

Sheet ? refelement Details of the Sheet that will be inserted. Contents for this Sheet
are drawn from the RunList included in this InsertSheet, if any. If
not specified, the system specified insert sheets are used. Any
InsertSheet resources referenced by this Sheet are ignored.

7.2.81 InterpretedPDLData
Represents the results of the PDL Interpretation process. The details of this resource are not specified, as it is
assumed to be implementation dependent.
In JDF 1.2 and beyond this is not a Resource but rather a subelement of RunList.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes:
Output of processes:

7.2.82 InterpretingParams
The InterpretingParams resource contains the parameters needed to interpret PDL pages. The resource itself is a
generic resource that contains attributes that are relevant to all PDLs. PDL-specific instances of
InterpretingParams resources may be included as subelements of this generic resource. This specification defines
one additional PDL-specific resource instance: PDFInterpretingParams.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes: Interpreting
Output of processes: -

Structure of the InterpretingParams Resource
Name Data Type Description
Center ?

boolean Indicates whether or not the page image should be centered within
the imagable area of the media. Default = false. Center is ignored if
FitPolicy::SizePolicy=ClipToMaxPage and clipping is required.

FitToPage ?
Deprecated in JDF 1.1

boolean Specifies whether the page contents should be scaled to fit the media.
Default = false

MirrorAround ? enumeration This attribute specifies the axis around which a RIP may mirror an
image. Note: This is mirroring in the RIP and not in the hardware of
the output device. Possible values are:
None – Default value.
FeedDirection – Image is mirrored around the feed-direction axis.
MediaWidth – Image is mirrored around the media-width axis.
Both – Image is mirrored around both possible axes.

Page 394

Page 394

Name Data Type Description
Polarity ? enumeration The image must be RIPped in the polarity specified. Note that this is

a polarity change in the RIP and not a polarity change in the
hardware of the output device. Possible values are:
Positive – Default value.
Negative

Poster ? XYPair Specifies whether the page contents should be expanded such that
each page covers X by Y pieces of media.
Default = 1 1

PosterOverlap ? XYPair This pair of real numbers identifies the amounts of overlap in points,
that must be calculated for the poster tiles across the horizontal and
vertical axes, respectively.
Default = 0 0

PrintQuality ?
New in JDF 1.1

enumeration Generic switch for setting the quality of an otherwise inaccessible
device. Possible values are:
High – Highest quality available on the printer.
Normal – The default quality provided by the printer. The default.
Draft – Lowest quality available on the printer.

PrintQuality ?
New in JDF 1.1
Modified in JDF 1.2

enumeration
ISSUE: Change
to NMTOKEN?

Generic switch for setting the quality of an otherwise inaccessible
device. Possible values are:
Draft – A lower quality than Normal.
Economy – A quality that is lower than Draft. If only one value is
implemented with a quality lower than Normal, the Draft value must
be supported. New in JDF 1.2
Fine – A quality that is higher than High. If only one value is
implemented with a quality higher than Normal, the High value must
be supported. New in JDF 1.2
High – A higher quality than Normal.
Normal – An intermediate quality. ISSUE: OK to change the
default to system specified, rather than Normal?[RP421]

Scaling ? XYPair A pair of positive real values that indicates the scaling factor for the
page contents. Values between 0 and 1 specify that the contents are
to be reduced, while values greater than 1 specify that the contents
are to be expanded. This attribute is ignored if FitToPage = true or
if Poster is present and has a value other than “1 1”. Any scaling
defined in FitPolicy must be applied after the scaling defined by this
attribute.
Default = 1. 1

ScalingOrigin ? XYPair A pair of real values that identify the point in the unscaled page that
is to become the origin of the new, scaled page image. This point is
defined in the coordinate system of the unscaled page.
Default = 0 0

ObjectResolution * refelement Indicates the resolution at which the PDL contents will be interpreted
in DPI. These elements may be different from the
ObjectResolution elements provided in the RenderingParams
resource.
Default = system specified

Page 395

Page 395

Name Data Type Description
FitPolicy ?
New in JDF 1.1

refelement Allows printing even if the size of the imagable area of the media
[RP422]does not match the requirements of the data. This replaces the
deprecated FitToPage attribute. This FitPolicy element must be
ignored in a combined process with LayoutPreparation.

Media ?
New in JDF 1.1

refelement This resource provides a description of the physical media which
will be marked. The physical characteristics of the media may
affect decisions made during Interpreting.

PDFInterpreting-
Params ?
New in JDF 1.1

refelement Details of interpreting for PDF. Note that this is a subelement in JDF
1.1, and not an instance as in JDF 1.0.

Structure of PDFInterpretingParams Subelement
New in JDF 1.1
Name Data Type Description
EmitPDFBG ? boolean Indicates whether BlackGeneration functions should be emitted.

Default = true
EmitPDFHalftones ? boolean Indicates whether Halftones should be emitted.

Default = true
EmitPDFTransfers ? boolean Indicates whether Transfer functions should be emitted

Default = true
EmitPDFUCR ? boolean Indicates whether UnderColorRemoval functions should be emitted.

Default = true
HonorPDFOverprint ? boolean Indicates whether or not overprint settings in the file will be honored.

If true, the setting for overprint will be honored. If false, it is
expected that the device does not directly support overprint and that
the PDF is preprocessed to simulate the effect of the overprint
settings.
Default = true

ICCColorAsDeviceColor ? boolean Indicates whether colors specified by ICC colorspaces should be
treated as device colorants.
Default = false

PrintPDFAnnotations ? boolean Indicates whether the contents of annotations on PDF pages should
be included in the output. This only refers to annotations that are set
to print in the PDF file.
Default = false

TransparencyRenderingQu
ality ?

number Possible values are 0 to 1. 0 represents the lowest allowable quality.
1 represents the highest desired quality.
Default = use device settings

7.2.83 JacketingParams
New in JDF 1.1
Description of the setup of the jacketing
machinery. Jacket height and width (1
and 3 in the figure below) are specified
within the Component that describes
the jacket.

1: Jacket width
2: Folding width
3: Jacket height

1
2

3 F B

Page 396

Page 396

Figure 7.16 Parameters and Coordinate System for Jacketing

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: Jacketing

Resource Structure
Name Data Type Description
FoldingWidth number Definition of the dimension of the folding width of the front cover

fold (see “2”in the picture above). All other measurements are
implied by the dimensions of the book.

7.2.84 JobField
New in JDF 1.1
A JobField is a Mark object that specifies the details of a job. JobFields are also refered to as slug lines.

Resource Properties
Resource class: Parameter
Resource referenced by: Surface
Example Partition: -

Page 397

Page 397

Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
ShowList NMTOKENS List of elements to display in the JobField. Values include:

DeviceID – ID of the device. This is a unique name within the
workflow.
EndTime – Actual EndTime of the job.
Error – Errors that happened during the job.
ErrorStats – Statistics on errors that happened during
execution.[RP423]
FriendlyName – FriendlyName of the device.
JobID – JobID of the node that is executing.
JobName – DescriptiveName of the node that is executing.
JobRecipientName – Name of the recipient of the job
JobSubmitterName – Name of the submitter of the job
StartTime – Actual StartTime of the job.
MediaBrand – Brand of the media that is being printed.
MediaType – DescriptiveName of the media that is being printed.
MoonPhase - Phase of the moon at the StartTime of the job.
Operator – Name of the Operator.
[RP424]
PrintQuality: the quality of the printout. (High, Normal, Draft or
device specific name)
ProoferProfileName – name of the ICC profile for the proofing
device
PressProfileName: name of the ICC profile for the final printing
(used as intermediate space during proofing) Resolution – Output
resolution.
ResolutionX – Output resolution in X direction.
ResolutionY – Output resolution in Y direction.
ScreeningFamily – Name of the screening family of the output.
UserText – User defined text as defined in UserText.
Warning – Warnings that happened during the job.
In addition, the partition key names defined in table ##ref part keys
are also supported.

OperatorText ? string Text to the operator.
UserText ? string User defined text to output with JobField.
DeviceMark ? refelement DeviceMark defines the formatting parameters for the mark. If not

specified, the DeviceMark settings defined in
LayoutPreparationParams or in the Layout tree are assumed.

7.2.85 LabelingParams
New in JDF 1.1
LabelingParams defines the details of the Labeling process.

Page 398

Page 398

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: Labeling
Output of processes: -

Resource Structure
Name Data Type Description
Application ? NMTOKEN Application method of the label. Includes:

Loose – Loosely laid onto the component.
Staple – Stapled onto the component.
SelfAdhesive – Self adhesive label
Glue – Glued onto the component.
Any – The default.

CTM ? matrix Position and orientation of the label lower left corner relative to
the lower left corner of the component surface as defined by
Position. Default = device dependent

Position ? enumeration Position of the label on the bundle. One of:
Top
Bottom
Left
Right
Front
Back
An – The default.

7.2.86 LaminatingParams
New in JDF 1.1

This resource specifies the parameters needed for laminating.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: SheetName, Side
Input of processes: HoleMaking.
Laminating
Output of processes: -

Resource Structure
Name Data Type Description
AdhesiveType ? string Type of adhesive used. Default = the empty string, i.e., no adhesive

is used. Valid only when LaminatingMethod = DispersionGlue.
GapList ? DoubleList List of non laminated gap positions in the X direction of the

laminating tool in the coordinate system of the Component. The
zero-based even entries define the absolute position of the start of a
gap, and the odd entries define the end of a gap. If not specified, the
complete area defined by LaminatingBox is laminated.

HardenerType ? string Type of hardener used. Default = the empty string, i.e., no hardener
is used. Valid only when LaminatingMethod = DispersionGlue.

Page 399

Page 399

Name Data Type Description
LaminatingBox rectangle Area on the Component to be laminated.
LaminatingMethod ? enumeration Laminating technology that is applied. One of:

CompoundFoil
DispersionGlue
Unknown

Temperature ? number Temperature used in the lamination process in ° Centigrade. Default
=system specified.

7.2.87 Layout
Represents the root of the layout structure. Layout is used both for fixed-layout and for automated printing.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: It is strongly discouraged to partition the Layout tree, including Sheet and Surface.
Input of processes: ConventionalPrinting, DigitalPrinting, Imposition, InkZoneCalculation, [RP425]
Output of processes: LayoutPreparation

Resource Structure
Name Data Type Description
Automated ? boolean If true, the Imposition process is expected to perform automated page

consumption. Automated page consumption is equivalent to the
PrintLayout functionality provided in PJTF.
Default = false

MaxDocOrd ?
New in JDF 1.1

integer Zero based maximum number of instance documents that are consumed
from a RunList each time the Layout is executed, assuming the
Imposition process is automated. Default = 1.

MaxOrd ? integer Zero based maximum number of placed objects that are consumed
from a RunList each time the Layout is executed, assuming the
Imposition process is automated. Default = –1, i.e., it is unknown and
must be calculated from the Ord values of the ContentObject s in the
Layout.

MaxSetOrd ?
New in JDF 1.1

integer Zero based maximum number of document sets that are consumed
from a RunList each time the Layout is executed, assuming the
Imposition process is automated. Default = 1.

Name ?
New in JDF 1.1

string Unique name of the Layout. Name is used for external reference to a
Layout.

InsertSheet *

refelement Additional sheets that should be inserted before and/or after a
document.

LayerList ?
New in JDF 1.1

element List of LayerDetails elements.

Media ?
New in JDF 1.1

refelement Describes the media to be used. Media must be specified within one of
Layout, Signature or Sheet within a Layout structure.[RP426]

MediaSource ?
Deprecated in JDF 1.1

refelement Describes the media to be used. Replaced by Media in JDF 1.1.

Signature * element The signatures that are defined by the layout.

Page 400

Page 400

Name Data Type Description
TransferCurvePool ?
New in JDF 1.1

refelement Describes the relationship of transfer curves and coordinate systems
within the various processes.

Structure of LayerList Subelement
New in JDF 1.1
This element provides a container for an ordered list of LayerDetails elements. The individual elements are
referenced by their zero based index in the LayerList.

Name Data Type Description
LayerDetails * refelement Details of the individual layers.

Structure of LayerDetails Subelement
New in JDF 1.1
This element provides a container for LayerDetails elements.

Name Data Type Description
Name ? string Unique name of the layer.

Structure of Signature Subelement
This element groups individual Sheet resources into one Signature subelement.

Name Data Type Description
Name ? string Unique name of the signature. Name is used for external reference to

a signature, as in a Part element.
InsertSheet * refelement Specifies how to complete a signature in an automated printing

environment.
Media?
New in JDF 1.1

refelement Describes the media to be used.

MediaSource ?
Deprecated in JDF 1.1

refelement Describes the media to be used. Replaced by Media in JDF 1.1.

Sheet * refelement Sheet resources that comprise the signature.

7.2.88 LayoutElement
This resource is needed for LayoutElementProduction. It describes some text, an image, one or more pages, or
anything else that is used in the production of the layout of a product.

Resource Properties
Resource class: Parameter
Resource referenced by: RunList, Surface
Example Partition: PageNumber
Input of processes: DBDocTemplateLayout, DBTemplateMerging, LayoutElementProduction
Output of processes: DBDocTemplateLayout, LayoutElementProduction

Page 401

Page 401

Resource Structure
Name Data Type Description
ClipPath ? PDFPath Path that describes the outline of the LayoutElement in the coordinate

space of the LayoutElement of ElementType Page that results from
the LayoutElementProduction process.
Default = no clip path

ElementType ? enumeration Describes the content type for this LayoutElement. Possible values
are:
Text – Formatted or unformatted text.
Image – Bitmap image.
Graphic – Line art.
Reservation – Empty element. Content for this area of the page may be
provided by a subsequent process.
Composed – Combination of elements that define an element that is not
bound to a document page.
Page – Representation of one document page.
Document – An ordered set of one or more pages.
MultiDocument – An ordered set of one or more Documents including
document breaks, e.g., PPML, PPML/VDX, mime multipart/related.
MultiSet – An ordered set of one or more Document sets including
document set breaks, e.g., PPML, PPML/VDX.
Surface – Representation of an imposed surface.
Tile – Representation of the contents of one tile.
Auxilliary – Any type of file that is needed to complete a layout but not
expicitly displayed, e.g. ICC profiles or fonts.[RP427]
Unknown – Unknown element type or any of the above.
If not specified, the value of
##refPageList/PageData/@ElementType is applied.[RP428]

HasBleeds ? boolean If true, the file has bleeds.
If not specified, the value of ##refPageList/PageData/@HasBleeds
is applied.[RP429]

IgnorePDLCopies ?
New in JDF 1.1

boolean If true, any PDL defined copy count must be ignored.
Default = false.

IgnorePDLImposition
?
New in JDF 1.1

boolean If true, any PDL defined imposition definition must be ignored.
Examples are PDF with embedded PJTF or PPML with a
PRINT_LAYOUT. If IgnorePDLImposition=false, and JDF also
defines imposition, the imposed sheets of the PDL are treated as pages in
the context of JDF imposition. The front and back surfaces of the pdl and
JDF imposition should be matched. Note that it is strongly discouraged
to specify imposition both in the PDL and JDF and that this may result in
undesired behavior.
Default = true.

IsBlank ?
New in JDF 1.2

boolean If false, the LayoutElement has no content marks and is blank. If not
specified, the value of ##refPageList/PageData/@IsBlank is
applied.[RP430]

Page 402

Page 402

Name Data Type Description
IsPrintable ? boolean If true, the file is a PDL file and can be printed. Possible files types

include PCL, PDF or PostScript files. Application files such as MS
Word have IsPrintable=”false”.
If not specified, the value of ##refPageList/PageData/@IsPrintable
is applied.[RP431]

IsTrapped ? boolean If true, the file has been trapped.
If not specified, the value of ##refPageList/PageData/@IsTrapped is
applied.[RP432]

PageListIndex ? IntegerRang
eList

List of the indices of the PageData elements of the ##refPageList
specified in this LayoutElement. Note that this list may be overwritten
by a RunList that contains this LayoutElement and refers to a subset
of this LayoutElement. PageList must be specified if PageListIndex
is defined.[RP433]

SourceBleedBox ? rectangle A rectangle that describes the bleed area of the element to be included.
This rectangle is expressed in the default user space.
If not specified, the value of
##refPageList/PageData/@SourceBleedBox is applied.[RP434]

SourceClipBox ? rectangle A rectangle that defines the region of the element to be included. This
rectangle is expressed in the default user space of the source document
page.
If not specified, the value of
##refPageList/PageData/@SourceClipBox is applied.[RP435]

SourceTrimBox ? rectangle A rectangle that describes the intended trimmed size of the element to be
included. This rectangle is expressed in the default user space.
If not specified, the value of
##refPageList/PageData/@SourceTrimBox is applied.[RP436]

Template ? boolean Template is false when this layout element is self-contained. This
attribute is true if the LayoutElement represents a template that must
be completed with information from a database.
If not specified, the value of ##refPageList/PageData/@Template is
applied.[RP437]

ColorPool ?

refElement Definition of the color details.[RP438]

Dependencies ? element List of dependent references, e.g. fonts, external images, etc. [RP439]
FileSpec ?[RP440] refelement URL + metadata about the physical characteristics of a file representing

the LayoutElement. If not present, then only metadata is known, but
not the content file.[RP441]

ElementColorParam
s ?
New in JDF 1.2

element Specification of the layout element color properties.

PageList ?
New in JDF 1.2

refElement Additional static metadata about the individual LayoutElement.
Error! Reference source not found.##refPageList duplicates some
of the attributes described in LayoutElement.

ImageCompression-
Params ?
New in JDF 1.2

refElement Specification of the image compression properties.
If not specified, the value of ##refPageList/PageData/Image-
CompressionParams is applied.

Page 403

Page 403

Name Data Type Description
ScreeningParams ?
New in JDF 1.2

refelement Specification of the screening properties. If not specified, the value of
##refPageList/PageData/ScreeningParams is applied.[RP442]

SeparationSpec * element List of used separation names. If not specified, the value of
##refPageList/PageData/@SeparationSpec is applied.[RP443]

Structure of Dependencies Subelement[RP444]
New in JDF 1.2
This element provides a container for dependent references of the LayoutElement. [RP445]

##ref LayoutElement * refElement Description of dependent elements, e.g. fonts, images, etc.[RP446]

7.2.89 LayoutPreparationParams
New in JDF 1.1
This resource provides the parameters of the LayoutPreparation process, which provides the details of how page
contents will be imaged onto media. This resource has a provision for specifying either a multi-up grid of content
page cells or an imposition layout of finished pages.

A multi-up grid of pages can be step and repeated across, down, or through a stack of sheets in any axis order.
Note: For all resources, the coordinate system for all parameters is defined with respect to the process coordinate
system as defined in Section 2.5.3 Coordinate Systems of Resources and Processes.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, DocRunIndex, RunIndex, SetIndex, SheetName-
Input of processes: LayoutPreparation
Output of processes: -

Resource Structure
Name Data Type Description
BackMarkList ? NMTOKENS List of marks that should be marked on each back surface. The

appearance of the marks are defined by the process implementation.
Values include:
CIELABMeasuringField:
ColorControlStrip:
ColorRegisterMark:
CutMark:
DensityMeasuringField:
IdentificationField:
JobField
PaperPathRegisterMark:
RegisterMark:
ScavengerArea:

CreepValue ? XYPair This parameter determines a user defined values for horizontal and
vertical creep compensation. The number specifies the distance in points
by which the respective gutter that creeps either increments or decrements
in width from one sheet to the next for a given sequence of sheets related
to the same bound component.

Page 404

Page 404

Name Data Type Description
If the value of a component of this attribute is positive, it specifies the
amount in points by which the width of creeping gutters are incremented.
If the value of a component of this attribute is negative then it specifies
the amount in points by which the width of creeping gutters are
decremented.
An explicit value of "0" means that the creep compensation value for the
respective axis is system specified, for example, it may be calculated
based on the information taken from Media.
If the CreepValue attribute is not present its value defaults to 0.
NOTE: Creep is disabled for the respective axis when the
HorizontalCreep and VerticalCreep attributes respectively are not
present in which case the appropriate component of CreepValue must be
ignored.

FinishingOrder ? enumeration Specifies the order of operations for finishing a bound booklet created
from multiple imposed sheets.
The LayoutPreparation process needs this information in order to
completely determine content page distribution onto the sequence of
sheets comprising the pages of a single booklet under consideration of
the values of the PageDistributionScheme and FoldCatalog attributes.
Possible values are:
FoldGather – The sheets of a document are first folded according to the
value of the FoldCatalog attribute and then gathered on a pile. Usually
applies to finishing of perfect bound documents.
FoldCollect – The sheets of a document are first folded according to the
value of the FoldCatalog attribute, and then collected on a saddle.
Usually applies to finishing of both perfect bound and saddle-stitched
booklets.
Gather – The sheets of a document are gathered on a pile. No folding is
assumed.
GatherFold – The sheets of a document are first gathered on a pile, then
folded according to the value of the FoldCatalog attribute. Usually
applies to finishing of both perfect bound and saddle-stitched booklets.
The default.

FoldCatalog ? string Description of the type of fold that will be applied to all printed sheets
according to the folding catalog in the format “Fx-y” as shown in Figure
7.11 and Figure 7.12.
The LayoutPreparation process uses the fold description specified by this
attribute in the determination of the proper distribution of pages onto the
surfaces of the sheets in the context of the values of both the
PageDistributionScheme and FinishingOrder attributes.
If not present, no folding other than the folding that is implied by
PageDistributionScheme=Saddle is assumed.

FrontMarkList ? NMTOKENS List of marks that should be marked on each front surface. The
appearance of the marks are defined by the process implementation.
Values include:
CIELABMeasuringField:
ColorControlStrip:
ColorRegisterMark:
CutMark:

Page 405

Page 405

Name Data Type Description
DensityMeasuringField:
IdentificationField:
JobField
PaperPathRegisterMark:
RegisterMark:
ScavengerArea:

Gutter ?
Modified in JDF
1.1A

XYPair Width in points of the horizontal and vertical gutters formed between
rows and columns of pages of a multi-up sheet layout.
The first value specifies the width of all horizontal gutters and the second
value specifies the width of all vertical gutters.
If no gutters are defined because either the NumberUp attribute is not
present, or its explicit values are equal to one, this attribute must be
ignored.
In the case where a gutter is identified as creeping by either the
VerticalCreep or HorizontalCreep attributes, then the value of Gutter
specifies the initial gutter width where the gutter width may increment or
decrement depending upon the explicit or implied value of the
CreepValue attribute.
If not present, the Default=”0.0 0.0” which means that the pages of a
multi-up grid of pages must touch.
The Gutter is applied in addition to any Border specified in the
PageCell.

HorizontalCreep ? IntegerList Specifies which horizontal gutters creep.
The allowed values are zero based indexes that reference horizontal
gutters formed by multiple rows of pages in a multi-up page layout
specified by the second [RP448]value of the NumberUp attribute.
The value for an entry in this list must be between zero and 2[RP449] less
then the second [TNH450]value of the NumberUp attribute.
If not specified then no horizontal gutters will creep.[RP451]

NumberUp ? XYPair Specifies a regular, multi-up grid of PageCells into which content pages
are mapped.
The first value specifies the number of columns of page cells and the
second value specifies the number of rows of page cells in the multi-up
grid.
Implementation warning: in JDF 1.1 rows and columns were
erroneously switched in the description.
The relative positioning of the page cells within the multi-up grid are
defined by the explicit or implied values of the Gutter, HorizontalCreep,
VerticalCreep, and CreepValue attributes.
The distribution of content pages from the content RunList into the page
cells is defined by the explicit or implied values of the
PageDistributionScheme, PresentationDirection, Sides, FinishingOrder
and FoldCatalog attributes and the implicit number of sheets comprising
the bound component.

PageDistributionSc
heme ?

NMTOKEN This attribute specifies how pages are to be distributed onto a multi-up
grid of finished PageCells defined by the values of the NumberUp
attribute. Possible values include:
Saddle – Distribute pages onto a sequence of one or more imposition

Page 406

Page 406

Name Data Type Description
layouts in proper order for saddle stitch binding. For this page
distribution scheme, creep should only be applied to odd numbered
vertical gutters where any even numbered gutters will automatically
creep in the opposite direction.
Perfect – Distribute pages onto a sequence of one or more signatures in
proper order for perfect binding. For this page distribution scheme, creep
is usually not used.
Sequential – The pages are distributed onto the multi-up layout
according to the value of the PresentationDirection attribute. The
default.
Note: Page distribution ordering for both Saddle and Perfect also
depends upon the implied number of sheets per finished Component and
how the imposed sheets are to be folded during finishing as well as the
order of gathering and folding. Refer to the FoldCatalog and
FinishingOrder attributes.
Note: The NumberUp attribute must always specify a multi-up layout
appropriate for a given page distribution ordering and FoldCatalog.
Setting this attribute does not imply the multi-up grid dimensions are
appropriate for the selected page distribution scheme.
Note: In all cases, the order of content pages as represented by the
content RunList must be either in reader order or in an order appropriate
for multi-up saddle stitching. Refer to the PageOrder attribute.

PageOrder ? NMTOKEN The assumed ordering of the content pages in the RunList.
Booklet – The pages are preordered in the RunList and must be
processed exactly in the order as specified by PresentationDirection.
NumberUp must still be set to the appropriate value and is not implied
by specifying PageOrder=Booklet. PageOrder= Booklet must not be
used in conjunction with FoldCatalog.
Reader – The pages are in reader order in the RunList.
The default.

Page 407

Page 407

Name Data Type Description
Indicates the order in which content pages will be distributed into the
page cells of the NumberUp layout.
If PageDistributionScheme=”Saddle”, PresentationDirection applies to
sets of two adjacent pages. This allows positioning of multiple page pairs
for SaddleStitching onto one sheet.
Possible values are:
FoldCatalog – Pages are imaged so that the result is compatible with a
finished product produced from the folding catalog as specified in
FoldCatalog.
SystemSpecified – Pages are imaged onto the NumberUp layout as
determined by the device.
XYZ: Permutations of the letters XYZ and xyz so that exactly one of
upper or lower case of x y and z define the order in which content pages
are flowed along each axis with respect to the coordinate system of the
front side of the sheet.
X Specifies flowing left to right across a sheet surface.
x Specifies flowing right to left across a sheet surface.
Y Specifies flowing bottom to top vertically across a sheet surface.
y Specifies flowing top to bottom vertically across a sheet surface.
Z Specifies flowing bottom of stack to top of stack through the stack.
z Specifies flowing top of stack to bottom of stack through the stack.
If not present, the default value is SystemSpecified:
The following table specifies how cells are ordered on simplex 4-up
depending on XYZ.

Presentation-
Direction ?

enumeration

XyZ
1 2 5 6
3 4 7 8

Zxy
4 2 3 1
8 6 7 5

xyz
2 1 6 5
4 3 8 7

XYZ
3 4 7 8
1 2 5 6

Rotate ? enumeration Orthogonal rotation including the implied translation to be applied to the
grid of PageCells on the entire surface relative to the process coordinate
system. One of:
Rotate0
Rotate90 – 90° counterclockwise rotation
Rotate180 – 180° rotation
Rotate270 – 90°clockwise rotation
For details of orthogonal rotations, refer to Table 2-3. If a RotatePolicy
value other than “NoRotate” is specified in FitPolicy, the value specified
in Rotate may be modified accordingly.
Note: A rotation of the grid also rotates the gutters, i.e., it is applied after
all other parameters have been evaluated and applied.
Default = Rotate0

Sides ? enumeration Indicates whether the content layout should be imaged on one or both
sides of the media. When a different value for the Sides attribute is
encountered, it must force a new sheet. However, when the same value
for the Sides attribute is restated for consecutive pages, it is the same as if
that re-statement was not present.
 Possible values are:
OneSidedBackFlipX– Page content is imaged on the back side of media

Page 408

Page 408

Name Data Type Description
so that the corresponding page cells back up to a blank front cell when
flipping around the X axis. Equivalent to ‘WorkAndTumble’ with a blank
front side.
OneSidedBackFlipY– Page content is imaged on the back side of media
so that the corresponding page cells back up to a blank front cell when
flipping around the Y axis. Equivalent to ‘WorkAndTurn’ with a blank
front side.
OneSidedFront – Page content is imaged on the front side of media. The
default.
TwoSidedFlipX – Page content is imaged on both the front and back sides
of media sheets so that the corresponding page cells back up to each other
when flipping around the X axis. Equivalent to ‘WorkAndTumble’’.
TwoSidedFlipY– Page content is imaged on both the front and back sides
of media sheets so that the corresponding page cells back up to each other
when flipping around the Y axis. Equivalent to ‘WorkAndTurn’.

StackDepth ? integer The number of sheets in a stack that are processed when imposing down
the Z axis.[RP452]
If not specified, the entire job defines one stack.
A list of two integers that species the number of instance documents to
impose on one sheet. The first value specifies the document repeats
along the X axis, the second value specifies the repeats along the Y axis.
Default=”1 1”. Each entry of NumberUp must be an integer multiple of
StepRepeat * StepDocs. Positive values define grouped step and
repeat whereas negative values define alternating step and repeat. The
following examples where documents are denoted A and B while pages
are denoted 1 and 2 have NumberUp=”4 4” and StepRepeat=”2 2” and
StepDocs=:

StepDocs ? IntegerList

“2 1” (2 documents in X, 1 in Y)
A1 A1 B1 B1
A1 A1 B1 B1
A2 A2 B2 B2
A2 A2 B2 B2

“1 2” (1 document in X, 2 in Y)
A1 A1 A2 A2
A1 A1 A2 A2
B1 B1 B2 B2
B1 B1 B2 B2[RP453]

A list of three integers that specifies the number of identical pages to
impose. The first value specifies the repeats along the X axis, the second
value specifies the repeats along the Y axis and the 3rd value specifies
the repeats down the stack – the Z axis. Default=”1 1 1”. Each entry of
NumberUp must be an integer multiple of StepRepeat * StepDocs.
Positive values define grouped step and repeat whereas negative values
define alternating step and repeat. Note that negative values are illegal
for the 3rd component, since the total depth of the stack may be
unknown. The following examples have NumberUp=”4 4” and
StepRepeat=:

StepRepeat ? IntegerList

“2 2 1”
1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

“-2 2 1”
1 2 1 2
1 2 1 2
3 4 3 4
3 4 3 4

“-2 –2 1”
1 2 1 2
3 4 3 4
1 2 1 2
3 4 3 4

“2 –2 1”
1 1 2 2
3 3 4 4
1 1 2 2
3 3 4 4

“1 4 1”
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

Page 409

Page 409

Name Data Type Description
SurfaceContentsBox
?
Modified in JDF 1.1A

rectangle This box, specified in surface-coordinate space, defines the area into
which PageCells are distributed. The lower left corner of the rectangle
specified by the value of this attribute establishes the coordinate system
into which the content is mapped onto the surface. Note:
SurfaceContentsBox does not imply clipping. Clipping is defined by
PageCell::ClipBox.
If SurfaceContentsBox is not specified, a device may supply a
SurfaceContentsBox that corresponds to the imagable area for the
Media used by the device. Otherwise a rectangle with the origin at “0 0”
and the dimensions of the Media defined in this resource is assumed. If
no Media Dimension can be determined, the SurfaceContentsBox is
assumed to have its origin at the lower left corner and be unbounded in X
and Y.

VerticalCreep ? IntegerList Specifies which vertical gutters creep.
The allowed values are zero-based indexes that reference vertical gutters
formed by multiple columns of pages in a multi-up page layout specified
by the first [RP454]value of the NumberUp attribute.
The value for an entry in this list must be between zero and 2 less
[RP455]then the first [TNH456]value of the NumberUp attribute. An index
value outside of this range is ignored.
If not specified then no vertical gutters will creep.

ImageShift ? element Details how to place the grid of PageCells onto the media. The
coordinate system is defined so that the “X” dimension is the first
number of the Media Dimension attribute; “Y” is the second number.
ImageShift must be applied before any transformations of the grid of
PageCells as specified by Rotate or FitPolicy.

InsertSheet * refelement Additional sheets to be inserted before, after, or within a job.
DeviceMark ? refelement Details how device dependent marks should be generated. If not

specified, the marks are device dependent.
FitPolicy ? refelement Details how to fit the grid of PageCells onto the media.
JobField * refelement Specific information about this kind of mark object.
Media ? refelement Specific information about the media.
PageCell ?
Modified in JDF 1.1A

refelement PageCell elements describe how page contents will be imaged onto
individual page cells. Only one page cell size may be specified and is
applied to all cells on both Surfaces of a Sheet.

Structure of the PageCell Subelement
PageCell elements describe how page contents will be imaged onto individual page cells. Only one page cell size
may be specified and is applied to all cells on both Surfaces of a Sheet.

Page 410

Page 410

Name Data Type Description
ClipBox ? rectangle Defines a rectangle with an origin relative to the lower left corner of the

page cell rectangle defined by the explicit or implied value of the
TrimSize attribute. Page content data imaged outside of the region
defined by this rectangle will be clipped. If ClipBox is larger than
TrimSize, it is used to specify a bleed region. If not specified, its default
value is “0 0 X Y” where X and Y are the explicit or implied values of
TrimSize.

MarkList ? NMTOKENS List of Marks that should be marked on each PageCell. The appearance
of the marks are defined by the process implementation. Values include:
CIELABMeasuringField
ColorControlStrip
ColorRegisterMark
CutMark
DensityMeasuringField
IdentificationField
JobField
PaperPathRegisterMark
RegisterMark
ScavengerArea

Rotate ? enumeration Orthogonal rotation to be applied to the contents in the PageCells. One
of:
Rotate0
Rotate90 – 90° counterclockwise rotation. –
Rotate180 – 180° rotation
Rotate270 – 90°clockwise rotation
For details of orthogonal rotation, refer to Table 2-3. If a RotatePolicy
value other than “NoRotate” is specified in FitPolicy, the value
specified in Rotate may be modified accordingly.

Border ?
Modified in JDF 1.1A

number A number indicating the width in points of a drawn border line, that
appears around the trim region specified by the explicit or implied value
of TrimSize. A value of 0 specifies no border.
If this attribute is not present, its default value is 0.
If the value of this attribute is non zero and positive, then a border of that
specified width will be drawn to the outside of the page cell whose inside
dimension is the same as the explicit or implied value of the TrimSize
attribute. The border marks must not overwrite the page contents of the
trimmed page. Note that when the page cells are distributed evenly over
the area of the SurfaceContentsBox, the page cells position and/or size
may be adjusted to accommodate the border.
If the value of this attribute is non zero and negative, then a border of a
width specified by this attribute's absolute value will be drawn to the
inside of the page cell whose outside dimension is the same as the explicit
or implied value of the TrimSize attribute. The border marks may
overwrite the page contents of the trimmed page.
The rectangle defined by the inside edge of the border defines a ClipBox
beyond which no content will be imaged.

Page 411

Page 411

Default = “ Rotate0”
TrimSize ?
Modified in JDF
1.1A

XYPair Defines the dimensions of the PageCell.
The lower left corner of the rectangle specified by the value of this
attribute establishes the coordinate system into which the page content is
mapped.
FitPolicy defines the default TrimSize in the absence of an explicit
TrimSize.
If not specified, TrimSize is calculated by subtracting the gutters from
the LayoutPreparationParams:SurfaceContentsBox and dividing
by the appropriate NumberUp value.

Color ? refelement Color of the border. If not present, the default color is system specified.
DeviceMark ? refelement Details how device dependent marks should be generated. Defaults to the

value of DeviceMark in the parent LayoutPreparationParams.
FitPolicy ? refelement Details how page content is fit into the PageCells. If the dimensions of

the page contents vary, FitPolicy is applied to the contents of each cell
individually.

ImageShift ? element Element which describes how content should be placed into the
PageCells. X and Y are specified in the coordinate system of the
PageCell.

Structure of the ImageShift Subelement
ImageShift elements describe how the grid of page cells will be imaged onto media, when ImageShift is specified
in the context of LayoutPreparationParams. When ImageShift is specified in the context of a PageCell, it
specifies how content is imaged into the respective page cells.

Name Data Type Description

PositionX ? enumeration Indicates how images should be positioned horizontally . ShiftBack and
ShiftFront are applied after PositionX and PositionY. Values are:
Center – Center the images horizontally without regard to limitations of the
printable area.
Left – Position the left edge of the images so they are coincident with the left
edge of the printable area.
Right – Position the right edge of the images so they are coincident with the
right edge of the printable area.
Spine – Position the images so they are coincident with the vertical binding
edge of the printable area.[RP457]
None – Place the images wherever the print data specifies. The default.

Page 412

Page 412

PositionY ? enumeration Indicates how images should be positioned vertically. ShiftBack and
ShiftFront are applied after PositionX and PositionY. Values are:
Bottom – Position the bottom edge of the images so they are coincident with
the bottom edge of the printable area.
Center – Center the images horizontally without regard to limitations of the
printable area.
Spine – Position the images so they are coincident with the horizontal
binding edge of the printable area.[RP458]
Top – Position the top edge of the images so they are coincident with the top
edge of the printable area.
None – Place the images wherever the print data specifies. The default.

ShiftBack ? XYPair The amount in X and Y direction by which the image is to be shifted on the
back side.

ShiftFront ? XYPair The amount in X and Y direction by which the image is to be shifted on the
front side. Default = “0 0”

7.2.90 LongitudinalRibbonOperationParams
Deprecated in JDF 1.1.
This resource provides the parameters of the LongitudinalRibbonOperation process. It is defined as a list of
abstract LROperation elements.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: RibbonName, SheetName, SignatureName, WebName
Input of processes: LongitudinalRibbonOperations
Output of processes: -

Resource Structure
Name Data Type Description
LROperation + element Abstract element which is a placeholder for a longitudinal ribbon

operation.

Structure of LongitudinalRibbonOperationParams Elements
LROperation
Deprecated in JDF 1.1.
LROperation is an abstract element that describes the LongitudinalRibbonOperation process. The defined
instances (subclasses) of LROperation are LongFold, LongGlue, LongPerforate, and LongSlit. All instances of
LROperation have the following common contents.

Name Data Type Description
WorkingList ? DoubleList List of lengths of the Operation to be performed in point. Entries

with an odd position (first, third, etc.) in the list define an offset
where the tool is inactive. Entries with an even position define a
working length where the tool is on. The start position is the leading
edge of the plate.
If the sum of all entries is higher than the circumference of the press
cylinder, the values exceeding the circumference are cropped.
Counting always restarts at the leading edge.
Default = 0 1000000000, i.e., always on.

XOffset double Position of the tool for longitudinal action along the cylinder axis.

Page 413

Page 413

LongFold
Deprecated in JDF 1.1.
LongFold is derived from the abstract element LROperation and describes a longitudinal fold operation and has no
further contents in addition to those of LROperation.

LongGlue
Deprecated in JDF 1.1.
LongGlue is derived from the abstract element LROperation and describes a longitudinal gluing operation and has
the following contents in addition to those of LROperation.

Name Data Type Description
GlueBrand ? string Glue brand.

Use only when Operation = Glue
GlueType ? Enumeration If Operation = Glue, the following values can be used:

ColdGlue
Hotmelt
PUR – Polyurethane

LineWidth ? double Width of the Operation line.
MeltingTemperature ? integer Required temperature for melting the glue (in degrees centigrade).

Use only when GlueType = Hotmelt and Operation = Glue

LongPerforate
Deprecated in JDF 1.1.
LongPerforate is derived from the abstract element LROperation and describes a longitudinal gluing operation
and has the following contents in addition to those of LROperation.

Name Data Type Description
TeethPerDimension ? integer If Operation = Perforate, the number of teeth in a given perforation

extent is defined in teeth/point.
MicroPerforation is defined by specifying a large number of teeth
(n>1000).

LongSlit
Deprecated in JDF 1.1.
LongSlit is derived from the abstract element LROperation and describes a longitudinal cut operation and has no
further contents in addition to those of LROperation.

7.2.91 ManualLaborParams
New in JDF 1.1
This resource describes the parameters to qualify generic manual work within graphic arts production. Additional
Comment elements will generally be needed to describe the work in human readable form.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: ManualLabor
Output of processes: -

Resource Structure
Name Data Type Description
LaborType NMTOKENS List of types of manual labor that are performed.

Page 414

Page 414

7.2.92 Media
This resource describes a physical element that represents a raw, unexposed printable surface such as sheet, film, or plate.
Gloss, media color, and opacity attributes provide media characteristics pertinent to color management[amc459]

Resource Properties
Resource class: Consumable
Resource referenced by: ExposedMedia, DigitalPrintingParams, InsertSheet,

LayoutElementProduction, LayoutPreparationParams, RenderingParams,
Sheet, Tile,

Example Partition: SheetName, Side, TileID, WebName
Input of processes: ConventionalPrinting, ContactCopying, Cutting, DigitalPrinting,

ImageSetting, [RP460]
Output of processes: -

Resource Structure
Name Data Type Description
 BackCoatings ? enumeration Identical to FrontCoatings, but applied to the back surface of the media.

If not specified, use the [RP461]value of FrontCoatings.
 Brightness ?
Clarified in JDF 1.2

NumberList{1,2
}

Reflectance percentage of diffuse blue reflectance as defined by ISO2470
– ISO 2470:1977 Paper and board – Measurement of diffuse blue
reflectance factor (ISO brightness). The reflectance is reported per ISO
2470 as the diffuse blue reflectance factor of the paper or board in percent
to the nearest 0.5% reflectance factor. If one value is specified,
Brightness applies to the front and back. If two values are specified the
first value applies to the front and the second applies to the back.[amc462]

ColorName ?
New in JDF 1.1

string Link to a definition of the color specifics. The value of ColorName
color should match the Name attribute of a Color defined in a
ColorPool resource that is linked to the process using this Media
resource.

ColorName ?
Deprecated in JDF 1.2

string Link to a definition of the color specifics. The value of ColorName
color should match the Name attribute of a Color defined in a
ColorPool resource that is linked to the process using this Media
resource. Deprecated in JDF 1.2 Use MediaColorName and
MediaColorNameDetails. [RP463]

Dimension ?
Modified in JDF 1.1

XYPair The X and Y dimensions of the chosen medium. Measured in points.
The X,Y values of Dimension establishes the user coordinate system
into which content is mapped, i.e., the origin is in the lower left corner of
the rectangle defined by 0 0 X Y. In case of Roll media, the X-coordinate
specifies the reel width and the Y-coordinate specifies the length of the
web in points. If a Dimension coordinate is unknown, the value must
be zero. Default = 0 0, i.e., unknown. If either or both X or Y is 0, i.e.,
unknown, the default orientation is assumed to be portrait, i.e., Y>X.

 FrontCoatings ? enumeration What preprocess coating has been applied to the front surface of the
media. Possible values are:
None – The default.
Glossy
HighGloss
Matte
Satin
Semigloss

Gloss ? NumberList{1,2
}[RP464]

Gloss values of the media, in gloss units as defined by ISO 8254-1:1995
Paper and board – Measurement of specular gloss – Part 1: 75º gloss with

Gl

Page 415

Page 415

Name Data Type Description
New in JDF 1.2 a converging beam, TAPPI method. If one value is specified, Gloss

applies to the front and back. If two values are specified the first value
applies to the front and the second applies to the back.[RP465]

GrainDirection ?
New in JDF 1.1

enumeration Direction of the grain in the coordinate system defined by Dimension.
Possible values are:
ShortEdge: Along the shorter axis as defined by Dimension.
LongEdge: Along the longer axis as defined by Dimension.
If not specified the direction is unknown.

HoleCount ?
Deprecated in JDF 1.1

 integer The number of holes that should be punched in the media (either pre- or
post-punched). Default = 0. In JDF/1.1, use HoleType Hole or
HoleLine, which includes the number of holes.
Predefined hole pattern. Multiple hole patterns are allowed, e.g, 3-hole
ring binding and 4-hole ring binding holes on one piece of media. For
details of the hole types, refer to Appendix L JDF/CIP4 Hole Pattern
Catalog.
Allowed values are:

HoleType ?
New in JDF 1.1

enumerations

None – The default.
R2-generic
R2m-DIN
R2m-ISO
R2i-US-a
R2i-US-b
R3-generic
R3i-US
R4-generic
R4m-DIN-A4
R4m-DIN-A5
R4m-swedish
R4i-US
R5-generic
R5i-US-a
R5i-US-b
R5i-US-c

R6-generic
R6m-4h2s
R6m-DIN-A5
R7-generic
R7i-US-a
R7i-US-b
R7i-US-c
R11m-7h4s
P12m-rect-0t
P16_9i-rect-0t
W2_1i-round-0t
W2_1i-square-0t
W3_1i-square-0t
C9.5m-round-0t
Explicit – Holes are defined in
an array of Hole or HoleLine

ImagableSide ? enumeration Side of the chosen medium that may be marked. Possible values are:
Front
Back
Both – Default value.
Neither

MediaSetCount ? integer When the input media is grouped in sets, identifies the number of pieces
of media in each set. For example, if the MediaTypeDetails is
“PreCutTabs”, a MediaSetCount of 5 would indicate that each set
includes 5 tab sheets.

MediaType ? enumeration Describes the medium being employed. Possible values are:
EmbossingFoil
EndBoard: End board used in the ##ref Bundling process.[RP466]

Page 416

Page 416

Name Data Type Description
Film
Foil
LaminatingFoil
Paper
Plate
ShrinkFoil
Transparency
Unknown: the default.

MediaTypeDetails ? NMTOKEN Additional details of the chosen medium. If MediaTypeDetails is
specified, MediaType must be specified with a value other than
“Unknown”. Possible values include:
Aluminum – Conventional press plate
Cardboard
DryFilm
Continuous – Continuously connected sheets of an opaque material.
Which edge is connected is not specified.
ContinuousLong – Continuously connected sheets of an opaque material
connected along the long edge.
ContinuousShort – Continuously connected sheets of an opaque material
connected along the short edge.
CtPVisiblePhotoPolymer – Visible light CtP plate with photo polymer
process.
CtPVisibleSilver – Visible light CtP plate with silver halide process.
CtPThermal: – Thermal CtP plate
Envelope – Envelopes that can be used for conventional mailing
purposes.
EnvelopePlain -- Envelopes that are not preprinted and have no windows.
EnvelopeWindow -- Envelopes that have windows for addressing
purposes.
FullCutTabs – Media with a tab that runs the full length of the medium
so that only one tab is visible extending out beyond the edge of non-
tabbed media.
ImageSetterPaper – Contact paper as replacement for film.
Labels – Label stock, e.g., a sheet of peel-off labels.
Letterhead – Separately cut sheets of an opaque material including a
letterhead.
MultiLayer – Form medium composed of multiple layers which are
preattached to one another, e.g., for use with impact printers.
MultiPartForm – Form medium composed of multiple layers not
preattached to one another; each sheet may be drawn separately from an
input source.
Paper – Proof or product component paper
Photographic – Separately cut sheets of an opaque material to produce
photographic quality images.
PlateUV – Press plate for the UV process
Polyester – CtP press plate.

Page 417

Page 417

Name Data Type Description
PreCutTabs – Media with tabs that are cut so that more than one tab is
visible extending out beyond the edge of non-tabbed media.
Stationery – Separately cut sheets of an opaque material.
TabStock – Media with tabs, either precut or full-cut.
Transparency – Separately cut sheets of a transparent material.
WetFilm – Conventional photographic film
Unknown – The default.

MediaUnit ? enumeration Describes the format of the media as it is delivered to the device.
Possible values are:
Roll
Sheet – Default value.

 Opacity ?
Modified in JDF 1.2

enumeration The opacity of the media. See OpacityLevel to specify the degree of
opacity for any of these values. Possible values are:
Opaque – the media is opaque. With two-sided printing the printing on
the other side does not show through under normal incident light. The
default.
Translucent – The media is translucent to a system specified amount. For
example, translucent media can be used for back lit viewing. New in
JDF 1.2
Transparent – the media is transparent to a system specified amount.

OpacityLevel ?
New in JDF 1.2

double Normalized TAPPI Opacity, Cn, as defined and computed in ISO
2471:1998 “Paper and board – Determination of opacity (paper backing)
– Diffuse reflectance method”. Refer also to TAPPI T 519 “Diffuse
opacity of paper (d/0° paper backing)” for calculation examples.[RP467]

Polarity ? enumeration Polarity of the chosen medium. Possible values are:
Positive – Default value.
Negative

PrePrinted ? boolean Indicates whether the media is preprinted. Default = false

Recycled ? boolean If true, recycled media is requested. Default = false

RollDiameter ? double Specifies diameter of a roll in points.
ShrinkIndex ?
New in JDF 1.1

XYPair Specifies the ratio of the media linear dimension after shrinking to prior
shrinking. The X-Value specifies index in the major shrink axis, whereas
the Y-Value specifies the index in the minor shrink axis. Used to
describe shrink wrap media. Default = 1.0 1.0, i.e., no shrinking.

StockType ?
New in JDF 1.1

NMTOKEN Strings describing the available stock. Examples include:
Bristol
Cover
Bond
Newsprint
Index
Offset – This includes book stock.
Tag
Text

Texture ? NMTOKEN The intended texture of the media. Examples include:

Page 418

Page 418

Name Data Type Description
New in JDF 1.1 Antique – Rougher than vellum surface.

Calendared – Extra-smooth or polished uncoated paper.
Linen – Texture of coarse woven cloth.
Smooth
Stipple – Fine pebble finish.
Vellum – Slightly rough surface .

Thickness ? double The thickness of the chosen medium. Measured in micron [µm].
UserMediaType ?
Deprecated in JDF 1.1

NMTOKEN A human-readable description of the type of media. The value can be
used by an operator to select the correct media to load. The semantics of
the values will be site-specific.
UserMediaType has been merged into MediaTypeDetails in JDF 1.1.
Possible values include:
Continuous – Continuously connected sheets of an opaque material.
Which edge is connected is not specified.
ContinuousLong – Continuously connected sheets of an opaque material
connected along the long edge.
ContinuousShort – Continuously connected sheets of an opaque material
connected along the short edge.
Envelope – Envelopes that can be used for conventional mailing
purposes.
EnvelopePlain – Envelopes that are not preprinted and have no windows.
EnvelopeWindow – Envelopes that have windows for addressing
purposes.
FullCutTabs – Media with a tab that runs the full length of the medium
so that only one tab is visible extending out beyond the edge of non-
tabbed media.
Labels – Label stock, e.g., a sheet of peel-off labels.
Letterhead – Separately cut sheets of an opaque material including a
letterhead.
MultiLayer – Form medium composed of multiple layers which are
preattached to one another, e.g., for use with impact printers.
MultiPartForm – Form medium composed of multiple layers not
preattached to one another; each sheet may be drawn separately from an
input source.
Photographic – Separately cut sheets of an opaque material to produce
photographic quality images.
PreCutTabs – Media with tabs that are cut so that more than one tab is
visible extending out beyond the edge of non-tabbed media.
Stationery – Separately cut sheets of an opaque material.
TabStock – Media with tabs, either precut or full-cut.
Transparency – Separately cut sheets of a transparent material.

Weight ? double Weight of the chosen medium. Measured in grams per square meter
[g/m²].

Color ?
Deprecated in JDF 1.1

refelement A Color resource that provides the color of the chosen medium.

Page 419

Page 419

7.2.93 MediaSource
Deprecated in JDF 1.1
This resource describes the source and physical orientation of the media to be used in DigitalPrinting or IDPrinting.

Resource Properties
Resource class: Parameter
Resource referenced by: DigitalPrintingParams, IDPrintingParams, InsertSheet, Layout, Sheet, Tile
Example Partition: -
Input of processes: DigitalPrinting, IDPrinting
Output of processes: -

Resource Structure
Name Data Type Description
LeadingEdge ? number Specifies the size, in points, of the edge of the media that represents the

scanline direction. If this attribute is absent, the scanline direction is
assumed to be along the x-axis of the Dimension parameter for the
Media.

MediaLocation ? String Identifies the location, such as a slot name or ID, of the media in the
device.
If the media resource is partitioned by Location (see also Section
3.9.2.6 Locations of Physical Resources) there should be a match
between one Location partition key and this MediaLocation value.

ManualFeed ? boolean Indicates whether the media will be fed manually. Default = false

SheetLay ?
New in JDF 1.1

enumeration Lay of input media. Reference edge of where paper is placed in
feeder. Possible values are:
Left
Right
Center
Default = The device-specific machine default.
SystemSpecified = The device-specific machine default
Default = SystemSpecified

Component ?
New in JDF 1.1

refelement A Component resource which identifies the preprinted media to be
used. Only one of Component or Media should be specified.

Media ? refelement A Media resource which identifies the media to be used. Only one of
Component or Media should be specified.

7.2.94 NumberingParams
This resource describes the describes the parameters of stamping or applying variable marks in order to produce
unique components, for items such as lottery notes or currency. One NumberingParams element must be defined
per numbering machine.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: Numbering
Output of processes: -

Resource Structure
Name Data Type Description
NumberingParam * element Set of parameters for one numbering machine

Page 420

Page 420

Structure of NumberingParam Subelement
Name Data Type Description
StartValue ? string First value of the numbering machine.
XPosition number Position of the numbering machine along the printer axis.
YPosition DoubleList List of stamp positions, in points, starting from the leading edge.
Orientation number Rotation of the numbering machine in degrees. If Orientation = 0, the

top of the numbers is along the leading edge.
Step ? integer Number that specifies the difference between two subsequent numbers

of the numbering machine. Default = 1

7.2.95 ObjectResolution
ObjectResolution defines a resolution depending on SourceObject data types.

Resource Properties
Resource class: Parameter
Resource referenced by: InterpretingParams, RenderingParams, TrappingDetails
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
Resolution XYPair Horizontal and vertical output resolution in DPI.
SourceObjects ? enumerations Identifies the class(es) of incoming graphical objects to render at the

specified resolution. Possible values are:
All – Default value.
ImagePhotographic – Contone images.
ImageScreenShot – Images largely comprised of rasterized vector art.
LineArt – Vector objects other than text
SmoothShades – Gradients and blends.
Text

7.2.96 OrderingParams
Attributes of the Ordering process, which results in an acquisition.

Resource Properties

Resource class: Parameter
Example Partition: -
Input of processes: Ordering
Output of processes: -

Resource Structure
Name Data Type Description
Amount double Amount of the ordered resource.
Unit string Unit of measurement for Amount.
Comment telem OrderingParams require a Comment element that contains a human-readable

description of what to order.

Resource referenced by: -

Page 421

Page 421

Company ?
Deprecated in
JDF 1.1

refelement Address and further information of the Company responsible for this order.
Replaced with Contact in JDF 1.1.

Contact *
New in JDF 1.1

refelement Address and further information of the Contact responsible for this order.

7.2.97 PackingParams
Deprecated in JDF 1.1
The PackingParams resource has been deprecated in version 1.1 and beyond. It is replaced by the individual
resources used by the processes defined in Section 6.6.46.4 Numbering and 6.6.46.5 Packaging Processes.

This resource specifies the box packing parameters for a JDF job, using information that identifies the type of
package, the wrapping used, and the shape of the package. Note that this specifies packing for shipping only, not
packing of items into custom boxes etc. Boxes are convenience packaging, and are not envisioned to be protection for
shipping. Cartons perform this function. All quantities are specified as finished pieces per wrapped/boxed/carton or
palletized package.

The model for packaging is that products are wrapped together, wrapped packages are placed in boxes, boxes are
placed in cartons, and cartons are stacked on pallets.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: Packing
Output of processes: -

Resource Structure
Name Data Type Description
BoxedQuantity ? integer How many units of product in a box.
BoxShape ? shape Describes the length, width and height of the box in points.
CartonQuantity ? integer How many units of product in a carton.
CartonShape ? shape Describes the length, width and height of the carton in points, e.g.,

288 544 1012.
CartonMaxWeight ? double Maximum weight of an individual carton in kilograms.
CartonStrength ? double Strength of the carton in Newtons per square meter.
PalletQuantity ? integer Number of product per pallet
PalletSize ? XYPair Describes the length and width of the pallet in points, e.g., 3500

3500
PalletMaxHeight ? double Maximum height of a loaded pallet in points.
PalletMaxWeight ? double Maximum weight of a loaded pallet in kilograms.
PalletType ? enumeration Type of pallet used. Examples include:

2Way – Two-way entry
4Way – Four-way entry
Euro – Standard 1*1 m Euro pallet

PalletWrapping ? enumeration Wrapping of the completed pallet. Examples include:
StretchWrap
Banding
None – The default.

WrappedQuantity ? integer Number of units of product per wrapped package.

Page 422

Page 422

Name Data Type Description
WrappingMaterial ? name Examples include:

RubberBand
ShrinkWrap
PaperBand
Polyethylene
None – The default.

7.2.98 PageList
New in JDF 1.2
PageList defines the additional metadata of individual pages, such as pagination details. PageList references the
page regardless of the pages position in a pdl file or RunList.

Resource Properties
Resource class: Parameter
Resource referenced by: LayoutElement
Example Partition: PartVersion
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
HasBleeds ? boolean If true, the file has bleeds. Default = false.
IsBlank ?

boolean If false, the PageData has no content marks and is blank. Default =
false.

IsPrintable ? boolean If true, the file is a PDL file and can be printed. Possible files types
include PCL, PDF or PostScript files. Application files such as MS
Word have IsPrintable=”false”.
Default = true.

IsTrapped ? boolean If true, the file has been trapped.
Default = false.

JobID ? string ID of the job that this page belongs to.
JobPartID ? string ID of the part of the job that this page belongs to. Note that this JobPartID

will generally be a reference to the JobPartID of a product intent node and
not to a process node.

PageLabelPrefix ? string Prefix of the identification of the page as it is displayed on the page. For
instance “C - ”, if the Pages are Labeled “C – 1”, “C – 2” etc.

PageLabelSuffix ? string Suffix of the identification of the page as it is displayed on the page. For
instance “ - a”, if the Pages are Labeled “C – 1 - a”, “C – 2 - a” etc.

SourceBleedBox ? rectangle A rectangle that describes the bleed area of the page to be included. This
rectangle is expressed in the default user space.
If not specified uses element’s defined bleed box (or no bleed box if
element does not supply a bleed box)

SourceClipBox ? rectangle A rectangle that defines the region of the page to be included. This
rectangle is expressed in the default user space of the source document
page.
If not specified use element’s defined clip box (or no clip box if element
does not supply a clip box)

Page 423

Page 423

Name Data Type Description
SourceTrimBox ? rectangle A rectangle that describes the intended trimmed size of the page to be

included. This rectangle is expressed in the default user space.
If not specified uses element’s defined trim box (or no trim box if
element does not supply a trim box)

Template ? boolean Template is false when this page is self-contained. This attribute is true
if the PageList represents a template that must be completed with
information from a database.
Default = false

ColorPool ? refElement Definition of the color details.
ImageCompression-
Params ?

refElement Specification of the image compression properties.

PageData * element Details of the individual page. PageData elements are refered to by their
index in the PageList. PageData elements should therefore not be
removed or inserted in a position other than the end of the list.

ScreeningParams ? refelement Specification of the screening properties.
SeparationSpec * element List of separation names defined in the element.
ElementColorParams
?

refelement Color details of the page list.

Properties of the PageData SubElement
New in JDF 1.2
PageData defines the additional metadata of individual pages, such as pagination details.
PageData elements are refered to by index of the PageData in the PageList.

Resource Structure
Name Data Type Description
FoldOutPages ? IntegerList Page indeces in the PageList of the pages forming a content page that

flows over multiple finished pages, e.g. foldout or centerfold. The list
does not include the index of this PageData. If not specified the
PageData does not describe a part of a foldout.

HasBleeds ? boolean If true, the file has bleeds. If not specified, defaults to the value of
PageList/@HasBleeds.

IsBlank ?

boolean If false, the PageData has no content marks and is blank. If not
specified, defaults to the value of PageList/@IsBlank.

IsPrintable ? boolean If true, the file is a PDL file and can be printed. Possible files types
include PCL, PDF or PostScript files. Application files such as MS
Word have IsPrintable=”false”.
If not specified, defaults to the value of PageList/@IsPrintable.

IsTrapped ? boolean If true, the file has been trapped.
If not specified, defaults to the value of PageList/@IsTrapped.

JobID ? string ID of the job that this page belongs to. If not specified, defaults to the value
of PageList/@JobID.

JobPartID ? string ID of the part of the job that this page belongs to. Note that this JobPartID
will generally be a reference to the JobPartID of a product intent node and
not to a process node. If not specified, defaults to the value of
PageList/@JobPartID.

Page 424

Page 424

Name Data Type Description
FoldOutPages ? IntegerList Page indeces in the PageList of the pages forming a content page that

flows over multiple finished pages, e.g. foldout or centerfold. The list
does not include the index of this PageData. If not specified the
PageData does not describe a part of a foldout.

PageLabel ? string Complete identification of the page including PageLabelPrefix and
PageLabelSuffix as it is displayed on the page, For instance “1”, “iv” or
“C - 1”. Note that this may be different than the position of the page in the
finished document.

PageLabelPrefix ? string Prefix of the identification of the page as it is displayed on the page. For
instance “C - ”, if the Pages are Labeled “C – 1”, “C – 2” etc. If not
specified, defaults to the value of PageList/@PageLabelPrefix.

PageLabelSuffix ? string Suffix of the identification of the page as it is displayed on the page. For
instance “ - a”, if the Pages are Labeled “C – 1 - a”, “C – 2 - a” etc. If not
specified, defaults to the value of PageList/@PageLabelSuffix.

SourceBleedBox ? rectangle A rectangle that describes the bleed area of the element to be included.
This rectangle is expressed in the default user space.
If not specified, defaults to the value of PageList/@SourceBleedBox.

SourceClipBox ? rectangle A rectangle that defines the region of the element to be included. This
rectangle is expressed in the default user space of the source document
page.
If not specified, defaults to the value of PageList/@SourceClipBox.

SourceTrimBox ? rectangle A rectangle that describes the intended trimmed size of the element to be
included. This rectangle is expressed in the default user space.
If not specified, defaults to the value of PageList/@SourceTrimBox.

Template ? boolean Template is false when this layout element is self-contained. This
attribute is true if the LayoutElement represents a template that must
be completed with information from a database.
If not specified, defaults to the value of PageList/@Template.

ImageCompression-
Params ?

refElement Specification of the image compression properties.
If not specified, defaults to the value of
PageList/ImageCompressionParams.

ScreeningParams ? refelement Specification of the screening properties. If not specified, defaults to the
value of PageList/ScreeningParams.

SeparationSpec * element List of separation names defined in the element. If none is specified,
defaults to the value of PageList/SeparationSpec.

ElementColorParams
?

refelement Color details of the page element.[RP468]

7.2.99 PalletizingParams
New in JDF 1.1
PalletizingParams defines the details of Palletizing. Details of the actual palette used for Palletizing can be
found in the Pallet resource that is also an input of the Palletizing process.

Resource Properties
Resource class: Parameter

Page 425

Page 425

Resource referenced by: -
Example Partition: -
Input of processes: Palletizing
Output of processes: -

Resource Structure
Name Data Type Description
Pattern ? string Name of the palletizing pattern. Used to store a predefined pattern

that defines the layers and positioning of individual component on
the palette. Default = equipment-specific pattern.

MaxHeight ? number Maximum height of a loaded pallet in points. Default = equipment-
specific value.

MaxWeight ? number Maximum weight of a loaded pallet in grams.

7.2.100 Pallet
New in JDF 1.1
A Pallet represents the palette used in packing goods.

Resource Properties
Resource class: Consumable
Resource referenced by: -
Example Partition: -
Input of processes: Palletizing
Output of processes: -

Resource Structure
Name Data Type Description
PalletType NMTOKEN Type of pallet used. Examples include:

2Way – Two-way entry
4Way – Four-way entry
Euro – Standard 1*1 m Euro pallet

Size ? XYPair Describes the length and width of the pallet in points, e.g., 3500
3500. Default = 0 0 which specifies the size defined by
PalletType.

7.2.101 PDFToPSConversionParams[RP469]
This resource specifies a set of configurable options that may be used by processes that generate PostScript files
from PDF files. Font controls are applied in the following order:

1. IncludeBaseFonts
2. IncludeEmbeddedFonts
3. IncludeType1Fonts
4. IncludeType3Fonts
5. IncludeTrueTypeFonts
6. IncludeCIDFonts

For example, an embedded Type-1 font follows the rule for embedded fonts, not the rule for Type-1 fonts. In other
words, if IncludeEmbeddedFonts is true, and IncludeType1Fonts is false, embedded Type-1 fonts would be
included in the PostScript stream.

Resource Properties
Resource class: Parameter

Page 426

Page 426

Resources referenced: -
Example Partition: DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes: PDFToPSConversion
Output of processes: -

Resource Structure
Name Data Type Description
BinaryOK ? boolean If true, binary data are to be included in the PostScript stream.

Default = true
BoundingBox ? rectangle If all zeroes, this attribute is ignored. Otherwise, it is used for

BoundingBox DSC comment, in CenterCropBox calculations and
for SetPageDevice. Default = 0 0 0 0

CenterCropBox ? boolean If true, CropBox output is centered on the page when the CropBox
< MediaBox. Default = true

GeneratePageStreams ? boolean If true, the process emits individual streams of data for each page in
the RunList.
Default = false

IgnoreAnnotForms ? boolean If true, ignores annotations that contain an XObject form.
Default = false

IgnoreBG ?
New in JDF 1.1

boolean Ignores the BG,BG2 parameters in the PDF ExtGState dictionary.
Default=true

IgnoreColorSeps ? boolean If true, ignores images for Level-1 separations. Default = false.
IgnoreDeviceExtGState ?
Deprecated in JDF 1.1

boolean If true, ignores all device-dependent extended graphic state
parameters. This overrides IgnoreHalftones. The following
parameters should be ignored:
op OP – Overprint parameter
OPM – Overprint mode
BG, BG2 – Black generation
UCR, UCR2 – Undercolor removal
TR, TR2 – Transfer functions
HT – Halftone dictionary
FL – Flatness tolerance
SA – Automatic stroke adjustment
Default = true

IgnoreDSC ? boolean If true, ignores DSC (Document Structuring Conventions).
Default = true

IgnoreExternSreamRef ? boolean If an image resource uses an external stream and
IgnoreExternStreamRef = true, ignores code that points to the
external file.
Default = false

IgnoreHalftones ? boolean If true, ignores any halftone screening in the PDF file.
Default = false

IgnoreOverprint ?
New in JDF 1.1

boolean Ignores the OP, op parameters in the PDF ExtGState dictionary.
Default=true

IgnorePageRotation ? boolean If true, ignores a concat provided at the beginning of each page that
orients the page so that it is properly rotated. Used when emitting
EPS. Default = false

Page 427

Page 427

Name Data Type Description
IgnoreRawData ? boolean If true, no unnecessary filters should be added when emitting image

data. Default = false
IgnoreSeparableImages-
Only ?

boolean If true, and if emitting EPS, ignores only CMYK and gray images.
Default = false

IgnoreShowPage ? boolean If true, ignores save-and-restore showpage in PostScript files.
Default = false

IgnoreTransfers ?
New in JDF 1.1

boolean Ignores the TR,TR2 parameters in the PDF ExtGState dictionary.
Default = true

IgnoreTTFontsFirst ? boolean If true, ignores TrueType fonts before any other fonts.
Default = false

IgnoreUCR ?
New in JDF 1.1

boolean Ignores the UCR, UCR2 parameters in the PDF ExtGState
dictionary. Default=true

IncludeBaseFonts ? enumeration Determines when to embed the base fonts. Possible values are:
IncludeNever – Default value
IncludeOncePerDoc
IncludeOncePerPage

IncludeCIDFonts ? enumeration Determines when to embed CID fonts. Possible values are:
IncludeNever
IncludeOncePerDoc – Default value.
IncludeOncePerPage

IncludeEmbeddedFonts ? enumeration Determines when to embed fonts in the document that are
embedded in the PDF file. This attribute overrides the
IncludeType1Fonts, IncludeTrueTypeFonts, and
IncludeCIDFonts attributes. Possible values are:
IncludeNever
IncludeOncePerDoc – Default value.
IncludeOncePerPage

IncludeOtherResources ? enumeration Determines when to include all other types of resources in the file.
Possible values are:
IncludeNever
IncludeOncePerDoc – Default value.
IncludeOncePerPage

IncludeProcSets ? enumeration Determines when to include ProcSets in the file. Possible values
are:
IncludeNever
IncludeOncePerDoc – Default value.
IncludeOncePerPage

IncludeTrueTypeFonts ? enumeration Determines when to embed TrueType fonts. Possible values are:
IncludeNever
IncludeOncePerDoc – Default value.
IncludeOncePerPage

Page 428

Page 428

Name Data Type Description
IncludeType1Fonts ? enumeration Determines when to embed Type-1 fonts. Possible values are:

IncludeNever
IncludeOncePerDoc – Default value.
IncludeOncePerPage

IncludeType3Fonts ? enumeration Determines when to embed Type-3 fonts. Must always be set to
IncludeOncePerPage. It is included here to complete the
precedence hierarchy.

OutputType ? enumeration Describes the kind of output to be generated. Possible values are:
PostScript – Default value
EPS

PSLevel ? integer Number that indicates the PostScript level.. Default = 2
Scale ? Number Number that indicates the wide-scale factor of documents. Full-

size = 100. Default = 100
SetPageSize ? boolean (PostScript Level 2 only) If true, sets page size on each page

automatically. Use media box for outputting PostScript files and
crop box for EPS. Default = false.

SetupProcsets ? boolean If true, indicates that if procsets are included, the init/term code is
also included. Default = true

ShrinkToFit ? boolean If true, the page is scaled to fit the printer page size. This field
overrides scale. Default = false

SuppressCenter ? boolean If true, suppresses automatic centering of page contents whose crop
box is smaller than the page size. Default = false

SuppressRotate ? boolean If true, suppresses automatic rotation of pages when their
dimensions are better suited to landscape orientation. More
specifically, the application that generates the PostScript compares
the dimensions of the page. If the width is greater than the height,
then pages are not rotated if SupressRotate is true. On the other
hand, if SupressRotate is false, the value of the PDF Rotate key
for each page is honored, regardless of the dimensions of the pages
(as defined by the MediaBox attribute). Default = false

TTasT42 ? boolean If including TrueType fonts, converts to Type-42 instead of Type-1
fonts when TTasT42 = true. Default = false

UseFontAliasNames ? boolean If true, font alias names are used when printing with system fonts.
Default = false

7.2.102 PDLResourceAlias
This resource provides a mechanism for referencing resources that occur in files, or that are expected to be provided
by devices. Prepress and printing processes have traditionally used the word “resource” to refer to reusable data
structures that are needed to perform processes. Examples of such resources include fonts, halftones, and functions.
The formats of these resources are defined within PDLs, and instances of these resources may occur within PDL
files, or may be provided by devices.

JDF does not provide a syntax for defining such resources directly within a job. Instead, resources continue to
occur within PDL files and continue to be provided by devices. However, since it is necessary to be able to refer to
these resources from JDF jobs, the PDLResourceAlias resource is provided to fulfill this need.

Resource Properties
Resource class: Parameter
Resource referenced by: ColorantControl

Page 429

Page 429

Example Partition: -
Input of processes: Interpreting
Output of processes: -

Resource Structure
Name Data Type Description
ResourceType String The type of PDL resource that is referenced. The semantic of this

attribute is defined by the PDL.
SourceName ? String The name of the resource in the file referenced by the FileSpec

element or by the device.
FileSpec ? refelement Location of the file containing the PDL resource. If FileSpec is

absent, the device is expected to provide the resource defined by this
PDLResourceAlias resource.

7.2.103 PerforatingParams
New in JDF 1.1
PerforatingParams define the parameters for perforating a sheet .

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: Perforating
Output of processes: -

Resource Structure
Name Data Type Description
Perforate * element definition of one or more Perforate lines.

Structure of the Perforate element
Perforate describes one perforated line.

Name Data Type Description
Depth ? number Depth of the perforation in microns. If not specified, the value is system

specified.
StartPosition XYPair Starting position of the tool.
WorkingPath ? XYPair Relative working path of the tool. Since the tools can only work parallel

to the edges, one coordinate must be zero. If both WorkingPath and
RelativeWorkingPath are specified, RelativeWorkingPath is ignored.
At least one of WorkingPath or RelativeWorkingPath must be
specified.[RP470]

RelativeWorkingPath ?
new in JDF 1.2

XYPair Relative working path of the tool. Since the tools can only work
parallel to the edges, one coordinate must be zero.
RelativeWorkingPath is always based on the complete size of the
input Component and not on the size of an intermediate state of the
folded sheet. The allowed value range is from 0.0 to 1.0 for each
component of the XYPair, which specifies the full size of the the
input Component. [RP471]

WorkingDirection enumeration Direction from which the tool is working. Possible values are:
Top – From above
Bottom – From below

Page 430

Page 430

TeethPerDimension ? number Number of teeth in a given perforation extent in teeth/point.
MicroPerforation is defined by specifying a large number of teeth (n>1000).

7.2.104 Person
This resource provides detailed information about a person. It also has the ability to specify different
communication channels to this person. The structure of the resource is derived from the vCard format. It contains
all of the same name subtypes (N:) of the identification and the title of the organizational properties. The
corresponding XML types of the vCard are quoted in the description field of the table below.

Resource Properties
Resource class: Parameter
Resource referenced by: Contact, Employee
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
AdditionalNames ? string Additional names of the contact person (vCard: N:other).
FamilyName ? string The family name of the contact person (vCard: N:family).
FirstName ? string The first name of the contact person (vCard: N:given).
JobTitle ? string Job function of the person in the company or organization (vCard: title).
NamePrefix ? string Prefix of the name, may include title (vCard: N:prefix).
NameSuffix ? string Suffix of the name (vCard: N:suffix).
ComChannel * element Communication channels to the person.

7.2.105 PlaceHolderResource
This resource is used to link ProcessGroup nodes when the exact nature of interchange resources is still unknown.
In this way, a skeleton of process networks can be constructed, with the PlaceHolderResource resources serving
as place holders in lieu of the appropriate resources. This resource needs no structure besides that provided in an
abstract Resource element, as it has no inherent value except as a stand-in for other resources.

Resource Properties
Resource class: PlaceHolder
Resource referenced by: -
Example Partition: -
Input of processes: any ProcessGroup nodes
Output of processes: any ProcessGroup nodes

Resource Structure
The resource has no additional structure.

7.2.106 PlasticCombBindingParams
This resource describes the details of the PlasticCombBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: PlasticCombBinding
Output of processes: -

Page 431

Page 431

Resource Structure
Name Data Type Description
Brand ? string The name of the comb manufacturer and the name of the specific

item. Default =system specified.
Color ? NamedColor Determines the color of the plastic comb. Default =system

specified.
Diameter ? double The comb diameter is determined by the height of the block of

sheets to be bound. Default =system specified.
Thickness ? double The material thickness of the comb. Default =system specified.
Type ?
Modified in JDF 1.1

Deprecated in JDF
1.2[RP472]

enumeration The distance between the “teeth” and the distance between the
holes of the prepunched sheets must be the same. The following
values from the hole type catalog in Appendix L exist:
P12m-rect-02: Distance = 12 mm; Holes = 7 mm x 3 mm
P16_9i-rect-0t: Distance = 14.28 mm; Holes = 8 mm x 3 mm
The following values are deprecated in JDF 1.1.
Euro (Distance = 12 mm; Holes = 7 mm x 3 mm)
USA1 (Distance = 14.28 mm; Holes = 8 mm x 3 mm)
In JDF 1.2 and Beyond, use the value implied by
HoleMakingParams/@HoleType.[RP473]

HoleMakingParams ? refElement Details of the Holes to be made. Note:
HoleMakingParams/@Shape is always rectangular by design
of the plastic combs.[RP474]

7.2.107 PlateCopyParams
Deprecated in JDF 1.1
This resource specifies the parameters of the FilmToPlateCopying process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: FilmToPlateCopying
Output of processes: -

Resource Structure
Name Data Type Description
Cycle ? integer Number of exposure light units to be used. The amount depends

on the subject to be exposed.
Diffusion ? enumeration The diffusion foil setting. Possible values are:

On
Off

Vacuum ? double Amount of vacuum pressure to be used. Measured in bars.

7.2.108 PreflightAnalysis
Note that the resources for Preflight are under development and subject to major changes in a future release of this
specification.

Page 432

Page 432

PreflightAnalysis resources record the results of a Preflight process. The semantics for results are specific to the
FileType of the file. The elements in this resource, detailed in the table below, place the results in specific categories.
The value for each of these elements is an array of PreflightResultsDetail and PreflightInstance subelements.
Within the PreflightInstance subelements, results are further broken down into PreflightInstanceDetails.

Each PreflightResultsDetail and PreflightInstance subelement in the PreflightAnalysis hierarchy describes
the results of a comparison of the properties of the file against one PreflightConstraint in the PreflightProfile.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: -
Output of processes: Preflight

Resource Structure
Name Data Type Description
ColorsResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides analysis about color.
DocumentResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides analysis about documents.
FontsResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides analysis about fonts.
FileTypeResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides analysis about file types.
ImagesResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides analysis about images.
PagesResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements

that provides analysis about pages.

Structure of PreflightDetail Subelement
PreflightDetail subelements are used to describe one property within the PreflightAnalysis category in which
they occur. This subelement is also used by PreflightInventory resource.

Name Data Type Description
PageRefs IntegerRangeList Identifies the set of pages in a RunList resource that exhibit the characteristic

identified by the combination of the Property attribute and the Value element.
Property ? string Identifies the property described by this element.
Status ? enumeration Possible values are:

Error – Value violates the ConstraintValue specified in the associated
PreflightConstraint element. The constraint was flagged as an Error in the
profile.
Warning – Value violates the ConstraintValue specified in the associated
PreflightConstraint element. The constraint was flagged as a Warning in the
profile.
Ignore – The constraint is ignored, and no PreflightDetail or
PreflightInstanceDetail elements are created for this constraint.
IgnoreValue – No comparison was made against a ConstraintValue. In other
words, either the Status for the PreflightConstraint was Ignore or
IgnoreValue, or this PreflightDetail is part of a PreflightInventory
hierarchy.

Value ? element Identifies the value of the property. The semantics are PDL-specific.

Page 433

Page 433

Structure of PreflightInstance Subelement
PreflightInstance subelements are used to collect PreflightInstanceDetail elements for one instance of some object
which occurs in the PDL files referenced by a run list. For example, there might be one PreflightInstance element for
each font that occurs in the pages of a run list. This subelement is also used by PreflightInventory resources.

Name Data Type Description
Identifier ? string Identifies the instance this element collects

PreflightInstanceDetail elements.
PageRefs
Modified in JDF 1.1

IntegerRangeL
ist

Identifies the set of pages in a RunList on which the instance
occurs.

PreflightInstanceDetail *
Modified in JDF 1.1

element A pool of PreflightInstanceDetail elements that describe the
properties for this instance

Structure of PreflightInstanceDetail Subelement
PreflightInstanceDetail subelements describe one property of one instance of some object type that occurs in a
PDL file. For example, several PreflightInstanceDetail elements might describe the properties of a single font.
This subelement is also used by PreflightInventory resources.

Name Data Type Description
Status ? enumeration Specifies the results of the comparison between the value of the

property for this instance with the ConstraintValue for the
associated PreflightConstraint element.
Possible values are:
Error – Value violates the ConstraintValue specified. The
constraint was flagged as an Error in the profile.
Warning – Value violates the ConstraintValue specified. The
constraint was flagged as a Warning in the profile.
IgnoreValue – No comparison was made against a
ConstraintValue. In other words, either the Status for the
Constraint was Ignore or IgnoreValue, or this
PreflightInstanceDetail is part of a PreflightInventory
hierarchy.

Property ? string Identifies the property described by this element.
Value ? element Identifies the value of the property. The semantics are PDL-

specific.

7.2.109 PreflightInventory
Note that the resources for Preflight are under development and subject to major changes in a future release of this
specification.

PreflightInventory resources, like PreflightAnalysis resources, record the results of a Preflight process. The
semantics for results are specific to the FileType of the for the file. The elements in this resource, detailed in the
table below, place the results in specific categories. The value of each of these elements is an array of
PreflightResultsDetail and PreflightInstance subelements. Within the PreflightInstance subelements, results are
further broken down into PreflightInstanceDetails.

Each PreflightResultsDetail or PreflightInstance subelement in the PreflightInventory hierarchy describes
the results of a comparison of the properties of the file against one PreflightConstraint in the PreflightProfile.

Resource Properties
Resource class: Parameter
Resource referenced by: -

Page 434

Page 434

Example Partition: -
Input of processes: Preflight
Output of processes: Preflight

Resource Structure
Name Data Type Description
ColorsResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements that

provides a color inventory.
DocumentResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements that

provides a document inventory.
FontsResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements that

provides a font inventory.
FileTypeResultsPool ? element A PreflightDetail and PreflightInstance subelement that provides

a file-type inventory.
ImagesResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements that

provides an image inventory.
PagesResultsPool ? element A pool of PreflightDetail and PreflightInstance subelements that

provides a page inventory.

7.2.110 PreflightProfile
Note that the resources for Preflight are under development and subject to major changes in a future release of this
specification.

PreflightProfile resources specify a set of constraints against which a file may be tested. The semantics for
constraints are specific to the FileType of the for the file. The elements in this resource, detailed in the table below,
place the results in specific categories. The value for each of these elements is an array of PreflightConstraint
subelements. Within the PreflightConstraint resources, the ConstraintValue element indicates allowable values
and the Status attribute indicates the error level (if any) to be flagged when exceptions to the constraints are
identified.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: Preflight
Output of processes: -

Resource Structure
Name Data Type Description
ColorsContraintsPool ? element A pool of PreflightConstraint subelements. Each element in this

pool identifies a specific constraint concerning colors against which
to test the file

DocumentConstraintsPool
?

element A pool of PreflightConstraint subelements. Each element in this
pool identifies a specific constraint concerning documents against
which to test the file

FontsConstraintsPool ? element A pool of PreflightConstraint subelements. Each element in this
pool identifies a specific constraint concerning fonts against which
to test the file

Page 435

Page 435

FileTypeConstraintsPool ? element A Preflight constraint. The Type attribute must have a value of
array and must contain string objects that identify the allowable
types of data in the file. The strings in the Value array must be
MIME-file types as recorded by the Internet Assigned Numbers
Authority (IANA). IANA has procedures for registering new file
types if needed.

ImagesConstraintsPool ? element A pool of PreflightConstraint subelements. Each element in this
pool identifies a specific constraint concerning images against
which to test the file

PagesConstraintsPool ? element A pool of PreflightConstraint subelements. Each element in this
pool identifies a specific constraint concerning pages against which
to test the file

Structure of PreflightConstraint Subelement
Name Data Type Description
AttemptFixupErrors ? boolean If true, the device performing preflight should attempt to fix errors

that are identified during preflight. Errors that are corrected are not
given a Status attribute. Default = false

AttemptFixupWarnings ? boolean If true, the device performing preflight should attempt to fix
warnings that are identified during preflight. Warnings that are
corrected are not given a Status attribute. Default = false

Constraint ? string Describes the specific file characteristic to be checked.
Status enumeration Possible values are:

Error – Values that violate the ConstraintValue specified are
flagged as Errors in PreflightDetail and PreflightInstanceDetail
elements.
Warning – Values that violate the ConstraintValue specified are
flagged as Warnings in PreflightDetail and PreflightInstanceDetail
elements.
Ignore – The constraint is ignored, and no PreflightDetail or
PreflightInstanceDetail elements are created for this constraint.
IgnoreValue – No comparison is made against the ConstraintValue.

ConstraintValue ? element Provides a value against which to test occurrences of the
characteristic in the file.
Note: The semantics of the ConstraintValue element depend on
the PDL characteristic in question.

7.2.111 Preview
The preview of the content of a surface. It can be used for the calculation of the ink coverage (PreviewType =
Separation) or as a preview of what is currently processed in a device (PreviewType = Viewable). When the
preview is of Type = Separation or SeparationRaw, [RP475]a gray value of 0 represents full ink, while a value of 255
represents no ink (for more information, see DeviceGray color model chapter 4.8.2. of the PostScript Language
Reference Manual).

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: PreviewType, Separation, SheetName, Side, TileID, WebName, RibbonName
Input of processes: InkZoneCalculation

Page 436

Page 436

Output of processes: PreviewGeneration

Resource Structure
Name Data Type Description
Compensation ? enumeration Compensation of the image to reflect the application of transfer curves

to the image. Possible values are:
Unknown – Default value.
None – No compensation.
Film – Compensated until film exposure.
Plate – Compensated until plate exposure.
Press – Compensated until press.

CTM ?
New in JDF 1.1

matrix Orientation of the Preview w.r.t. the coordinate system of the device
that is defined in Compensation. Default = identity matrix 1 0 0 1 0 0.
CTM is applied after any transformation defined within the referenced
image file, e.g. the transformation defined in the
CIP3PreviewImageMatrix of the PPF file.

Directory ?
New in JDF 1.1

URL Defines a directory where the files that are associated with this Preview
should be copied to or from. If Directory is not specified, the URL
must be completely specified.

PreviewFileType ?
New in JDF 1.2

enumeration The file type of the preview to be generated. Possible values are:
PNG: the default
CIP3Multiple: The format as defined in the CIP3 PPF spec. One or
more previews per CIP3 file are supported.
CIP3Single: The format as defined in the CIP3 PPF spec. Only one
preview per CIP3 file is supported.
The CIP3 formats were added in JDF 1.2 only for backwards
compatibility since many systems only support CIP3 format.

PreviewType[RP476]
Deprecated in JDF 1.2

enumeration Type of the preview. Possible values are:
Separation – Separated preview in medium
resolutionSeparatedThumbNail – Very low resolution separated
preview.
ThumbNail – Very low resolution RGB preview.
Viewable – RGB preview in medium resolution.
PreviewType is a partition key and should be used only as such.
[RP477]

PreviewUsage ?
New in JDF 1.2

enumeration The kind of preview to be generated. Possible values are:
Separation: separated preview in medium resolution. The default. .
Separation is generally used for InkZoneCalculation.
SeparationRaw – Separated preview in medium resolution. This is
identical to Separation except that no compensation has been
applied. . SeparationRaw is generally used for closed loop color
control.
SeparatedThumbNail: Very low resolution separated preview.
ThumbNail: Very low resolution rgb preview.
Viewable: rgb preview in medium resolution.
PreviewUsage defines the semantics of the preview. If both
PreviewType and PreviewUsage are specified, they must
match.[RP478]

Page 437

Page 437

Name Data Type Description
URL URL URL identifying the PNG or CIP3 PPF image file that represents this

Preview. This is a normally a URL to a MIME subpart (see Section
A.4.1).
Note: A preview will generally be partitioned by separation, unless it
represents an RGB viewable image or thumbnail. PPF files with
multiple images may contain multiple Separations. In this case, the
separation names defined in CIP3ADMSeparationNames define the
separations.

7.2.112 PreviewGenerationParams
Parameters specifying the size and the type of the preview.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: PreviewType, Separation, SheetName, Side, TileID, WebName, RibbonName
Input of processes: PreviewGeneration
Output of processes: -

Resource Structure
Name Data Type Description
AspectRatio ?
New in JDF 1.1

enumeration Policy that defines how to define the preview size if the aspect ratio
of the source and preview are different. Note that AspectRatio only
has an effect if Size is specified. One of:
CenterMax – Keep the aspect ratio and preview Size and center the
image so that the preview has missing pixels at both sides of the
larger dimension.
CenterMin – Keep the aspect ratio and preview Size and center the
image so that the preview has blank pixels at both sides of the
smaller dimension.
Crop – Keep the aspect ratio and modify the preview size so that the
image fits into a bounding rectangle defined by Size.
Expand – Keep the aspect ratio and modify the preview size so that
the smaller image dimension is defined by Size.
Ignore – Fill the preview completely, keeping Size, even if this
requires modifying the aspect ratio. The default.

PreviewType ?
Deprecated in JDF 1.1

enumeration The kind of preview to be generated. Possible values are:
Separation
Viewable
PreviewType is a partition key and should be used only as such.
[RP479]

Page 438

Page 438

Name Data Type Description
PreviewUsage ?
New in JDF 1.1
Modified in JDF 1.2

enumeration The kind of preview to be generated. Possible values are:
Separation: separated preview in medium resolution. The default.
SeparationRaw: separated preview in medium resolution with no
compensation.[RP480]
SeparatedThumbNail: Very low resolution separated preview.
ThumbNail: Very low resolution rgb preview.
Viewable: rgb preview in medium resolution.
PreviewUsage defines the semantics of the preview. If both
PreviewType and PreviewUsage are specified, they must
match.[RP481]

Resolution ? XYPair Resolution of the preview, in DPI.
Default = 50.8 50.8 dpi.

Size ? XYPair Size of the preview, in pixels. If this attribute is present, the
Resolution attribute evaluated according to the policy defined in
AspectRatio. If Size is not specified, it defaults to “0 0“ and must
be calculated using the Resolution attribute and the input image
size.

ImageSetterParams ?
New in JDF 1.1

refelement Details of the ImageSetting process. Needed for accessing
information about coordinate transformations that are performed by
the image setter hardware.

7.2.113 ProofingParams
Deprecated in JDF 1.2[RP482]
In JDF 1.2 and beyond, Proofing is a combined process. For details see ##ref application note proofing.[RP483]

This resource specifies the settings needed for all proofing operations, including both “hard” or “soft” proofing, of
color and imposition proofs.Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes: Proofing, SoftProofing
Output of processes: -

Resource Structure
Name Data Type Description
ColorType ? Enumeration Color quality of the proof. Possible values are:

Monochrome – Black and white.
BasicColor – Color does not match precisely. This implies the
absence of a color matching system.
MatchedColor – Color is matched to the output of the press using a
color matching system.

DisplayTraps ? boolean If true, the trap networks are shown in the proof. Default = false
HalfTone ? boolean Specifies whether the proof should emulate halftone screens.

Default = false

Page 439

Page 439

Name Data Type Description
ImageViewingStrategy ? string Identifies which images will be displayed during the SoftProofing

process. Possible values are:
NoImages – Default value.
OmitReference – Displays only images actually embedded in the
file.
UseProxies – Displays images embedded in the file and proxy
versions of referenced data.
UseReplacements – Displays embedded images plus the full
resolution version of referenced images.

ManualFeed ?
New in JDF 1.1

boolean Indicates whether the media will be fed manually. Default = false

ProofRenderingIntent ?
New in JDF 1.1

enumeration Identifies the rendering intents associated with the proof. Possible
ICC-defined rendering intent values are:
Saturation
Perceptual – The default.
RelativeColorimetric
AbsoluteColorimetric

ProofType ? enumeration Describes the type of the proof. Possible values are:
None – Default value. Not a proof or the type is unknown.
Page – Page proof
Imposition – Imposition proof.

Resolution ? XYPair Resolution of the output.
FileSpec ? refelement A FileSpec resource pointing to an ICC profile that describes the

proofer device. The ResourceUsage attribute of the FileSpec
must be “ProoferProfile”.

Media ? refelement Describes the media to be used.

7.2.114 PSToPDFConversionParams
This resource contains the parameters that control the conversion of PostScript streams to PDF pages.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes: Preflight
Output of processes: -

Resource Structure
Name Data Type Description
ASCII85EncodePages ? boolean If true, binary streams such as page contents streams, sampled

images, and embedded fonts are ASCII85-encoded, resulting in a
PDF file that is almost pure ASCII. If false, they are not, resulting
in a PDF file that may contain substantial amounts of binary data.
Default = false

Page 440

Page 440

Name Data Type Description
AutoRotatePages ? enumeration Allows the device to try to orient pages based on the predominant

text orientation. Only used if the file does not contain
“%%ViewingOrientation”, “%%PageOrientation”, or
“%%Orientation” DSC comments. If the file does contain such
DSC comments, it honors them. “%%ViewingOrientation” takes
precedence over others, then “%%PageOrientation”, then
“%%Orientation”. Possible values are:
None – Turns AutoRotatePages off.
All – Takes the predominant text orientation across all pages and
rotates all pages the same way.
PageByPage – Does the rotation on a page-by-page basis, rotating
each page individually. Useful for documents that use both portrait
and landscape orientations. Default = None

Binding ? enumeration Determines how the printed pages would be bound. Specify Left for
left binding or Right for right binding. Default = Left

CompressPages ? boolean Enables compression of pages and other content streams like forms,
patterns and Type 3 fonts. If true, use Flate compression.

DefaultRenderingIntent
?

enumeration Selects the rendering intent for the current job. Possible values are:
Default – The default.
Perceptual
Saturation
RelativeColorimetric
AbsoluteColorimetric
See the Portable Document Format Reference Manual for more
information on rendering intent.

DetectBlend ? boolean Enables or disables blend detection. If true, and if PDFVersion is
1.3 or higher, then blends will be converted to smooth shadings.
Default = true

DoThumbnails ? boolean If true, thumbnails are created. Default = true
EndPage ? integer Number that indicates the last page that is displayed when the PDF

file is viewed. EndPage must equal be to anything less than
StartPage or be greater than or equal to 1. If not, then it must be
greater than or equal to StartPage. When combined with
StartPage, EndPage selects a range of pages to be displayed. The
entire file may or may not be distilled, but only StartPage to
EndPage pages, inclusive, are opened and viewed in a PDF
viewing application.

ImageMemory ?
Deprecated in JDF1.2

integer Number of bytes in the buffer used in sample processing for color,
grayscale, and monochrome images. Its contents are written to disk
when the buffer fills up.
This is an internal application setting and not a parameter setting.

InitialPageSize ?
New in JDF 1.1

XYPair Defines the initial page dimensions assumed by the PS-to-PDF
converter in points. This will be overridden by any PageSize page
device parameter found in the PostScript stream. The use of this
attribute is strongly encouraged if the PS-to-PDF converter may be
used to process Encapsulated PostScript files.
Default = system specific

Page 441

Page 441

Name Data Type Description
InitialResolution ?
New in JDF 1.1

XYPair Defines the initial horizontal and vertical resolution of the PS-to-
PDF converter in DPI. This will be overridden by any
HWResolution page device parameter found in the PostScript
stream. The use of this attribute is strongly encouraged if the PS-to-
PDF converter may be used to process Encapsulated PostScript
files.
Default = system specific

OverPrintMode ? integer Controls the overprint mode strategy of the job. Set to 0 for full
overprint or 1 for non-zero overprint. For more information, see
http://partners.adobe.com/asn/developer/PDFS/TN/5044.ColorSep_
Conv.pdf

Optimize ? boolean If true, the PS-to-PDF converter optimizes the PDF file. See the
Portable Document Format Reference Manual for more information
on optimization. Default = true

PDFVersion ? double Specifies the version number of the PDF file produced. Possible
values include all legal version designators, e.g., 1.2, 1.3, 1.4.

StartPage ? integer Sets the first page that is be displayed when the PDF file is opened
with a PDF viewing application. StartPage must be greater than or
equal to 1. If EndPage is not -1, then it must be greater than or
equal to StartPage.

AdvancedParams ? element Advanced parameters which control how certain features of
PostScript are handled.

PDFXParams ?
New in JDF 1.2

element[GCM484] PDF/x parameters.

ThinPDFParams ? element Parameters that control the optional content or form of PDF files
that will be created.

Structure of AdvancedParams Subelement
Name Data Type Description
AllowPSXObjects =
“true”
New in JDF 1.2

boolean[GCM485] If true, allows PostScript XObjects

AllowTransparency =
“false”
New in JDF 1.2

boolean[GCM486] If true, allows transparency in the PDF

AutoPositionEPSInfo ?
Modified in JDF1.1A

boolean If true, the process automatically resizes and centers EPS
information on the page. Default = true

EmbedJobOptions =
“false”
New in JDF 1.2

boolean[GCM487] If true, the PDF settings used to create the PDF are embedded in the
PDF.

EmitDSCWarnings ? boolean If true, warning messages about questionable or incorrect DSC
comments appear during the distilling of the PS file. Default = false

Page 442

Page 442

Name Data Type Description
LockDistillerParams ?
Modified in JDF1.2

boolean If true, any PSToPDFConversionParams settings configured
by the PS content are ignored. If false, the incoming PS content that
specifies any of the PSToPDFConversionParams settings
override those defined in
PSToPDFConversionParams. Default = true.
Implementation warning: In JDF 1.1A and previous versions, the
definition of LockDistillerParams was accidentally inverted. It is
now consistent with the postscript setdistillerparams operator

ParseDSCComments ? boolean If true, the process parses the DSC comments for any information
that might be helpful for converting the file or for information that
must be stored in the PDF file. If false, the process treats the DSC
comments as pure PS comments and ignores them. Default = true

ParseDSCCommentFor
DocInfo ?

boolean If true, the process parses the DSC comments in the PS file and
extracts the document information. This information is recorded in
the Info dictionary of the PDF file. Default = true

PassThroughJPEGImag
es = “false”
New in JDF 1.2

boolean[GCM488] If true, JPEG images are passed through without re-compressing
them.

PreserveCopyPage ? boolean If true, the copypage operator of PostScript Level 2 is maintained.
If false, the PostScript Level 3 definition of copypage operator is
used.
In PostScript Levels 1 and 2, the copypage operator transmits the
page contents to the current output device (similar to showpage).
However, copypage does not perform many of the reinitializations
that showpage does.
Many PostScript Level 1 and 2 programs used the copypage
operator to perform such operations as printing multiple copies and
implementing forms. These programs produce incorrect results
when interpreted using the Level 3 copypage semantics. This
attribute provides a mechanism to retain Level 2 compatibility for
this operator.
Default = true

PreserveEPSInfo ? boolean If true, preserves the EPS information in the PS file and stores it in
the resulting PDF file. Default = true

PreserveHalftoneInfo ?
New in JDF 1.1

boolean If true, passes halftone screen information (frequency, angle, and
spot function) into the PDF file. If false, halftone information is not
passed in. Default = false

PreserveOverprint-
Settings ?
New in JDF 1.1

boolean If true, Distiller passes the value of the setoverprint operator through
to the PDF file. Otherwise, overprint is ignored. Default = true

PreserveOPIComments
?

boolean If true, encapsulates Open Prepress Interface (OPI) low resolution
images as a form and preserves information for locating the high
resolution images. Default = true

Page 443

Page 443

Name Data Type Description
TransferFunctionInfo ?
New in JDF 1.1

enumeration Determines how transfer functions are handled. Possible values are:
Preserve – Transfer functions are passed into the PDF file.
Remove – Transfer functions are ignored. They are neither applied
to the color values nor passed into the PDF file.
Apply – Transfer functions are used to modify the data that is
written to the PDF file, instead of writing the transfer function itself
to the file.
Default = Preserve

UCRandBGInfo ?
New in JDF 1.1

enumeration Determines whether the arguments to the PostScript commands
“setundercolorremoval” and “setblackgeneration” are passed into
the PDF file. Possible values are:
Preserve – The arguments are passed into the PDF file.
Remove – The arguments are ignored.
Default = Preserve

UsePrologue ? boolean If true, the process must prepend a PostScript prologue file to the
job and append a PostScript epilog file to the job. Such files are
used to control the PostScript environment for the conversion
process. The expected location and allowable contents for these
files is defined by the process implementation. Default = false

Structure of PDFXParams Subelement
New in JDF 1.2
Name Data Type Description
PDFX1aCheck = “false” boolean If true, checks compliance with the PDF/X-1a standard (ISO 15930-

1:2001)
PDFX3Check = “false” boolean If true, checks compliance with the PDF/X-3 standard (ISO 15930-

3:2002)
PDFXCompliantPDFOnl
y =”false”

boolean If true, produces a PDF document only if PDF/X compliance tests
are passed.

PDFXNoTrimBoxError =
”true”

boolean If true and both TrimBox and ArtBox entries are not specified in the
page object of the PostScript document, the condition is reported as
an error.

PDFXTrimBoxToMedia
BoxOffset = “0 0 0 0”

rectangle If both the TrimBox and ArtBox entries are not specified in the page
object of the PostScript document, TrimBox is set to MediaBox
with offsets. Offsets are specified as [left right top bottom]. All
numbers must be greater than or equal to 0.0. TrimBox will be
completely inside MediaBox.

PDFXSetBleedBoxToM
ediaBox = “true”

boolean If true and the BleedBox entry is not specified in the page object of
the PostScript document, BleedBox is set to MediaBox.

PDFXBleedBoxtoTrimB
oxOffset = “0 0 0 0”

rectangle If the BleedBox entry is not specified in the page object of the
PostScript docuement, BleedBox is set to TrimBox with offsets.
Offsets are specified as [left right top bottom]. All numbers must be
greater than or equal to 0.0. BleedBox will be completely in outside
TrimBox.

Page 444

Page 444

PDFXOutputIntentProfil
e

string If the PostScript document does not specify an output intent name,
then this value is used. Possible values are
None – Used when it is required that the PostScript document
specifies an intent, allows compliance checking to fail.
Euroscale Coated v2
Euroscale Uncoated v2
Japan Color 2001 Coated
Japan Color 2001 Uncoated
Japan Standard v2
Japan Web Coated (Ad)
U.S. Sheetfed Coated v2
U.S. Sheetfed Uncoated v2
U.S. Web Coated (SWOP) v2
U.S. Web Uncoated v2
Photoshop 4 Default CMYK
Photoshop 5 Default CMYK

PDFXOutputCondition string The string is an optional comment which is added to the PDF file. It
describes the intended printing condition in a form that should be
meaningful to a human operator at the site receiving the PDF
document.

PDFXRegistryName URL Indicates a location at which more information regarding the
registry that defines the OutputConditionIdentifier may be obtained.

PDFXTrapped enumeration If a PostScript document does not specify a Trapped state, then the
value provided here is used. Unknown should be used for
workflows that require that the document specify a Trapped state
and for which compliance checking should fail if it is not present in
the document.
Can be one of the following values:
Unknown
False
True[GCM489]

Structure of ThinPDFParams Subelement
Name Data Type Description
FilePerPage ? boolean If true, the process generates 1 PDF file per page. Default = false
SidelineEPS ?
New in JDF 1.2

boolean[GCM490] If true embedded EPS files are not converted, but are stored in
external files in the same location as the PDF itself. Default = false

SidelineFonts ? boolean If true, font data are stored in external files during PDF generation.
Default = false

SidelineImages ? boolean If true, image data are stored in an external stream during the PDF
Generation phase. This prevents large amounts of image data from
having to be passed through all phases of the code generation
process. Default = false

Page 445

Page 445

7.2.115 QualityControlParams
This set of parameters identifies how the QualityControl process should operate. QualityControlParams defines
the generic set of parameters for the quality control process. The specific measurement conditions are defined in
specialized subelements such as BindingQualityParams.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: QualityControl
Output of processes: -

Resource Structure
Name Data Type Description

TimeInterval? duration Time interval between individual tests.

SampleInterval? Integer Interval in number of samples between tests.
BindingQualityParams?

element Specification of the definition parameters of one individual
resource.

Structure of the BindingQualityParams element

Name Data Type Description
FlexValue? double Flex quality parameter given in [N/cm]

PullOutValue? double Pull out quality parameter given in [N/cm]

7.2.116 QualityControlResult
This set of parameters returns results of a QualityControl process. QualityControlResult defines the generic
set of results from the quality control process. The specific measurements are returned in specialized subelements
such as BindingQualityParams. Additional detailed quality control result types are anticipated in future versions of
the JDF specification.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: QualityControl
Output of processes: -

Resource Structure
Name Data Type Description

Failed ? integer Total number of failed measurements.

Passed ? integer Total number of passed measurements.

BindingQualityParams
?

refElement Reference to the measurement setup definition.

FileSpec ? refElement Location of an external file that contains details of the quality
control measurement.

QualityMeasuremen
t *

element One individual measurement result.

Page 446

Page 446

Structure of the QualityMeasurement element
QualityMeasurement elements describe an individual measurement.

Name Data Type Description

End?
dateTime Date and Time of the end of the measurement. If not specified, the

value od Start is applied.

Failed ? integer Total number of failed measurements.

Passed ? integer Total number of passed measurements.

Condition?
NMTOKEN Condition of the tested component. If the Component passed the test

but the test itself destroyed the Component, the value should be set
to ???

Start?
dateTime Date and Time of the start of the measurement. If not specified, the

measurement time is not known.

BindingQualityMeasur
ement ?

element Details of the BindingQualityMeasurement.

Structure of the BindingQualityMeasurement element

Name Data Type Description
FlexValue? double Flex quality parameter result [N/cm]

PullOutValue? double Pull out quality parameter result [N/cm]

7.2.117 RegisterMark
Defines a register mark, which can be used for setting up and monitoring color registration in a printing process. It can
also be used to synchronize the paper position in a paper path. The position and rotation of each register mark can be
specified with the help of the following attributes. It is important that the register marks are defined in such a way that
their centers are on the point of origin of the coordinate system, as otherwise they are not positioned properly.

Resource Properties
Resource class: Parameter
Resource referenced by: Surface
Example Partition: -
Input of processes: Any printing process
Output of processes: -

Resource Structure
Name Data Type Description
Center XYPair Position of the center of the register mark in the coordinates of the

MarkObject that contains this mark.
MarkType ? NMTOKEN Type of register mark. Possible values include:

Arc
Circle
Cross

MarkUsage ?
New in JDF 1.1

enumerations Specifies the usage of the RegisterMark. Allowed values are:
Color – The mark is used for separation color registration.
PaperPath – The mark is used for paper path synchronization.

Page 447

Page 447

Name Data Type Description
Rotation ? double Rotation in degrees. Positive graduation figures indicate counter-

clockwise rotation; negative figures indicate clockwise rotation.
SeparationSpec * element Set of separations to which the register mark is bound.

7.2.118 RegisterRibbon
New in JDF 1.1
Description of register ribbons. For the register ribbon the length should be given. There are two parameters:

Figure 7.17Parameters and Coordinate System for BlockPreparation

Resource Properties
Resource class: Consumable
Resource referenced by: BlockPreparationParams
Example Partition: -
Input of processes: -

Resource Structure
Name Data Type Description
LengthOverall number Overall length of the register ribbon, i.e., 1+2 in the picture above.
Material ? string Material of the register ribbon. Default =system specified.
RibbonColor ? NamedColor Color of the ribbon. Default =system specified.

Page 448

Page 448

Name Data Type Description
RibbonEnd ? NMTOKEN End of the Ribbon. Values include:

Cut
CutSealed
Knot
SealedOffset – The ribbon is sealed a distance from the cut. Default
=system specified.

VisibleLength number Length of the register ribbon which will be seen when opening the
book, i.e., 2 in picture above.

7.2.119 RenderingParams
This set of parameters identifies how the Rendering process should operate. Specifically, these parameters define
the expected output of the ByteMap resource that the Rendering process creates.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes: Rendering
Output of processes: -

Resource Structure
Name Data Type Description
BandHeight ? integer Height of output bands expressed in lines. For a frame device, the band

height is simply the full height of the frame.
Default = device specific

BandOrdering ? enumeration Indicates whether output buffers are generated in BandMajor or
ColorMajor order. Possible values are:
ColorMajor – Only an option when dealing with non-interleaved data.
Default = device specific

BandWidth ? integer Width of output bands expressed in pixels.
Default = device specific

ColorantDepth ? integer Number of bits per colorant. Determines whether the output is bitmaps
or bytemaps. A value of 1 implies that a bitmap is used and that halftone
screening is performed by the interpretation process.
Default = device specific

Interleaved ? boolean If true, the resulting colorant values are interleaved and BandOrdering
is ignored. Default = device specific

AssetCollectionPara
ms
The
AssetCollectionPara
ms resource defines the
details of the
AssetCollection
process.

Resource
Properties
Resource class:
Resource referenced

refelement Optional controls for overprint substitutions.
Defaults to no automated overprint generation.

Page 449

Page 449

Name Data Type Description
BandHeight ? integer Height of output bands expressed in lines. For a frame device, the band

height is simply the full height of the frame.
Default = device specific

BandOrdering ? enumeration Indicates whether output buffers are generated in BandMajor or
ColorMajor order. Possible values are:
ColorMajor – Only an option when dealing with non-interleaved data.
Default = device specific

BandWidth ? integer Width of output bands expressed in pixels.
Default = device specific

ColorantDepth ? integer Number of bits per colorant. Determines whether the output is bitmaps
or bytemaps. A value of 1 implies that a bitmap is used and that halftone
screening is performed by the interpretation process.
Default = device specific

Interleaved ? boolean If true, the resulting colorant values are interleaved and BandOrdering
is ignored. Default = device specific

by:
Example Partition:
Input of processes:
Output of processes:

Resource
Structure

Name Data Type Description
FileSpec * refelement Specification of the paths to search when trying to locate the

referenced data. The ResourceUsage attribute must be
“SearchPath”.

AutomatedOverprint-
Params ?
ObjectResolution + refelement Elements which define the resolutions to render the contents at. More

than one element may be used to specify different resolutions for
different SourceObject types. Default = device specific

Media ?
New in JDF 1.1

refelement This resource provides a description of the physical media which will be
marked. The physical characteristics of the media may affect decisions
made during Rendering.

7.2.120 ResourceDefinitionParams
This set of parameters identifies how the ResourceDefinition process should operate. Specifically, these
parameters define how default parameters of applications and the input resource should be combined.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: ResourceDefinition
Output of processes: -

Page 450

Page 450

Resource Structure
Name Data Type Description
DefaultID ?
Deprecated in JDF 1.1

NMTOKEN JDF ID of the default resource. If missing, it is assumed that the file
specified by DefaultJDF contains only a JDF resource element, not
a complete JDF.

DefaultJDF ? URL Link to a JDF resource that defines preset values.
DefaultPriority ? enumeration Defines whether preset values of the application or of the Resource

specified in DefaultJDF have priority. Possible values are:
Application – The application default settings are used to fill the
resource.
DefaultJDF – The Settings specified in DefaultJDF are applied.
The default.

ResourceParam +
New in JDF 1.1

refelement Specification of the definition parameters of one individual
resource.

Structure of the ResourceParam Subelement
Name Data Type Description
DefaultID ? NMTOKEN JDF ID of the default resource. If missing, it is assumed that the file

specified by DefaultJDF contains only a JDF resource element, not
a complete JDF.

DefaultJDF ? URL Link to a JDF resource that defines preset values. Defaults to the
DefaultJDF specified in ResourceDefinitionParams.

DefaultPriority ? enumeration Defines whether preset values of the application or of the Resource
specified in DefaultJDF have priority. Possible values are:
Application
DefaultJDF
Defaults to the DefaultPriority specified in ResourceDefinition-
Params.

7.2.121 Retention
This element describes how long an asset must be maintained by a device.

Resource Properties
Resource class: element
Resource referenced by: ##ref FileSpec
Example Partition: -
Input of processes:
Output of processes: -

Resource Structure
Name Data Type Description
Duration =”PT0M” duration Indicates the maximum duration that the device should retain the

asset after the time specified by MinDuration or Until. If neither
Duration, MinDuration nor Until are specified, the asset should be
deleted at the end of the process.

MinDuration =”PT0M” duration Indicates the minimum duration that the device should retain the
asset after the process that uses the asset completes.

New in JDF 1.1

Page 451

Page 451

Name Data Type Description
Priority=”0” integer Value between 0 and 100 that specifies the order in which assets

will be deleted when the values of Duration, MinDuration or
Until cannot be honored, e.g. when local storage runs low. Assets
with Priority=0 will be deleted first.

Until ? dateTime Indicates when the device should delete the asset.[RP491]

7.2.122 RingBindingParams
This resource describes the details of the RingBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: RingBinding
Output of processes: -

Resource Structure
Name Data Type Description
BinderColor ? NamedColor Color of the ring binder.
BinderMaterial ? NMTOKEN The following describe RingBinding binder materials used.

Values include:
Cardboard – Cardboard with no covering.
ClothCovered – Cardboard with cloth covering.
PVC – Solid PVC.
PVCCovered – Cardboard with PVC covering.

BinderName ? string The name of the binder manufacturer and the name of the specific
item.

RingDiameter ? double Diameter of the rings in points.
RingMechanic ? boolean If true, a hand lever is available for opening. Default = false
RingShape ? NMTOKEN The following RingBinding shapes are used:

Round – The default.
Oval
D-shape
SlantD

RingSystem ?
Deprecated in JDF 1.1

enumeration The following ring binding systems are used:
2HoleEuro – in Europe
3HoleUS – in North America
4HoleEuro – in Europe
In JDF 1.2 and Beyond, use the value implied by
HoleMakingParams/@HoleType.[RP492]

RivetsExposed ? boolean The following RingBinding choice describes mounting of ring
mechanism in binder case.
If true, the heads of the rivets are visible on the exterior of the
binder. If false, the binder covering material covers the rivet
heads.
Default = true

SpineColor ? NamedColor Color of the binders spine.

Page 452

Page 452

Name Data Type Description
SpineWidth ? double The spine width is determined by the final height of the block of

sheets to be bound.
ViewBinder ? NMTOKEN The following RingBinding clear vinyl outer-wrap types are

used on top of a colored base wrap:
Embedded – Printed material is embedded by sealing between the
colored and clear vinyl layers during the binder manufacturing.
Pocket – Binder is designed so that Printed material may be
inserted between the color and clear vinyl layers after the binder
is manufactured.

HoleMakingParams ? refElement Details of the holes in RingBinding.[RP493]

7.2.123 RunList
RunList resources describe an ordered set of LayoutElement or ByteMap elements. Ordering and structure are
defined using the generic partitioning mechanisms as described in 3.9.2 Description of Partitionable Resources.

RunList resources are used whenever an ordered set of page descriptions elements are required. Depending on the
process usage of a RunList, only certain Types of LayoutElement may be valid. For example, a pre-RIP imposition
process requires LayoutElement elements of Type page or document, whereas a post-RIP imposition process requires
ByteMap elements. The usage is detailed in the descriptions of the processes that use the RunList resource.

RunList resources allow structuring of multiple Pages into Documents. Multiple Documents that have a joint
context may be grouped into Sets.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: [RP494] PartVersion, Run, RunPage, Separation
Input of processes: RunLists are used as input resources by most processes that act on content data
Output of processes: RunLists are used as output resources by most processes that act on content data

Resource Structure
Name Data Type Description
ComponentGranularity=”D
ocument”
New in JDF 1.2

enumeration Specifies which grouping of input LayoutElement PDL pages
define the equivalent of an individual output Component
instance for processing in a variable data job. For instance all
pages defined between end of set markers would be stitched in a
combined DigitalPrinting and Stitching node if
ComponentGranularity=”Set”. One of:
Page - each page in the RunList defines a new Component.
Document - each document as defined by an implicit PDL defined
document break or explicit EndofDocument defines a new
Component for binding.
Set - each set as defined by an implicit PDL defined set break or
explicit EndofSet defines a new Component for binding.
All – The complete RunList, regardless of Document or Set
breaks defines a new Component for binding.[RP495]

Directory ? URL Defines a directory where the files that are associated with this
Runlist should be copied to or from. If Directory is not
specified, all FileSpec elements in the RunList must be
completely specified.[RP496]

Page 453

Page 453

Name Data Type Description
DocCopies ?
New in JDF 1.1

integer Number of instance document copies that this RunList
represents. Specifying DocCopies is equivalent to repeating the
sequence of RunList leaves between EndOfDocument = true
for a total of DocCopies times. Default = 1.
Note: It is illegal to specify DocCopies with different values of
in various leaves of a RunList representing the same instance
document.

DocNames ? NameRange-
List

A list of named documents in a multi-document file that supports
named access to individual documents. DocNames defaults to
all documents. If DocNames occurs in the RunList, Docs is
ignored if it is also present.

Docs ? IntegerRangeL
ist

0-based list of document indices in a multi-document file
specified by the LayoutElement element.

EndOfDocument ?

boolean If true, the last page in the RunList is the last page of an instance
document. The precise handling of instance-document changes is
defined in the InsertSheet resource. If the RunList references a
PDL that supports internal instance documents,
EndOfDocument may be implied from the PDL. Default = false.
The last RunList partition leaf of a RunList always has an
implied EndOfDocument =”true”.[RP497]

EndOfSet ?
New in JDF 1.1

boolean If true, the last page in the RunList is the last page of a set of
instance documents. The precise handling of instance-document
boundaries is defined in the InsertSheet resource.If the
RunList references a PDL that supports internal sets, EndOfSet
may be implied from the PDL.
Default = false
The last RunList partition leaf of a RunList always has an implied
EndOfSet =”true”[RP498]

FirstPage ? integer First page in the document that is described by this RunList. This
attribute is generally used to describe preseparated files.
Default = 0

IsPage ? boolean If true, the individual RunList element defines one or more page
slots, e.g., for filling PlacedObjects. If false, the first parent
partitioned RunList element with IsPage = true defines the page
level. Defaults to true. In general, IsPage will be false for
separations of a preseparated RunList.

LogicalPage ?
Modified in JDF 1.1

integer The logical page number of the first page in a RunList. This
attribute may be used to retain logical page indices when a
partitioned RunList is spawned. It defaults to 1 plus the last page
of the previous sibling RunList partition. If the RunList element is
the first partition LogicalPage defaults to 0. Note that is an error
to specify LogicalPage to be less than the number of previously
defined logical pages, since this defines overlapping pages within
the RunList.

NDoc ?
New in JDF 1.1
Deprecated in JDF 1.2

integer Total number of instance documents that are defined by the
RunList. If NDoc is not specified, it defaults to all instance
documents in the partitioned RunList elements that make up the
RunList. In JDF 1.2 and beyond, only Docs is supported.[RP499]

Page 454

Page 454

Name Data Type Description
NPage ? integer Total number of pages (placed object slots or RunList elements

with IsPage = true) that are defined by the RunList. If NPage
is not specified, it defaults to all pages in the partitioned RunList
elements that make up the RunList. If the RunList describes
multiple instance documents or document sets, NPage refers to
the total number of pages in all instance documents and sets.

NSet ?
New in JDF 1.1
Deprecated in JDF 1.2

integer Total number of instance document sets that are defined by the
RunList. If NSet is not specified, it defaults to all instance
document sets in the partitioned RunList elements that make up
the RunList. In JDF 1.2 and beyond, only Sets is
supported.[RP500]

PageCopies ?
New in JDF 1.1

integer Number of page copies that this RunList represents. Specifying
PageCopies is equivalent to repeating the RunList leaves
representing each page for a total of PageCopies times. Default
= 1. Note that pages specified by PageCopies are always assumed
uncollated when calculating the index in the logical RunList,
e.g., PageCopies = 2 would result in a logical page sequence of
0 0 1 1 2 2, etc.

PageListIndex ? IntegerRang
eList

List of the indices of the PageData elements of the ##refPageList
specified in the LayoutElement referenced by this RunList. If not
specified, the complete PageListIndex specified in the LayoutElement
referenced by this RunList is applied.[RP501]

PageNames ? NameRange-
List

A list of named pages in a multi-page file that supports named
access to individual pages. PageNames defaults to all pages.
If PageNames occurs in the RunList, FirstPage, Npage,
SkipPage and Pages must be ignored if any of them is also
present.

Pages ?
Modified in JDF 1.1A

IntegerRangeL
ist

0-based list of indices in the documents specified by the
LayoutElement element and the Docs, DocNames, Sets and
SetNames attribute. If Pages is present, FirstPage, and
SkipPage must be ignored. If neither Pages, FirstPage or
SkipPage are present, all pages in the LayoutElement are
selected.

RunTag ?
New in JDF 1.1

NMTOKEN Tag of a partition of a resource other than the RunList which is
partitioned by RunTags. The partition matches if any of the
entries in the RunTags list matches RunTag. Multiple entries in
a RunList may have the same RunTag. If the RunList
references a PDL that supports internal labels, RunTag may be
implied from the PDL.

Page 455

Page 455

Name Data Type Description
SetCopies ?
New in JDF 1.1

integer Number of instance document set copies that this RunList
represents. Specifying SetCopies is equivalent to repeating the
sequence of RunList leaves between EndOfSet = “true” for a
total of SetCopies times. Default=1. Note that it is illegal to
specify SetCopies with different values of in various leaves of a
RunList representing the same instance document.

SetNames ?
New in JDF 1.1

NameRange-
List

A list of named document sets in a multi-document set file that
supports named access to individual documents.
SetNames defaults to all document sets specified by Sets. If
SetNames occurs in the RunList, Sets is ignored if it is also
present.
SetNames is only valid if
LayoutElement::ElementType=”MultiSet”.

Sets ?
New in JDF 1.1

IntegerRangeL
ist

0-based list of document set indices in a multi-document set file
specified by the LayoutElement element.
If not present all document sets are selected.
Sets is only valid if LayoutElement::ElementType=”MultiSet”.

SkipPage ? integer Used when the RunList comprises every Nth page of the file.
SkipPage indicates the number of pages to be skipped between
each of the pages that comprise the RunList element. This is
generally used to describe preseparated files, or to select only
even or odd pages. Default = 0
Note: SkipPage is therefore 3 (4 Separations -> skip 3) in a
CMYK separated file.

Sorted ? Boolean Specifies whether the elements in the RunList are sorted in the
document reader order. Default = true.

ByteMap ? Refelement Describes the page or stream of pages. Only one of ByteMap,
InterpretedPDLData or LayoutElement must be specified in
one RunList element. If neither ByteMap, InterpretedPDLData
nor LayoutElement are specified, the RunList entry specifies
empty content.

DynamicInput * Element Replacement text for a DynamicField element.
This information defines the contents of a dynamic mark on the
Layout for automated page layout. The mark must be filled using
information from the document runlist, such as the bar code of the
recipient. This information varies with the document content.
DynamicInput elements have one optional Name attribute that,
when linked to the ReplaceField attribute of the DynamicField
element, defines the string that should be replaced.

InsertSheet * Refelement Describes how Sheets and Surfaces may be completed and
optional media which may be inserted at the beginning or end of
this RunList element.

InterpretedPDLData ? Refelement Represents the results of the PDL Interpretation process. Only
one of ByteMap, InterpretedPDLData or LayoutElement must
be specified in one RunList element. If neither ByteMap,
InterpretedPDLData nor LayoutElement are specified, the
RunList entry specifies empty content.

Page 456

Page 456

Name Data Type Description
LayoutElement ? refelement Describes the document, page or image. Only one of ByteMap,

InterpretedPDLData or LayoutElement must be specified in
one RunList element. If neither ByteMap, InterpretedPDLData
nor LayoutElement are specified, the RunList entry specifies
empty content.

Structure of a DynamicInput Subelement
DynamicInput defines the contents of a dynamic mark on a Surface resource for automated page layout. The
mark must be filled using information from the document runlist, such as the bar code of the recipient. This
information varies with the document content. For details on dynamic marks, see the DynamicField element
description in Section 7.2.141 Surface.

Name Data Type Description
Name ? string Label that must match the ReplaceField attribute of the appropriate

DynamicField element
- text Defines the text string that should be inserted as a replacement for

the text defined in ReplaceField of a DynamicField element.

Examples of partitioning of a RunList
The following examples illustrate how a RunList can be structured using partitioning Mechanisms. Note that the
partitioning of a RunList often generates the values necessary to evaluate the partitioning of other resources, e.g., the
RunIndex into the RunList. Thus, the order in which the RunLists appear in the XML document is significant. It is
interesting to note that the “Run“ partitioning key has a string value, and is not required to be numeric.

Simple unstructured Single-File Runlist
This example specifies all pages contained in “in/colortest.pdf”.
<RunList ID="Link0003" Pages="0~-1" Class="Parameter" Status="Available">
 <LayoutElement>
 <FileSpec URL="File://in/colortest.pdf"/>
 </LayoutElement>
</RunList>

Simple Multi-File unseparated RunList using RunList::Directory
This example specifies all pages contained in “File1.pdf” and “File2.pdf”, which are located in the directory “//Dir”
that is specified in RunList::Directory.

<RunList ID="Link0003" Class="Parameter" Status="Available" PartIDKeys=“Run“
Directory=”File://Dir/”>
 <RunList Run=“1“ Pages="0~-1">
 <LayoutElement>
 <FileSpec URL="File1.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Run=“2“ Pages="0~-1">
 <LayoutElement>
 <FileSpec URL="File2.pdf"/>
 </LayoutElement>
 </RunList>
</RunList>

Simple Multi-File unseparated RunList with independent spawning
This example specifies the first five pages contained in File1.pdf and File2.PDF. File2.pdf has been spawned and is
being processed individually.

<RunList ID="Link0003" Class="Parameter" Status="Available" PartIDKeys=“Run“>
 <RunList Run=“1“ Pages="0~4">
 <LayoutElement>
 <FileSpec URL="File://File1.pdf"/>

Page 457

Page 457

 </LayoutElement>
 </RunList>
 <RunList Run=“2“ SpawnStatus=“SpawnedRW“ Pages="0~-1">
 <LayoutElement>
 <FileSpec URL="File://File2.pdf"/>
 </LayoutElement>
 </RunList>
</RunList>

This is the corresponding spawned RunList. Note the LogicalPage attribute, which specifies the number of skipped pages.

<RunList ID="Link0003" Class="Parameter" Status="Available" PartIDKeys=“Run“ Run=“2“
 LogicalPage=“5“ Pages="0~-1">
 <LayoutElement>
 <FileSpec URL="File://File2.pdf"/>
 </LayoutElement>
</RunList>

Simple Multi-File separated RunList
This example specifies all pages contained in Presep.pdf and following that, pages 1, 3, and 5 of each preseparated file.

<RunList ID="Link0003" Class="Parameter" Status="Available" PartIDKeys=“Run Separation“>
 <RunList Run=“1“ SkipPage=“3“>
 <LayoutElement>
 <FileSpec URL="File://Presep.pdf"/>
 </LayoutElement>
 <RunList Separation=“Cyan“ FirstPage=“0" IsPage=“false“/>
 <RunList Separation=“Magenta“ FirstPage=“1" IsPage=“false“/>
 <RunList Separation=“Yellow“ FirstPage=“2" IsPage=“false“/>
 <RunList Separation=“Black“ FirstPage=“3" IsPage=“false“/>
 </RunList>
 <RunList Run=“2“ Pages="1 3 5" IsPage=“true“>
 <RunList Separation=“Cyan“ IsPage=“false“>
 <LayoutElement>
 <FileSpec URL="File://Cyan2.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Separation=“Magenta“ IsPage=“false“>
 <LayoutElement>
 <FileSpec URL="File://Magenta2.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Separation=“Yellow“ IsPage=“false“>
 <LayoutElement>
 <FileSpec URL="File://Yellow2.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Separation=“Black“ IsPage=“false“>
 <LayoutElement>
 <FileSpec URL="File://Black2.pdf"/>
 </LayoutElement>
 </RunList>
 </RunList>
</RunList>

7.2.124 SaddleStitchingParams
This resource provides the parameters of the SaddleStitching process.
Deprecated in JDF 1.1

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: SaddleStitching
Output of processes: -

Page 458

Page 458

Resource Structure
Name Data Type Description
NumberOfStitches integer The number of stitches that will be made.
StitchPositions ? DoubleList Array containing the stitch positions along the saddle. The center of

the stitch must be specified, and the number of entries must match
the number given in the NumberOfStitches attribute.

StapleShape ? enumeration Shape of staples. Possible values are:
Crown
Overlap
Butted
ClinchOut
Eyelet
These values are displayed in Figure 7.18, below.

StitchWidth ? double Width of each stitch.
WireGauge ? double Gauge of the wire being used.
WireBrand ? string Brand of wire being used.

Eyelet

Crown

Overlap

ClinchOut

Butted

Figure 7.18 Staple shapes

The process coordinate system is defined as follows — The Y-axis is aligned with the binding edge, and increases from
the registered edge to the edge opposite the registered edge. The X-axis, meanwhile, is aligned with the registered
edge. It increases from the binding edge to the edge opposite the binding edge, which is the product front edge.

7.2.125 ScanParams
This resource provides the parameters for the Scanning process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: RunIndex

Input of processes: Scanning

Output of processes: -

Page 459

Page 459

Resource Structure
Name Data Type Description
BitDepth integer Bit depth of a one-color separation.
CompressionFilter ? enumeration Specifies the compression filter to be used. Possible values include:

CCITTFaxEncode – Used to select CCITT Group 3 or 4 facsimile
encoding.
DCTEncode – Used to select JPEG compression.
FlateEncode – Used to select ZIP compression.
WaveletEncode – Used to select Wavelet compression.
JBIG2Encode – Used to select JBIG2 monochrome compression.

DCTQuality ? number A value between 0 and 1 that indicates “how much” the process
should compress images. 0.0 means “do as loss-less compression as
possible.” 1.0 means “do the maximum compression possible.”

FileSpec ? refelement A FileSpec resource pointing to an ICC profile that describes color
corrections. The ResourceUsage attribute of the FileSpec must be
“CorrectionProfile”.

FileSpec ? refelement A FileSpec resource pointing to an ICC profile that defines the
target output device for a device specific scan, such as the profile of a
CMYK press. The ResourceUsage attribute of the FileSpec must
be “TargetProfile”.

FileSpec ? refelement A FileSpec resource pointing to an ICC profile that describes the
scanner. The ResourceUsage attribute of the FileSpec must be
“ScanProfile”.

InputBox ? rectangle Rectangle that describes the image section to be scanned, in points.
The origin of the coordinate system is the lower left corner of the
physical item to be scanned.

Magnification ? XYPair Size of the output/size of the input for each dimension. Default = 1.0.
MountID ? string ID of the drum or other mounting device upon which the media

should be mounted.
Mounting ? enumeration Specifies how to mount originals. Possible values are:

Unfixed – Original lies unfixed on the scanner tray/drum.
Fixed – Original is fixed on the scanner tray/drum with transparent
tape.
Wet – Original is put in gel or oil and fixed on the scanner tray/drum.
Registered – Original is fixed with registration holes. This value is
used for copix.

OutputColorSpace enumeration Color space of the output images. Possible values are:
LAB
RGB
CMYK
GrayScale

OutputResolution XYPair X and Y resolution of the output bitmap in DPI.
OutputSize ? XYPair X-,Y-dimension of the intended output image in points.
SplitDocuments ? integer A number representing how many images are scanned before a new

file is created.

Page 460

Page 460

7.2.126 ScavengerArea
New in JDF 1.1
This resource describes a scavenger area for removing excess ink from printed sheets. It is defined within a
MarkObject of a Surface.

Resource Properties
Resource class: Parameter
Resource referenced by: Surface
Example Partition: -
Input of processes: Any printing process
Output of processes: -

Resource Structure
Name Data Type Description
Center XYPair Position of the center of the scavenger area in the coordinates of

the MarkObject that contains this mark.
Rotation ? double Rotation in degrees. Positive graduation figures indicate counter-

clockwise rotation; negative figures indicate clockwise rotation.
Size XYPair Size of the scavenger area.
SeparationSpec * element Set of separations to which the scavenger area is bound.

7.2.127 ScreeningParams
This resource specifies the parameter of the screening process. Since screening is, in most cases, very OEM
specific, the following parameters are generic enough that they can be mapped onto a number of OEM controls.

Resource Properties
Resource class: Parameter
Resource referenced by: ExposedMedia
Example Partition: Separation, SheetName, Side, SignatureName
Input of processes: Screening, ColorCorrection
Output of processes: -

Resource Structure
Name Data Type Description
IgnoreSourceFile ? boolean Specifies whether to ignore the screen settings (such as setscreen,

setcolorscreen, and sethalftone) specified in the source files.
Default = true
Note: In some cases, Halftones are used to create patterns. In these
cases, the halftone in the source PDL file will not be overridden.

AbortJobWhenScreenMat
chingFails ?
Deprecated in JDF 1.2[RP502]

boolean Specifies what happens when the device can not fulfill the screening
requests. If true, it flushes the job. If false, it ignores matching
errors using the default screening. Default = false.
Use SettingsPolicy in JDF 1.2 and beyond.[RP503]

ScreenSelector *
Modified in JDF 1.1

element List of screen selectors. A screen selector is included for each
separation, including a default specification.

Structure of ScreenSelector Subelement
Description of screening for a selection of source object types and separations.

Name Data Type Description
Angle ? double Specifies the angle of the screen when AM screening is used. Only

one of Angle or AngleMap may be specified. If neither Angle or

Page 461

Page 461

Name Data Type Description
AngleMap are specified, the angle is determined by the default of
the selected ScreeningFamily.

AngleMap ?
New in JDF 1.1

string Specifies the mapping of the angle of the screen to the angle of a
different separation when AM screening is used, e.g., a spot color
that has the same screening angle as the cyan separation is specified
by AngleMap = Cyan. In FM screening, AngleMap specifies the
mapping of the separation specific screen functions, e.g. threshold
arrays. [RP504]Only one of Angle or AngleMap may be specified.
This mapping is not transitive, so, when Separation already
specifies a color with a known default7, it specifies the angle of the
separation defined by AngleMap prior to that separation being
mapped, e.g., the following example specifies that Black should be
mapped to the Cyan default separation and Cyan to the Black
default separation. The third line maps Spot1 to Magenta.
<ScreenSelector AngleMap=”Black”
Separation=”Cyan”/>
<ScreenSelector AngleMap=”Cyan”
Separation=”Black”/>
<ScreenSelector AngleMap=”Magenta”
Separation=”Spot1”/>[RP505]

AngleSecondary ?
New in JDF 1.2

double Allows optional specification of the second angle of the screen
when AM dot screening (ScreeningType = “AMDot”) is used,
otherwise AngleSecondary is ignored. If Angle is not supplied,
AngleSecondary is ignored.
AM screens may be dot screens or line screens, or they may be a
combination of these. In a particular instances, two angle values
(Angle and AngleSecondary) may be used to specify the
directions of two fundamental AM dot screen frequency
components.
Commonly, if only Angle is supplied, the frequency components
are orthogonal, i.e., angle1=angle2+90, or the second angle is
implementation dependent on the first. For backwards
compatibility with JDF/1.1, if only Angle (and not
AngleSecondary) is supplied, the second angle is system
specified.
Either Angle (with AngleSecondary) or AngleMap may be
specified, but not both. If neither Angle nor AngleMap are
specified, the angle is determined by the default of the selected
ScreeningFamily.[RP506]

DotSize ?
New in JDF 1.1

double Specifies the dot size of the screen in micron[µm] when FM
screening (ScreeningType = “FM” or “Adaptive”) is used.

Frequency ?
Clarified in JDF 1.2

double Specifies the halftone screen frequency in lines per inch (lpi), when
AM screening is used, otherwise Frequency is ignored.
With some screens, frequency may change as a function of gray
level. In this case, the Frequency value is interpreted for a
midtone (50%) gray level.
If Frequency is not specified, the frequency is determined by the

7 In general this will be a CMYK process color, but it can also be another process color, e.g., HexaChromeTM

Page 462

Page 462

Name Data Type Description
default of the selected ScreeningFamily.[RP507]

FrequencySecondary ?
New in JDF 1.2

double Allows optional specification of the second halftone screen
frequency in cells per inch (cpi), when AM dot screening
(ScreeningType = “AMDot”) is used, otherwise
FrequencySecondary is ignored. If Frequency is not supplied,
FrequencySecondary is ignored.
AM screens may be dot screens or line screens, or they may be a
combination of these. In particular instances, two frequency
values may be specified for AM dot screens. (Only a single
frequency value is specified for AM line screens.)
Commonly, a single frequency value is specified for an AM dot
screen, and the two fundamental frequency components are the
same. However, for backwards compatibility with JDF1.1, if only
Frequency (and not FrequencySecondary) is supplied, the
second AM dot frequency is system specified.
FrequencySecondary direction is given by AngleSecondary if
AngleSecondary is supplied. If AngleSecondary is not
supplied, FrequencySecondary direction is system specified.
For AM related hybrid screens, the AM dot screen assumptions
may apply.
With some screens, frequency may change as a function of gray
level. In this case, the FrequencySecondary value is interpreted
for a midtone (50%) gray level.[RP508]

ScreeningFamily ? string Vendor specific screening family name. Possible values include:
Rational Tangent
Adobe Accurate
Agfa Balanced
Soft-IS
ErrorDiffusion

ScreeningType ? enumeration General type of screening. One of
AM: the default.
FM
Adaptive

Separation ? string The name of the separation. If Separation = All, the
ScreenSelector should be applied to all separations that are not
specified explicitly. Default = All

SourceFrequency ? NumberRange
[RP509]

Specifies the line frequency of screens which should be matched
from the source file when screen matching is to be done. Note that
this is a filter that selects on which objects to apply this
ScreenSelector.[RP510]

SourceObjects ? enumerations Identifies the class(es) of incoming graphical objects on which to
use the selected screen. Possible values are:
All – Default value.
ImagePhotographic – Contone images.
ImageScreenShot – Images largely comprised of rasterized vector
art.
Text
LineArt – Vector object other than text

Page 463

Page 463

Name Data Type Description
SmoothShades – Gradients and blends.

SourceFrequencySecond
ary ?
New in JDF 1.2

double SourceFrequencySecondary is useful when dot screening has been
applied to a source file AND a subsequent screening or
descreening process must match or be compatible with that
screening. Specifies the second frequency of screens which should
be matched from the source file when SourceScreenMatching =
true, and AM dot screening (ScreeningType = “AMDot”) is used,
otherwise SourceFrequencySecondary is ignored. Conditions
and interpretations apply as with the FrequencySecondary
attribute.

SourceScreenMatching ?
New in JDF 1.2

boolean If true then SourceFrequency must be supplied and source
screen matching will occur.[RP511]

SpotFunction ? NMTOKEN Specifies the spot function of the screen when AM screening is
used. These example names [amc512]are the same as the spot
function names defined in PDF. Values include:[RP513]
Round
Diamond
Ellipse
EllipseA
InvertedEllipseA
EllipseB
EllipseC
InvertedEllipseC
Line
LineX
LineY
Square
Cross
Rhomboid
DoubleDot
InvertedDoubleDot
SimpleDot
InvertedSimpleDot
CosineDot
Double
InvertedDouble

7.2.128 SeparationControlParams
This resource provides the controls needed to separate composite color files.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: Separation
Output of processes: -

Page 464

Page 464

Resource Structure
Name Data Type Description
AutomatedOverPrintPar
ams ?

refelement Optional controls for overprint substitutions. Default = no automated
overprint generation.

TransferFunctionControl
?

refelement Controls whether the device performs transfer functions and what
values are used when doing so.

7.2.129 SeparationSpec
This resource specifies a specific separation, and is usually used to define a list or sequence of separations.

Resource Properties
Resource class: ResourceElement
Resource referenced by: ColorantControl, LayoutElement, RegisterMark, TransferFunctionControl
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure

Name Data Type Description
Name string Name of one specific separation.

7.2.130 ShapeCuttingParams
New in JDF 1.1
ShapeCuttingParams defines the details of the ShapeCutting process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: ShapeCutting
Output of processes: -

Resource Structure
Name Data Type Description
Shape * element details of each individual shape

Structure of Shape Subelement
Name Data Type Description
CutBox ? rectangle Specification of a rectangular window.
CutOut ? boolean If true, the inside of a specified shape will be removed. If false, the

outside of a specified shape will be removed. An example of an inside
shape is a window, while an example of an outside shape is a shaped
greeting card. Default = false

CutPath ? path Specification of a complex path. This may be an open path in the case
of a single line.

Material ? string Transparent material that fills a shape, such as an envelope window,
that was cut out when CutOut = true.

CutType ? enumeration Type of cut or perforation used. Possible values are:
Cu – Full cut.
Perforate – Interrupted perforation that does not span the entire sheet

Page 465

Page 465

Name Data Type Description
ShapeDepth ? double Depth of the shape cut. Measured in micron[µm]. If not specified, the

shape is completely cut.
ShapeType enumeration Describes any precision cutting other than hole making. Possible

values are:
Rectangular
Round
Path

TeethPerDimension ? number Number of teeth in a given perforation extent in teeth/point.
MicroPerforation is defined by specifying a large number of teeth
(n>1000).

7.2.131 Sheet
This resource provides a description of a sheet, as well as the marks on that sheet.

Resource Properties
Resource class: Parameter
Resource referenced by: InsertSheet, Layout
Example Partition: SheetName. Otherwise it is strongly discouraged to partition the Layout tree, including
Sheet.
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
LockOrigins ? boolean Determines the relationship of the coordinate systems for front and

back surfaces.
When false, all contents for all surfaces are transformed into the first
quadrant, in which the origin is at the lower left corner of the surface.
When true, contents for the front surface are imaged into the first
quadrant (as above), but contents for the back surface are imaged into
the second quadrant, in which the origin is at the lower right. This
allows the front and back origins to be aligned even if the exact media
size is unknown.
Default = false

Name ? string Name of the sheet. Name must be unique within a given Layout.
Name is used for external reference to a sheet in, for example, a Part
element.

SurfaceContentsBox ? rectangle This box, specified in surface-coordinate space, defines the area into
which contents and marks will occur for all Surfaces in the Sheet.
CTMs for MarkObjects or ContentObjects transform page contents
or marks into this rectangle.

InsertSheet * refelement Specifies how to complete a sheet in an automated printing
environment.

Media?
New in JDF 1.1

refelement Describes the media to be used.

MediaSource ?
Deprecated in JDF 1.1

refelement Describes the media to be used. Replaced by Media in JDF 1.1.

Page 466

Page 466

Name Data Type Description
Surface (Front) ? refelement Describes the front surface to be used. Two surfaces may be attached:

one front surface and one back surface. The surface is defined by the
Side attribute of the Surface resource. The Side attribute of this
Surface element must be Front.

Surface (Back) ? refelement Describes the back surface to be used. The Side attribute of this
Surface element must be Back.

7.2.132 ShrinkingParams
New in JDF 1.1
This resource provides the parameters for the Shrinking process in shrink wrapping.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: Shrinking
Output of processes: -

Resource Structure
Name Data Type Description
Duration ? duration Shrinking time. Default = equipment-specific value.
ShrinkingMethod ?

enumeration Specifics of the shrinking method for shrink wrapping.
ShrinkCool
ShrinkHot – The default.

Temperature ? number Oven temperature in ° Centigrade. Default = equipment-specific
value.

7.2.133 SideSewingParams
Deprecated in JDF 1.1
This resource provides the parameters for the SideSewing process. SideSewing is a special case of
ThreadSewing. The process coordinate system is defined in the following way: the Y-axis is aligned with the
binding edge. It then increases from the registered edge to the edge opposite to the registered edge. The X-axis is
aligned with the registered edge, which then increases from the binding edge to the edge opposite to the binding
edge, i.e., the product front edge.

Page 467

Page 467

Binding edge (spine)

Y

X

Stitch

Offset

Figure 7.19 Parameters and coordinate system used for side sewing

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: SideSewing
Output of processes: -

Resource Structure
Name Data Type Description
NumberOfNeedles integer Specifies the number of needles to be used.
NeedlePositions ? DoubleList Array containing the Y-coordinates of the needle positions. The

number of entries must match the number given in
NumberOfNeedles.

Offset double Specifies the distance between the stitch and the binding edge.
SewingPattern ? enumeration Specifies the sewing pattern to be used. Possible values are:

Normal
Staggered
CombinedStaggered

ThreadMaterial ? enumeration Specifies the thread material to be used. Possible values are:
Cotton
Nylon
Polyester

ThreadThickness ? double The thickness of the thread to be used.
ThreadBrand ? string The brand of thread to be used.

7.2.134 SpinePreparationParams
New in JDF 1.1
SpinePreparationParams describes the preparation of the spine of book blocks for hard and soft cover book
production, e.g., milling and notching.

Resource Properties
Resource class: Parameter

Page 468

Page 468

Resource referenced by: -
Example Partition: -
Input of processes: SpinePreparation
Output of processes: -

Resource Structure
Name Data Type Description
FlexValue ?
Deprecated in JDF 1.2

double Flex quality parameter given in [N/cm]. In JDF 1.2 and beyond,
FlexValue is defined in ##ref
QualityControlParams:BindingQuality.

MillingDepth double Milling depth in points. This describes the total cut-off of the spine,
regardless of the technology used to achieve this goal.

NotchingDistance ? double Notching distance in points.
NotchingDepth ? double Notching depth relative to the leveled spine in pt. Default = 0, i.e.,

no notching.
Operations ? NMTOKENS List of operations to be applied to the spine. Duplicate entries are

allowed to specify a sequence of identical operations. The order of
operations is significant. Possible values include:
Brushing – Brushes away dust from the spine to improve the
binding quality.
FiberRoughing – The fibers of the paper on the spine are exposed
without the risk of glazing the paper coating. This optimizes the
spine preparation considering paper and adhesive types.
Leveling – After milling the spine, any uneven areas are leveled to
achieve an even surface.
Milling – Cuts of a part of the spine in a way that the spine is not to
evenly. A rough texture of the fibers is assured. This creates ideal
conditions for stable anchoring of the sheets in the glue.
Notching – This gives a clamping effect on the spine which is
desirable for some products.
Sanding – Is used for voluminous book papers.
Shredding – Produces a relatively smooth surface. Further
operations like Notching, Leveling, FiberRoughing, Sanding or
Brushing are necessary.

PullOutValue ?
Deprecated in JDF 1.2

double Pull out quality parameter given in [N/cm]. In JDF 1.2 and beyond,
FlexValue is defined in ##ref
QualityControlParams:BindingQuality.

StartPosition ? double Starting position of milling tool (along the Y-axis of the operation
coordinate system). Default = 0

WorkingLength ? double Working length of milling operation. If specified larger than the
Spine length, the complete Spine is prepared. If not specified, the
complete spine is prepared.

Page 469

Page 469

Notching
distance

Notch

Block
X

Y

Working
length

Start
position

Figure 7.20 Parameters and coordinate systems for the SpinePreparation process

7.2.135 SpineTapingParams
New in JDF 1.1
SpineTapingParams define the parameters for taping a strip tape or kraft paper to the spine of a book block.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: SpineTaping
Output of processes: -

Resource Structure
Name Data Type Description
HorizontalExcess ? double Taping spine excess on each side. The tape is assumed to be

centered between left and right. Default =system specified.
StripBrand ? string Strip brand. Default =system specified.
StripColor ? NamedColor Color of the strip. Default =system specified.
StripLength ? double Length of strip material along binding edge. If not defined, default =

spine length.

Page 470

Page 470

Name Data Type Description
StripMaterial ? enumeration Strip material. Possible values are:

Calico
Cardboard
CrepePaper
Gauze
Paper
PaperlinedMules
Tape
Default =system specified.

TopExcess ? double Top spine taping excess. This value may be negative. Default = 0
GlueApplication * refelement Describes where and how to apply glue to the book block.

Figure 7.21 Parameters and coordinate system for the SpineTaping process

7.2.136 StackingParams
New in JDF 1.1
Settings for the Stacking process. A stack of components may be uneven and unstable, due to variations in
thickness across each component. The thickness variations may be caused by folding, binding, or inserted
components. A stack may be split into layers, with successive layers rotated by 180o to compensate for the
unevenness.

Page 471

Page 471

If the thickest part is on an edge, e.g., a book binding, the components may be offset to separate the thick parts.
Layer compensation and offsetting may be combined as in the following examples.

Table 7-7 Parameters in Stacking

Pile Pattern StandardAmount LayerAmount
(Default = StandardAmount)

Compensate
(Default = true)

Offset
(Default = false)

1 6 6 true false
2 6 1 true false
3 6 1 false true
4 6 1 true true
5 6 3 true false
6 6 3 false true
7 6 3 true true

If the number of components is not evenly divisible by standard stack size (StandardAmount) or the number of
components in a bundle is not evenly divisible by layer size (LayerAmount), there will be a remainder, yielding
one or more odd-count stacks or layers. By default, the odd-count stack or layer size may contain as few as one
component. This may exceed equipment cycle times, and flimsy components (newspapers) may cause problems
with downstream equipment such as strappers. MinAmount and MaxAmount control the minimum and maximum
size of odd-count stacks and layers. The following figures show the odd count handling for bundles and layers.

Stack / Pile / Bundle of n components
Layer of n components

Page 472

Page 472

Resource Properties
Resource class: Parameter
Resource referenced by:

Example Partition: -
Output of processes: -

Resource Structure
Name Data Type Description
LayerAmount? integer Number of products in a layer, typically an even divisor of

StandardAmount. Default = StandardAmount
StandardAmount integer Number of products in a standard stack
MaxAmount ? integer Maximum number of products in a stack, MaxAmount >=

StandardAmount. Default = StandardAmount

Input of processes: Stacking

StandardAmount

MinAmount

MaxAmount -
StandardAmount

Add odd count to
first or last bundle

Add odd count to last
bundle, then split

into to odd bundles
of nearly the same

size

Create odd count bundle

Odd count handling “BUNDLE”

Odd count handling “LAYER”
LayerAmount

MinAmount

Add odd count to last layer Create odd count layer

Odd count

Odd count

Page 473

Page 473

Name Data Type Description
MinAmount ? integer Minimum number of products in a stack or layer, (MaxAmount –

StandardAmount) <= MinAmount < StandardAmount and
MinAmount < LayerAmount. Defaults to (MaxAmount –
StandardAmount)

MaxWeight ? number Maximum weight of a stack in grams. Default = infinity
Compensate? boolean 180 degree rotation applied to successive layers to compensate for

uneven stacking. Default = true. If LayerAmount =
StandardAmount, there is one layer, and effectively no compensation.

Offset? boolean Offset or Shift applied to successive layers to separate the thicker
portions of components, for example, offsetting the spines of hardcover
books. Default = false

7.2.137 StitchingParams
This resource provides the parameters for the Stitching process. The process coordinate system is defined as follows:

 The y-axis increases from the (first) registered edge to the edge opposite to the registered edge. The X-axis
is aligned with the (second) registered edge. It increases from the binding edge (or first registered edge) to
the edge opposite to the binding edge (or first registered edge).

B. .[RP514]

Note that the stitches are applied from the front in the figures describing the stitching coordinate system.

Eyelet

Crown

Overlap

ClinchOut

Butted

Figure 7.22 Staple shapes

Page 474

Page 474

Stitch position

Binding edge (spine)

Y

X

Staple

Stitch width

Figure 7.23 Parameters and coordinate system used for saddle stitching

Stitch position

Y

X
Offset

Stitch width

Reference edge 1

Stitch position

Y

X
Offset

Stitch width

Binding edge

Reference edge 2

Set of folded sheets
collected on a saddle

Set of sheets or partial
products gathered on a
pile that will be folded
later

Figure 7.24 Parameters and coordinate system used for stitching

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -

Page 475

Page 475

Input of processes: Stitching
Output of processes: -

Resource Structure
Name Data Type Description
Angle ? double Angle of stitch in degree. The angle increases in a counterclockwise

direction. 0 = horizontal, which means that it is parallel to the X-
axis of the operation coordinate system. Defaults to the system
specified value which may vary depending on other attributes set in
this resource. If StitchType = Saddle, Angle must be ignored

NumberOfStitches ? integer Number of stitches. If not present or -1, means use the system
specified number of stitches which may vary depending on other
attributes set in this resource.

ReferenceEdge ?
New in JDF 1.1

Deprecated in JDF
1.2[RP515]

enumeration The edge or corner of the component to be stitched for the process
coordinate system (see description above). This attribute is intended
for use when the Stitching process is combined with other
processes, such as DigitalPrinting, where, when combined, there
is no input Component to be stitched. Possible values are:
Top
Left
Right
Bottom
SystemSpecified – Default to the process coordinate system defined
in A above. The default.
ReferenceEdge has been replaced with an explicit
Transformation or Orientation of the input Component. If both
Transformation/Orientation and ReferenceEdge are specified,
the result is the matrix product of both transformations.
Transformation/Orientation must be applied first.[RP516]

Offset ? double Distance between stitch and binding edge. If StitchType = Saddle,
Offset must be ignored. Note that it is possible to describe saddle
stitching with an offset by defining StitchType = Side with a large
Offset value.

StapleShape ? enumeration Specifies the shape of the staples to be used. Possible values are:
Crown
Overlap
Butted
ClinchOut
Eyelet
Representations of these values are displayed in Figure 7.18.
Default = equipment-specific setting

StitchFromFront ?
Deprecated in JDF
1.2[RP517]

boolean If true, Stitching is done from front to back. Otherwise it is done
from back to front. Default =system specified.
StitchFromFront has been replaced with an explicit
Transformation or Orientation of the input Component.[RP518]

StitchPositions ? DoubleList Array containing the stitch positions. The center of the stitch must
be specified, and the number of entries must match the number
given in NumberOfStitches.

Page 476

Page 476

Name Data Type Description
StitchType ? enumeration Specifies the type of the Stitching operation. One of:

Corner – Stitch in the corner that is at the clockwise end of the
reference edge.
Saddle – Stitch the on the middle fold which is on the saddle.
Side – Stitch along the reference edge.
SystemSpecified – The system specified value. The default.

StitchWidth ? double Width of the stitch to be used. If not present or 0, means use the
system specified width of stitches which may vary depending on
other attributes set in this resource.

WireGauge ? double Gauge of the wire to be used. If not present or 0, means use the
system specified wire gauge which may vary depending on other
attributes set in this resource.

WireBrand ? string Brand of the wire to be used.

7.2.138 Strap
New in JDF 1.1

Resource Properties
Resource class: Consumable
Resource referenced by:
Example Partition: -
Input of processes: Strapping
Output of processes: -

Resource Structure
Name Data Type Description
StrapColor ? NamedColor Color of the string or strap. defaults to “any”.
Material enumeration Strap material.

AdhesiveTape
Strap
String

7.2.139 StrappingParams
New in JDF 1.1
StrappingParams defines the details of Strapping.

Resource Properties
Resource class: Parameter
Resource referenced by:
Example Partition: -
Input of processes: Strapping
Output of processes: -

Page 477

Page 477

Resource Structure
Name Data Type Description
StrappingType enumeration Can be:

Single – One strap
Double – Two parallel single straps
Cross – Two crossed straps
DoubleCross – Two cross straps that strap each side of a box.
Default = equipment-specific setting

7.2.140 StripBindingParams
This resource describes the details of the StripBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: StripBinding
Output of processes: -

Resource Structure
Name Data Type Description
Brand ? string The name of the comb manufacturer and the name of the specific

item. Default =system specified.
Distance ?
Deprecated in JDF
1.2[RP519]

double The distance between the pins and the distance between the holes of
the prepunched sheets must be the same. Default =system specified.
In JDF 1.2 and Beyond, use the value implied by
HoleMakingParams/@HoleType.[RP520]

Length ? double The length of the pin is determined by the height of the pile of
sheets to be bound. Default =system specified.

StripColor ? NamedColor Determines the color of the strip. Default =system specified.
HoleMakingParams ? refElement Details of the holes in StripBinding.[RP521]

7.2.141 Surface
This resource describes the marks on a sheet surface. Up to two Surface resources may be defined for a Sheet.

Resource Properties
Resource class: Parameter
Resource referenced by: Sheet
Example Partition: Side. Otherwise it is strongly discouraged to partition the Layout tree, including
Surface.
Input of processes: -
Output of processes: -

New in JDF 1.1

Page 478

Page 478

Resource Structure
Name Data Type Description
Side enumeration The side of the Sheet that the Surface describes. Possible values

are:
Front
Back

SurfaceContentsBox ? rectangle? This rectangle provides the region of the surface into which the
contents of ContentObjects and MarkObjects are to be imaged.
Note: The SurfaceContentBox also provides a translation for an
object's CTM.

PlacedObject * element Provides a list of the ContentObject and MarkObject elements to
be placed on to the surface. Contains the marks on the surface in
rendering order. See the description that follows.
Note: PlacedObject is not a container but an abstract type.

Structure of the Abstract PlacedObject Subelement
The marks that may be placed on the designated Surface come in two varieties: ContentObject or MarkObject
elements. Both inherit characteristics from the abstract PlacedObject element type, and both are described below.

Name Data Type Description
ClipBox ? rectangle Clipping rectangle in the coordinates of the SurfaceContentsBox.
CTM matrix Transformation matrix of the object in the SurfaceContentsBox.
HalfTonePhaseOrigin ? XYPair Location of the origin for screening of this ContentObject.

Specified in the coordinate systems of SurfaceContentBox. Default
= 0 0

LayerID?
New in JDF 1.1

integer If a layout supports layering, e.g., for versioning, LayerID may be
used to identify the layer that a ContentObject belongs to, e.g., the
language layer version. The details of the layers are optionally
specified in the Layout::LayerList::LayerDetails key.

OrdID ?
New in JDF 1.1

integer If a layout supports layering, e.g., for versioning, OrdID may be used
to identify ContentObjects that belong to the same final page.
These will have a matching OrdID.

SourceClipPath ? path Clip path for the PlacedObject in the coordinates of the source
page.

TrimCTM?
New in JDF 1.1

matrix The transformation matrix of the object’s trim box in the
SurfaceContentsBox. TrimCTM and CTM are identical if the
TrimBox and dimension of the object in the PlacedObject are
identical. Used to retain the CTM of the original PlacedObject in a
size independent manner. Imposition programs that execute the
Layout must apply CTM. [RP522]Defaults to the value of CTM.

Type
Deprecated in JDF 1.1

enumeration Describes the kind of PlacedObject. Possible values are:
Content
Mark

Structure of ContentObject Subelement
ContentObject elements describe containers for page content on a surface. They are filled from the Content RunList
of the Imposition process. For print applications where page count varies from Instance Document to Instance
Document, imposition templates can automatically assign pages to the correct Surface and PlacedObject position.

Name Data Type Description
DocOrd ? integer Reference to an index of an instance document in the content

Page 479

Page 479

Name Data Type Description
New in JDF 1.1 RunList. This references an instance document with an index

module. Layout::MaxDocOrd equals DocOrd in an automated
layout scenario. The index may either be known explicitly from a
variable Runlist or implicitly from the index within an indexable
content definition language, e.g., PPML.

Ord ?
Modified in JDF 1.1

integer A non-negative zero-based reference to an index in the content
RunList. The index is incremented for every page of the RunList
with IsPage = true. The Ord value of the first page of a RunList
has the value 0.

OrdExpression ? string Function to calculate an Ord value dynamically, using a value of s
for signature number and n for total number of pages in the instance
document. Ord or DocOrd and OrdExpression are mutually
exclusive in one PlacedObject.

SetOrd ?
New in JDF 1.1

integer A non-negative zero-based reference to an index of a document set in
the content RunList. This references an instance document with an
index module. Layout::MaxSetOrd equals SetOrd in an automated
layout scenario. The index may either be known explicitly from a
variable Runlist or implicitly from the index within an indexable
content definition language, e.g., PPML.

Using Ord to reference elements in RunLists
New in JDF 1.1A
The Ord attribute in ContentObject or MarkObject elements represents a reference to a logical element in a
RunList. The reference is not changed by repartitioning the RunList. The content and marks RunList are
referenced independently. The following examples illustrate the usage of Ord.

Simple Multi-File unseparated RunList
This example specifies all pages contained in “File1.pdf” and “File2.pdf”. File 1 has 6 pages, file 2 has an unknown
number of pages.

<RunList ID="L3" Class="Parameter" Status="Available" PartIDKeys=“Run“>
 <RunList Run=“1“ NPage=”6” Pages="0~5">
 <LayoutElement>
 <FileSpec URL=" File://File1.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Run=“2“ Pages="0~-1">
 <LayoutElement>
 <FileSpec URL="File://File2.pdf"/>
 </LayoutElement>
 </RunList>
</RunList>

Table 7-8 Example 1 of Ord in PlacedObjects

Ord File Page Ord File Page
0 File1 0 1 File1 1
2 File1 2 3 File1 3
4 File1 4 5 File1 5
6 File2 0 7 File2 1
8 File2 2 (n) File2 (n-6)

Simple Multi-File separated RunList
This example specifies 2 pages contained in Presep.pdf and following that, pages 1, 3, and 5 of each preseparated file.

Page 480

Page 480

<RunList ID="Link0003" Class="Parameter" Status="Available" PartIDKeys=“Run Separation“>
 <RunList Run=“1“ SkipPage=“3“ NPage=”2”>
 <LayoutElement>
 <FileSpec URL="File://Presep.pdf"/>
 </LayoutElement>
 <RunList Separation=“Cyan“ FirstPage=“0" IsPage=“false“/>
 <RunList Separation=“Magenta“ FirstPage=“1" IsPage=“false“/>
 <RunList Separation=“Yellow“ FirstPage=“2" IsPage=“false“/>
 <RunList Separation=“Black“ FirstPage=“3" IsPage=“false“/>
 </RunList>
 <RunList Run=“2“ Pages="1 3 5" IsPage=“true“>
 <RunList Separation=“Cyan“ IsPage=“false“>
 <LayoutElement>
 <FileSpec URL="File://Cyan2.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Separation=“Magenta“ IsPage=“false“>
 <LayoutElement>
 <FileSpec URL="File://Magenta2.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Separation=“Yellow“ IsPage=“false“>
 <LayoutElement>
 <FileSpec URL="File://Yellow2.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Separation=“Black“ IsPage=“false“>
 <LayoutElement>
 <FileSpec URL="File://Black2.pdf"/>
 </LayoutElement>
 </RunList>
 </RunList>
</RunList>

Table 7-9 Example 2 of Ord in PlacedObjects

Ord File Page Separation Ord File Page Separation
0 PreSep 0 Cyan 0 Presep 1 Magenta
0 PreSep 2 Yellow 0 Presep 3 Black
1 PreSep 4 Cyan 1 Presep 5 Magenta
1 PreSep 6 Yellow 1 Presep 7 Black
2 Cyan2 1 Cyan 2 Magenta2 1 Magenta
2 Yellow2 1 Yellow 2 Black2 1 Black
3 Cyan2 3 Cyan 3 Magenta2 3 Magenta
3 Yellow2 3 Yellow 3 Black2 3 Black
4 Cyan2 5 Cyan 4 Magenta2 5 Magenta
4 Yellow2 5 Yellow 4 Black2 5 Black

Using Expressions in the OrdExpression Attribute
Expressions can use the operators +, – , *, /,% and parentheses, operating on integers and two variables: s for
signature number (starting at 0) and n for number of pages to be imposed in one document. Signature number
denotes the number of times that a complete set of placed objects has been filled with content from the run list. The
operators have the same meaning as in the C programming language. Expressions are evaluated with normal “C”
operator precedence. Multiplication must be expressed by explicitly including the * operator, i.e., use “2*s”, not “2
s”. Remainders are discarded.

OrdExpression Examples
a.) Saddlestitched booklet for variable page length documents

Page 481

Page 481

The following describes the OrdExpressions for a booklet with varying page lengths. The example page
assignments are for a book of 13-16 pages.
Front:
OrdExpression = “2*s” 0 2 4 6
OrdExpression = “4*((n+3)/4) –(s*2)-1” 15 13 11 9
Back:
OrdExpression = “2*s+1” 1 3 5 7
OrdExpression = “4*((n+3)/4) –(s*2)-2” 14 12 10 8

DocOrd Usage Examples

b.) Two-sided business cards 4/sheet

Structure of MarkObject Elements
MarkObject elements describe containers for page marks on a surface. They are filled from the Marks RunList of
the Imposition process. An individual MarkObject represents the content data of the Marks. The content data in
individual MarkObjects may contain multiple logical marks: CIELABMeasuringField, ColorControlStrip,
CutMark, DensityMeasuringField, IdentificationField, RegisterMark, and ScavengerArea.

Name Data Type Description
LayoutElementPageNum ?
New in JDF 1.1

integer Page number to use from the PDL file described by the
LayoutElement attribute. Default = 0

Ord ?
Modified in JDF 1.1A

integer A non-negative reference to an index in the marks RunList. The index
is incremented for every page of the RunList with IsPage = true. The
first page of a RunList has the value 0.

CIELABMeasuringField* refelement Specific information about this kind of mark object.
ColorControlStrip *
Modified in JDF 1.1

refelement Specific information about this kind of mark object.

CutMark *
Modified in JDF 1.1

refelement Specific information about this kind of mark object.

DensityMeasuringField *
Modified in JDF 1.1

refelement Specific information about this kind of mark object.

DeviceMark ?
New in JDF 1.1

refelement If neither Ord nor LayoutElement are specified, it is assumed that the
device can independently generate the mark. DeviceMark defines a set
of formatting parameters for the mark.

DynamicField * refelement Definition of text replacement for a MarkObject.

The following describes the Ord + DocOrd usage for a 4-up step + repeat business card
MaxDocOrd=4

Front:
Ord=0 DocOrd=0
Ord=0 DocOrd=1
Ord=0 DocOrd=2
Ord=0 DocOrd=3
Back:
Front:
Ord=1 DocOrd=0
Ord=1 DocOrd=1
Ord=1 DocOrd=2
Ord=1 DocOrd=3

Page 482

Page 482

Name Data Type Description
IdentificationField * refelement Specific information about this kind of mark object.
JobField *
New in JDF 1.1

refelement Specific information about this kind of mark object.

LayoutElement ? refelement PDL description of the mark. LayoutElement and Ord are mutually
exclusive within one MarkObject.

RegisterMark*
Modified in JDF 1.1

refelement Specific information about this kind of mark object.

ScavengerArea *
New in JDF 1.1

refelement Specific information about this kind of mark object

Structure of the DeviceMark Subelement
New in JDF 1.1
Name Data Type Description
Font ? NMTOKEN The name of the font that should be used for the DeviceMark. Values

include
Courier
Helvetica
Helvetica-Condensed
Times-Roman
If not specified, the result is device dependent.

FontSize ? integer The size of the font that should be used for the DeviceMark, in points
≥ 0.

MarkJustification ? enumeration Description of the preferred DeviceMark justification wrt the
MarkOrientation. One of:
Left
Right
Center
If not specified, the result is device dependent.

MarkOffset ? XYPair Description of the preferred DeviceMark offset w.r.t. the device
dependent default position in the coordinate system defined by
MarkOrientation.
If not specified, the result is device dependent

MarkOrientation ? enumeration Description of the preferred DeviceMark orientation. One of:
Vertical
Horizontal
If not specified, the result is device dependent.

MarkPosition ? enumeration Description of the preferred DeviceMark position One of:
Top
Bottom
Left
Right
If not specified, the result is device dependent.

Structure of DynamicField Subelement
Name Data Type Description
Format string Format string in C printf format that defines the replacement.

Page 483

Page 483

Name Data Type Description
InputField ?
Deprecated in JDF 1.1

string String that must be replaced by the DynamicInput element in the
Contents RunList referenced by Ord or OrdExpression.

Ord ? integer Reference to an index in the Contents RunList that contains
DynamicInput elements. Only one of Ord or OrdExpression may be
specified.

OrdExpression ? string Expression to calculate the reference to an index in the Contents
RunList that contains DynamicInput fields. For details, see the
definition of OrdExpression in the description of the PlacedObject
element. Only one of Ord or OrdExpression may be specified.

ReplaceField ? string String that must be replaced by the instantiated text expression as
defined by the Format and Template attributes in the file referenced
by Ord, OrdExpression . If ReplaceField is not specified, the
Device that processes the DynamicField must format the
DynamicField.

Template string Template to define a sequence of variables consumed by Format. A
list of predefined values is found in the description of the FileSpec
resource. In addition, the Name attribute of DynamicInput elements
of a RunList define further variables.

DeviceMark ?
New in JDF 1.1

refelement DeviceMark defines the formatting parameters for the mark. If not
specified, the DeviceMark settings defined in
LayoutPreparationParams or in the Layout tree are assumed.

DynamicField Subelement Properties
DynamicField provides a description of dynamic text replacements for MarkObjects. This element should be used
for production purposes, such as defining bar codes for variable data printing. DynamicField elements are not
intended as a placeholders for actual content such as addresses. Rather, they are marks with dynamic data such as
time stamps and database information. Dynamic objects are MarkObjects with optional additional DynamicField
elements that define text replacement.

Example usage of a DynamicField Element:
<!—The RunList entry: -->
<RunList … >
 <DynamicInput Name="i1">Joe</DynamicInput>
 <DynamicInput Name="i2">John</DynamicInput>
 <LayoutElement Type="Graphics">
 <FileSpec URL=“File://Variable.pdf"/>
</LayoutElement>
</RunList>

…

<!—The MarkObject in the Layout hierarchy: -->
<MarkObject CTM=… (…)>
 <LayoutElement Type="Graphics">
 <FileSpec URL=“File://MyReplace.pdf"/>
 </LayoutElement >
 <DynamicField ReplaceField="___xxx___"
 Format="Replacement Text for %s and %s go in here at %s on %s"
 Template="i1,i2,Time,Date" Ord="0"/>
</MarkObject>

In the example above, the text “___xxx___” in the file MyReplace.pdf would be replaced by the sentence
“Replacement Text for Joe and John go in here at 14:00 on Mar-31-2000”.

Page 484

Page 484

MyReplace.pdf is placed at the position defined by the CTM of the MarkedObject and Variable.pdf is placed at the
position defined by the CTM of the PlacedObject.

7.2.142 ThreadSealingParams
New in JDF 1.1
This resource provides the parameters for the ThreadSealing process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: ThreadSealing
Output of processes: -

Resource Structure
Name Data Type Description
BlindStitch ? boolean If true, a blind stitch after last stitch is required. Default = false
ThreadMaterial ? enumeration Thread material. Possible values are:

Cotton
Nylon
Polyester

ThreadPositions DoubleList Array containing the Y-coordinate of the center positions of the thread.
ThreadLength double Length of one thread.
ThreadStitchWidth double Width of one stitch.
SealingTemperature ? integer Temperature needed for sealing thread and sheets together in degrees

centigrade.

7.2.143 ThreadSewingParams
This resource provides the parameters for the ThreadSewing process. It may also specify a gluing application,
which would be used principally between the first and the second or the last and the last sheet but one. A gluing
application might also be necessary if different types of paper are used.

The process coordinate system is defined as follows: The Y-axis is aligned with the binding edge. It increases
from the registered edge to the edge opposite to the registered edge. The X-axis is aligned with the registered edge.
It increases from the binding edge to the edge opposite to the binding edge, i.e., the product front edge.

Page 485

Page 485

Stitch

Start
position Glue line

working length

Binding
edge (spine)

Y

X

Figure 7.25 Parameters and coordinate system used for thread sewing

Binding edge (spine)

Y

X

Stitch

Offset

Figure 7.26 Parameters and coordinate system used for side sewing

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: ThreadSewing
Output of processes: -

Resource Structure
Name Data Type Description
BlindStitch ? boolean If true, a blind stitch after last stitch is required. Default = false
CastingMaterial ? enumeration Casting material of the thread being used. Possible values are:

Cotton
Nylon
Polyester

CoreMaterial ? enumeration Core material of the thread being used. This attribute must be used to
define the thread material if there is no casting. Possible values are:
Cotton
Nylon
Polyester

Page 486

Page 486

Name Data Type Description
GlueLineRefSheets IntegerList This entry is only required if GlueLine is defined. It contains the

indices of the loose parts of the input component after which gluing
should be applied. The index starts with 0.

Offset ?
New in JDF 1.1

double Specifies the distance between the stitch and the binding edge. Used
only for side stitching. Default = 0

NumberOfNeedles integer Specifies the number of needles to be used. Default = equipment-
specific setting.

NeedlePositions ? DoubleList Array containing the Y-coordinate of the needle positions. The number
of entries must match the number given in NumberOfNeedles.
Default = equipment-specific setting.

Sealing ? boolean If true, thermo-sealing is required. Default false
SewingPattern ? enumeration Sewing pattern. Possible values are:

Normal – The default.
Staggered
CombinedStaggered
Side – Side sewing.

ThreadThickness ? double Thread thickness.
ThreadBrand ? string Thread brand.
GlueLine * element Gluing parameters.

7.2.144 Tile
Each Tile resource defines how content from a Surface resource will be imaged onto a piece of media that is
smaller than the designated surface. Tiling occurs in some production environments when pages are imaged on to
an intermediate medium, and the resulting image of the surface is larger than the media. In this case, instructions
are needed to determine how the intermediate media (tiles) will be assembled to achieve the desired output, e.g., a
single plate for the surface. For example, a device might require that four pieces of film be assembled to create the
image for the plate.

In general, a Tile resource will be partitioned (see Section 3.9.2 Description of Partitionable Resources) by
TileID. Individual tiles are selected and matched by specifying the appropriate TileID attribute, which is described in
Table 3-26 Contents of the Part element.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: TileID
Input of processes: Tiling
Output of processes: -

Resource Structure
Name Data Type Description
ClipBox rectangle A rectangle that defines the bounding box of the Surface contents

which will be imaged on this Tile. The ClipBox is defined in the
coordinate system of the Surface.

CTM matrix A coordinate transformation matrix mapping the ClipBox for this
Tile to the rectangle 0 0 X Y, where X and Y are the extents of the
media that the Tile will be imaged onto.

MediaSource? refelement Describes the media to be used.

Page 487

Page 487

7.2.145 Tool
New in JDF 1.1
A Tool resource defines a generic tool that is customized [RP523]for a given job, e.g., an embossing stamp. The
manufacturing process for the tool is not described within JDF.

Resource Properties
Resource class: Handling
Resource referenced by: -
Example Partition: -
Input of processes: Embossing, ShapeCutting
Output of processes: -

Resource Structure
Name Data Type Description
ToolAmount ? Integer Number of identical instances of the tool that the tool contains, e.g.,

the number of cut forms in a die cutting die.

ToolID string ID of the tool. This is a unique name within the workflow.
ToolType ? NMTOKEN Type of the tool. Possible values include:

EmbossingCalendar
EmbossingStamp
CutDie

7.2.146 TransferCurve
TransferCurve elements specify the characteristic curve of transfer of densities between systems. For more details
on transfer curves and their usage, refer to the CIP3 PPF specification at:
http://www.cip4.org/documents/technical_info/cip3v3_0.pdf

Resource Properties
Resource class: Parameter
Resource referenced by: Color, TransferCurvePool
Example Partition: RibbonName, SheetName, Side, WebName

Input of processes:

Resource Structure
Name Data Type Description
Curve TransferFuncti

on
The density mapping curve for the separation defined by
Separation.

Separation ? string The name of the separation. If Separation = All, this curve should
be applied to all separations that are not explicitly defined.

7.2.147 TransferCurvePool
A transfer curve pool is a collection of TransferCurveSet elements that each contains information about a
TransferCurve. Multiple TransferCurvesSets may exist at one time. For example, one may exist for the laser
calibration of the imagesetter, one for the ContactCopying process and one for the printing process. Each
TransferCurveSet consists of one or more TransferCurve elements. A TransferCurve element should be applied
to the appropriate correlative Separation, or to all Separations when Separation = All. The TransferCurveSets
should be concatenated in the following order:

Output of processes: -

Page 488

Page 488

Film -> Plate -> Press -> Paper.
and
Proof.

Resource Properties
Resource class: Parameter
Resource referenced by: TransferFunctionControl
Example Partition: -

Input of processes: InkZoneCalculation

Resource Structure
Name Data Type Description
TransferCurveSet * element The set of transfer curves.

Structure of TransferCurveSet Subelement
TransferCurveSet elements describe both the characteristic curve of transfer and the relation between the various
process coordinate systems.

TransferCurveSet
Name Data Type Description
CTM ?
New in JDF 1.1

matrix Defines the transformation of the coordinate system in the device as defined by
Name. Default = identity matrix: “1 0 0 1 0 0”

Name
Modified in JDF
1.1

NMTOKEN The name of the TransferCurveSet. Possible values include:
Film – The transformation from the Layout system to the Film. In a CtP or
DigitalPrinting [RP524]environment, this defaults to the identity matrix and the
identity TransferCurve.
Plate – The transformation from the Film system to the Plate. In a DigitalPrinting
environment, this defaults to the identity matrix and the identity
TransferCurve.[RP525]
Paper – The transformation from the Press system to the Paper.
Press – The transformation from the Plate system to the Press
Proof – The transformation from the Layout system to the Proof.

TransferCurve
*
Modified in JDF
1.1

refelement List of TransferCurve entries.

7.2.148 TransferFunctionControl
Resource class: Parameter
Resource referenced by: SeparationControlParams
Example Partition: -

Input of processes: -

Output of processes: -

Output of processes: -

Page 489

Page 489

Resource Structure
Name Data Type Description
TransferFunctionSource enumeration Identifies the source of transfer curves which should be applied

during separation.
Document – Use the transfer curves provided in the document.
Device – Use transfer functions provided by the output device.
When Separation is being performed pre-RIP, this may mean that
no transfer curves will be applied.
Custom – Use the transfer curves provided in the
TransferCurvePool element of this element.

TransferCurvePool ? refelement Provides a set of transfer curves to be used by the process.

7.2.149 TrappingDetails
This resource identifies the root of the hierarchy of resources. This hierarchy controls the Trapping process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes: [RP526]Trapping[RP527]
Output of processes: -

Resource Structure
Name Data Type Description
DefaultTrapping ? boolean If true, pages that have no defined TrapRegions are trapped using

the set of TrappingParams. The BleedBox is used for the
TrapZone. If false, only pages that have TrapRegions are
trapped.
Default = false

IgnoreFileParams ? boolean If true, any trapping controls provided within any source files used
by this process are ignored. If false, trapping controls embedded in
the source files are honored. Default = true

Trapping ? boolean If true, trapping is enabled. If omitted, the default setting for the
device is used.

TrappingOrder ? element Trapping processes will trap colorants as if they are laid down on
the media in the order specified in TrappingOrder. The colorant
order may affect which colors to spread, especially when opaque
inks are used. Default = system specified

TrappingType ? integer Identifies the trapping method to be used by the trapping process.
The number identifies the minor (last three digits) and major (any
digits prior to the last three) version of the trapping type requested.
Default = system specified

TrappingParams ? refelement A TrappingParams resource that is used to define the default
trapping parameters when DefaultTrapping = true.

ObjectResolution *
New in JDF 1.1

refelement Elements which define the resolutions to trap the contents at. More
than one element may be used to specify different resolutions for
different SourceObject types. Default = device specific

TrapRegion * refelement A set of TrapRegion resources that identify the pages to be
trapped, the geometry of the areas to trap on each page, and the
trapping settings to use for each area.

Page 490

Page 490

Structure of the TrappingOrder Subelement

Name Data Type Description
SeparationSpec* element An array of colorant names.

7.2.150 TrappingParams
This resource provides a set of controls that are used to generate traps. The values of the parameters are chosen
based on the customer’s trapping strategy, and depend largely on the content of the pages to be trapped and the
characteristics of the output device (press). The attributes of this resource that are optional in the sense that each
implementation decides a default value for them.

Resource Properties
Resource class: Parameter
Resource referenced by: TrapRegion, TrappingDetails
Example Partition: DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
BlackColorLimit ? number A number between 0 and 1 that specifies the lowest color value

required for trapping a colorant according to the black trapping rule.
This entry uses the subtractive notion of color, where 0 is white, or
no colorant, and 1 is full colorant. Default = system specified

BlackDensityLimit ? number A positive number that specifies the lowest neutral density of a
colorant for trapping according to the black trapping rule.
Default = system specified

BlackWidth ? number A positive number that specifies the trap width for trapping
according to the black trapping rule. BlackWidth is specified in
TrapWidth units; a value of 1 means that the black trap width is one
TrapWidth wide. The resulting black trap width is subject to the
same device limits as TrapWidth. Default = system specified

Enabled ? boolean If true, trapping is enabled for zones that are defined with this
parameter set. Default = system specified

HalftoneName ? string A name that identifies a halftone object to be used when marking
traps. The name is the value of the ResourceName attribute of
some PDLResourceAlias resource. If absent, the halftone in
effect just before traps are marked will be used, which may cause
unexpected results.

ImageInternalTrapping ? boolean If true, the planes of color images are trapped against each other.
If false, the planes of color images are not trapped against each
other. Default = system specified

ImageResolution ? integer A positive integer indicating the minimum resolution, in dots per
inch, for downsampled images. Images can be downsampled by a
power of 2 before traps are calculated. The downsampled image is
used only for calculating traps, while the original image is used
when printing the image. Default = system specified

Page 491

Page 491

Name Data Type Description
ImageMaskTrapping ? boolean Controls trapping when the TrapZone contains a stencil mask.

A stencil mask is a monochrome image in which each sample is
represented by a single bit. The stencil mask is used to paint in the
current color: image samples with a value of 1 are marked, samples
with a value of 0 are not marked.
When false, none of the objects covered by the clipped bounding
box of the stencil mask are trapped. No traps are generated between
the stencil mask and objects that the stencil mask overlays. No
traps are generated between objects that overlay the stencil mask
and the stencil mask. For all other objects, normal trapping rules
are followed. Two objects on top of the stencil mask that overlap
each other may generate a trap, regardless of the value of this
parameter. When true, objects are trapped to the stencil mask, and
to each other. Default = system specified

ImageToImageTrapping ? boolean If true, traps are generated along a boundary between images. If
false, this kind of trapping is not implemented.
Default = system specified

ImageToObjectTrapping ? boolean If true, images are trapped to other objects. If false, this kind of
trapping is not implemented. Default = system specified

ImageTrapPlacement ? enumeration Controls the placement of traps for images. Possible values are:
Center – Trap is centered on the edge between the image and the
adjacent object.
Choke – Trap is placed in the image.
Normal – Trap is based on the colors of the areas.
Spread –Trap is placed in the adjacent object.
Default = system specified

ImageTrapWidth ?
New in JDF 1.2

number or
XYPair
[GCM528]

The width in points of a trap between an image and any other obect.
A value of zero implies that no traps are created between any image
and its abutting objects. Legal values are greater than or equal to
zero. Values greater than the system specified maximum are clipped
to that maximum value. Defaults to TrapWidth.

MinimumBlackWidth ? number Specifies the minimum width, in points, of a trap that uses black
ink. Allowable values are those greater than or equal to zero.
Default = 0

SlidingTrapLimit ? number A number between 0 and 1. Specifies when to slide traps towards a
center position. If the neutral density of the lighter area is greater
than the neutral density of the darker area multiplied by the
SlidingTrapLimit, then the trap slides. This applies to vignettes and
non-vignettes. No slide occurs at 1. Default= system specified

Page 492

Page 492

Name Data Type Description
StepLimit ? number A non-negative number. [RP529]Specifies the smallest step required

in the color value of a colorant to trigger trapping at a given
boundary.
If the higher color value at the boundary exceeds the lower value by
an amount that is equal or greater than the larger of 0.05 or
StepLimit times the lower value (low + max (StepLimit * low,
0.05)), then the edge is a candidate for trapping. The value 0.05 is
set to avoid trapping light areas in vignettes. This entry is used
when not specified explicitly by a ColorantZoneDetails
subelement for a colorant. Default = system specified.
The restriction that be StepLimit <=1 was removed in JDF
1.2.[RP530]

TrapColorScaling ? number A number between 0 and 1. Specifies a scaling of the amount of
color applied in traps towards the neutral density of the dark area. 1
means the trap has the combined color values of the darker and the
lighter area. 0 means the trap colors are reduced so that the trap has
the neutral density of the darker area. This entry is used when not
specified explicitly by a ColorantZoneDetails subelement for a
colorant. Default = system specified

TrapEndStyle ? NMTOKEN Instructs the trap engine how to form the end of a trap that touches
another object. Possible values include:
Miter
Overlap
Other values may be added later as a result of customer requests.
Default = Miter

TrapJoinStyle ? NMTOKEN Specifies the style of the connection between the ends of two traps
created by consecutive segments along a path. Possible values
include:
Bevel
Miter
Round
Default = Miter

TrapWidth ? number or
XYPair[RP531]

One or two positive numbers. Specifies the trap width in points.
The first number is the trap width in X direction (horizontal) of the
pdl or ByteMap defined in the input RunList. The second number is
the trap width in Y direction (vertical).
Also defines the unit used in trap width specifications for certain
types or objects, such as BlackWidth.
The datatype was extended to include XYPair in JDF 1.2. When
only one number is specified, X and Y are assumed identical.
Default = system specified[RP532]

ColorantZoneDetails * element ColorantZoneDetails subelements. Entries in this dictionary
reflect the results of any named colorant aliasing specified.
Each entry defines parameters specific for one named colorant.
If the colorant named is neither listed in the ColorantParams
array, nor implied by the ProcessColorModel, for the
ColorantControl object in effect when these TrappingParams are
applied, the entry is not used for trapping.

Page 493

Page 493

Structure of ColorantZoneDetails Subelement
Name Data Type Description
Colorant string The colorant name that occurs in the SeparationSpec::Name of

the ColorantParams array of the ColorantControl object used by
the process.

StepLimit ? number A number between 0 and 1. Specifies the smallest step required in
the color value of a colorant to trigger trapping at a given
boundary. If the higher color value at the boundary exceeds the
lower value by an amount that is equal or greater than the larger of
0.05 or StepLimit times the lower value (low + max (StepLimit *
low, 0.05)), then the edge is a candidate for trapping. The value
0.05 is set to avoid trapping light areas in vignettes. If omitted, the
StepLimit attribute in the TrappingParams resource is used.

TrapColorScaling ? number A number between 0 and 1. Specifies a scaling of the amount of
color applied in traps towards the neutral density of the dark area.
1 means the trap has the combined color values of the darker and
the lighter area. 0 means the trap colors are reduced so that the trap
has the neutral density of the darker area. If omitted, the
TrapColorScaling attribute in the TrappingParams resource is
used.

TrapPlacement =”Normal”
New in JDF 1.2

enumeration
[GCM533]

Specifies the placement of a trap between an object with a color
containing only this colorant, and any other object. Only valid for
objects painted with colors containing a single colorant. Possible
values are
Normal –Placement determined by existing trap placement
functions. Default.
Spread – Forces traps to the object to be spread into abutting
objects.
Choke – Forces traps to the object to be choked into the object.
In the event of conflicting information for the colors of two
abutting objects (ie both choke), the actual location is determined
by exisiting trap placement rules.

7.2.151 TrapRegion
This resource identifies a set of pages to be trapped, an area of the pages to trap, and the parameters to use.

Resource Properties
Resource class: Parameter
Resource referenced by: TrappingDetails
Example Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
TrapZone ? path Each element within TrapZone is one subpath of a complex path.

The TrapZone is the area that results when the paths are filled
using the non-zero winding rule.
When absent, the MediaBox array for the RunList defines the
TrapZone.

Pages IntegerRangeLi
st

Identifies a set of pages from the RunList to trap using the
specified geometry and trapping style.

Page 494

Page 494

TrappingParams ? refelement The set of TrappingParams which will be used when trapping in this
region.
Default = use system specified trapping parameters.

7.2.152 TrimmingParams
This resource provides the parameters for the Trimming process.

The process coordinate system is defined as follows — The y-axis is aligned with the binding edge. It increases
from the registered edge to the edge opposite to the registered edge. The x-axis is aligned with the registered edge.
It increases from the binding edge to the edge opposite to the binding edge, i.e. the product front edge.

Y

X

Block before
trimming

Binding

Trimmed

Origin of
operation

coordinate
system

Width

Height

Trimming

Figure 7.27 Parameters and coordinate system used for trimming

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: Trimming
Output of processes: -

Resource Structure
Name Data Type Description
Height ? double Height of the trimmed product. If not specified, the system specified

Height is assumed.
TrimmingOffset ? double Amount to be cut at bottom side. If not specified, the system

specified TrimmingOffset is assumed.
TrimmingType
New in JDF 1.1

enumeration Trimming operation to perform: Possible values are:
Detailed – Cut the amount specified by Height, Width and
TrimmingOffset.
SystemSpecified – Cut the amount specified by the system.

Width ? double Width of the trimmed product. If not specified, the system specified
Width is assumed.

Page 495

Page 495

7.2.153 VerificationParams
This resource provides the parameters of a Verification process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: Verification
Output of processes: -

Resource Structure
Name Data Type Description
FieldRange ? IntegerRangeL

ist
Zero based range list of integers that determines which characters of
the data in IdentificationField should be applied to the field
formatting strings. Defaults = 0~-1, which means first-to-last.

InsertError ? string Database insertion statement in C printf format defining how
information read from the IdentificationField resource of the
Verification process should be stored in case of verification errors.
The database is defined by the DBSelection resource of the
Verification process. This field must be specified if a database is
selected.

InsertOK ? string Database insertion statement in C printf format defining how
information extracted from the IdentificationField should be
stored in case of verification success. The database is defined by the
DBSelection resource of the verification node. This field must be
specified if a database is selected.

Tolerance ? double Ratio of tolerated verification failures to the total number of tests.
0 = none allowed, 1.0 = all.

Usage of FieldRange and Format Strings.
A database field name can be calculated from the characters of the IdentificationField using standard C printf
notation and the FieldRange attribute. Each range that is defined in FieldRange is passed to printf as one string
that is applied to the format. The order is maintained. Note that SQL was chosen for illustrative purposes only. The
mechanism is defined for any database interface.

Example
IdentificationField string: 1234:John Doe
FieldRange: 5~-1 0~3
FieldOK: Insert true into Va where Name = ’%s’ and ID = %s
Resulting string: Insert true into Va where Name = “John Doe” and ID = 1234

7.2.154 WireCombBindingParams
This resource describes the details of the WireCombBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Example Partition: -
Input of processes: WireCombBinding
Output of processes: -

Page 496

Page 496

Resource Structure
Name Data Type Description
Brand ? string The name of the comb manufacturer, e.g., Wire-O®, and the name

of the specific item. Default =system specified.
Color ? NamedColor Determines the color of the comb. Default =system specified.
Diameter ? double The comb diameter is determined by the height of the block of

sheets to be bound. Default =system specified.
Distance ?
Deprecated in JDF
1.2[RP534]

double The distance between the “teeth” and the distance between the holes
of the prepunched sheets must be the same. Default =system
specified.
In JDF 1.2 and Beyond, use the value implied by
HoleMakingParams/@HoleType.[RP535]

FlipBackCover ?
New in JDF 1.1

boolean The spine is typically hidden between the last page of the
Component and the back cover. Flip the back cover after the wire
was "closed" or keep it open. The latter makes sense, if further
processing is required, e.g., inserting a CD, before closing the book.
Default = false.

Material ? enumeration The material used for forming the wire comb binding. Possible
values are:
LaqueredSteel
TinnedSteel
ZincsSteel
Default =system specified.

Shape ? enumeration The shape of the wire comb binding. Possible values are:
Single – Each “tooth” is made with one wire. The default.
Twin – The shape of each “tooth” is made with a double wire

Thickness ? double The thickness of the comb material. Default =system specified.
HoleMakingParams ? refElement Details of the holes in WireCombBinding.[RP536]

7.2.155 WrappingParams
New in JDF 1.1
WrappingParams defines the details of Wrapping. Details of the material used for Wrapping can be found in the
Media resource that is also an input of the Wrapping process.

Resource Properties
Resource class: Parameter
Resource referenced by:
Example Partition: -
Input of processes: Wrapping
Output of processes: -

Page 497

Page 497

Resource Structure
Name Data Type Description
WrappingKind enumeration LooseWrap – The wrap is loose around the component

ShrinkWrap – The wrap is shrinked around the component
Default = equipment-specific setting

7.3 Device Capability Definitions
New in JDF 1.1
The elements in this section are used to specify capabilities of devices. Note that only attributes and elements that
are explicitly described within the device capabilities structure are supported by the device. For more details on
using device capabilities, refer to section 4.8 Describing Capabilities with JDF.

7.3.1 Structure of the DeviceCap Subelement
New in JDF 1.1
The DeviceCap element describes the JDF Nodes and Resources that a device is capable of processing. Elements that
are derived from the abstract State elements are used to describe ranges and lists of ranges of allowed parameters.

Name Data Type Description
CombinedMethod ? enumeration Specifies how the processes specified in Types may be specified. One

of:
Combined – The list of processes in Types must be specified as a
Combined process.
ProcessGroup – The list of processes in Types must be specified as a
ProcessGroup of individual processes.
CombinedProcessGroup – The list of processes in Types may be
specified either as a Combined process or as a ProcessGroup of
individual processes.
None – No support for Combined or ProcessGroup. Only one
individual process type defined in Types is supported. The default.

GenericAttributes ? NMTOKENS List of generic attributes that are supported and unrestricted by the
device implementation. Note that descriptions of attributes that appear
in State elements (see the following section 7.3.5) overwrite the
description in GenericAttributes.

OptionalCombined-
Types ?

NMTOKENS List of optional JDF Node types. The entries of the list must be a
subset of Types.
For example, a RIP with optional in-RIP trapping would specify
OptionalCombinedTypes = Trapping if Types = Trapping
Interpreting Rendering”. Default = none, i.e. no optional Node type
dependencies exist..

TypeOrder ? enumeration Ordering restriction for Combined or ProcessGroup nodes.
Fixed – The order of process types specified in the Types attribute is
ordered and each type can be specified only once, e.g., Cutting,
Folding. Order does matter. The default.
Unordered – The order of process types specified in the Types
attribute is unordered, and each type can be specified only once, e.g.,
DigitalPrinting, Screening, Trapping Order does not matter.
Unrestricted – The order of process types specified in the Types
attribute is unordered, and each type can be specified multiply, e.g.,
Cutting, Folding. The device can do both processes, in any order and

Page 498

Page 498

Name Data Type Description
multiple times.

Type NMTOKEN JDF Type attribute of the supported process. Extension types may be
specified by stating the namespace prefix in the value.

Types ? NMTOKENS If Type = Combined, or Type = ProcessGroup this attribute
represents the list of combined processes. If any of the Services are in
a namespace other than JDF, the namespace prefix should be included
in this list. For details, see Section 3.2.3 Combined Process Nodes

DevCaps * element List of definitions of the accepted resources. The DevCaps elements
are combined with a logical AND, i.e. A JDF must fulfill all
restrictions defined by the set of DevCaps. Only resources that are
specified within this list are honored by the device.

7.3.2 Structure of the Performance Subelement
New in JDF 1.1
The Performance element describes speed as the capability to consume or produce a JDF Resource.

Name Data Type Description
AverageAmount number Average amount produced/consumed per hour assuming an average job.
AverageCleanup ? duration Average time needed to clean the device after a job. Default = 0M
AverageSetup ? duration Average time needed to setup the device before a job. Default = 0M
MaxAmount ? number Maximum amount produced/consumed per hour assuming an ideal job.

Default = 0 which translates to the value of AverageAmount.
MaxCleanup ? duration Maximum time needed to clean the device after a job assuming a worst case

job. Default = 0M which specifies the value defined in AverageCleanup.
MaxSetup ? duration Maximum time needed to setup the device before a job assuming a worst

case job. Default = 0M which specifies the value defined in AverageSetup.
MinAmount ? number Minimum amount produced/consumed per assuming a worst case job.

Default = 0 which translates to the value of AverageAmount.
MinCleanup ? duration Minimum time needed to clean the device after a job assuming an ideal job.

Default = 0M which specifies the value defined in AverageCleanup.
MinSetup ? duration Minimum time needed to setup the device before a job assuming an ideal job.

Default = 0M which specifies the value defined in AverageSetup.
Name NMTOKEN Name of the input resource type that is processed by the device, e.g.,

“Media”, “Ink”, “RunList”.
Unit ? NMTOKEN Unit of measure of resource consumption per hour. Defaults to the resources

generic units as defined in Table 1-3 Units used in JDF

7.3.3 Structure of the DevCaps Subelement
New in JDF 1.1

Performance * element Specification of a devices performance capabilities.

Page 499

Page 499

The DevCaps element describes the valid parameter space of a JDF Resource, message or resource link that is
consumed, honored, or produced by a device. Note: DevCaps not only describes the structure of the individual
resources and resource links but also of the NodeInfo element within a JDF node. The DevCaps element may be
used to model product intent resources as well as process definition resources.

Name Data Type Description
DevNS ? URI Namespace of the resource or message that is described. Default = the

JDF namespace.
Name NMTOKEN Fully qualified name of the element that is described,

ResourceUsage attribute or ProcessUsage of the respective
resource within a JDF node . If Name = NodeInfo, it describes the
structure of the NodeInfo information that is accepted by the device.

ResourceUpdate ? NMTOKENS Specifies the capability to handle partial updates defined in
ResourceUpdate elements. Possible values include:
None – ResourceUpdate is not supported. Must not be combined with
any other value. The default.
JMFID – JMF Resource messages that reference
ResourceUpdates that have been previously loaded to the device are
accepted.
PDLID – References from PDL data, e.g., PPML TicketRef elements
that reference ResourceUpdates that have been previously loaded
to the device are accepted.

Types ? NMTOKENS List of JDF Node types that a DevCaps applies to. Default = the
Types attribute of the parent DeviceCap element. The value of
Types must be a subset of Types in DeviceCap.

DevCap + element List of definitions of the accepted parameter space for resources and
messages. The parameter spaces of multiple DevCap elements are
combined as a superset of the individual DevCap elements. Only
elements that are explicitly specified as DevCap elements within a
DevCaps are supported.

7.3.4 Structure of the DevCap Subelement
New in JDF 1.1
The DevCap element describes the valid parameter space of a JDF resource, message or element that is consumed
or produced by a Device. The structure of the DevCap is identical to that of the JDF resource, message, or element
that it models. Individual attributes are replaced by the appropriate State elements. For more details on State
elements, see Section 7.3.5. The Name attribute of the State element must match the attribute key that is described.
If no State element exists for a given attribute, it is assumed to be unsupported. The restrictions of multiple attributes
and elements are combined with a logical AND.

Subelements of resources are modeled by including nested DevCap with a ResourceUsage attribute equal to
the subelements tag-name or ResourceUsage if the subelement is a FileSpec. Attributes of the resource link
belonging to the resource, e.g., Transformation or the various pipe control parameters may also be restricted.

Name Data Type Description
DevNS ? URI Namespace of the element that is described by this DevCap.

Default = the JDF namespace.
MaxOccurs ? integer or

“unbounded”8
Maximum number of occurrences of the element described by this
DevCap. Default = 1.

8 This construct is built to be compatible with the XML schema recommendation of minOccurs, maxOccurs.

Page 500

Page 500

Name Data Type Description
MinOccurs ? integer or

“unbounded”
Minimum number of occurrences of the element described by this
DevCap. Default = 1.

Name NMTOKEN Fully qualified name of the resource that is described.
ResourceUsage attribute or ProcessUsage of the respective
resource within a JDF node. Default = the value of Name of the
parent DevCaps element.

DevCap * element Definition of the accepted parameter space for the messages or
resources subelements.

State * element Abstract State elements that define the parameter space that is
covered by device. One State element must be defined for each
supported attribute or Intent Span element of the resource that is
not specified DeviceCaps::GenericAttributes. If a resource
attribute has no matching State element in DevCap, it is not
supported.

7.3.5 Structure of the Abstract State Subelement
New in JDF 1.1
The following table describes the common, data type independent parameters of all State objects.

Name Data Type Description
DevNS ? URI Namespace of the attribute that is described by this State element.

Default = the JDF namespace.
HasDefault ? boolean A flag that describes whether the parameter has a device default. If

set, DefaultValue must be set. Default = true
Name ? NMTOKEN Name of the attribute that is described by this State. If Name is

omitted this State describes the element’s text, i.e., the text between
the XML start and end tag.

Span ?
New in JDF 1.1a

boolean A flag that describes whether the parameter is an intent span data
type. Default=”false”. For example a State element describing an
XYPairSpan would have Span=”true”.

The following types of State elements are defined:

Name Data Type Description
BooleanState element Describes a set of boolean values.
EnumerationState element Describes a set of enumeration values.
IntegerState element Describes a numerical range of integer values.
MatrixState element Describes a range of matrices. generally used to define valid

orientations of Components.
NameState element Describes a set of NMTOKEN values.
NumberState element Describes a numerical range of values.
ShapeState element Describes a set of 3 value shape values.
StringState element Describes a set of string values.
XYPairState element Describes a set of XYPair values.

7.3.5.1 Structure of the BooleanState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of boolean values. It inherits from the abstract State element
described above.

Page 501

Page 501

Name Data Type Description
AllowedValueList ?
Added in JDF 1.1A

enumerations A list of all legal values. Allowed list values are the booleans “true”
and “false”. Default = the empty list, which specifies an unrestricted
range.

CurrentValue ? boolean Current value for the current running job set in the device.
If not specified, the value is unknown.

DefaultValue ? boolean Expected, initial value. Must be set if HasDefault = true.

7.3.5.2 Structure of the EnumerationState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of enumerative values. It inherits from the abstract State element
described above. It is identical to the NameState element except for the fact that it describes a closed list of
enumeration values.

Name Data Type Description
DefaultValue ? enumeration Expected, initial value. Must match the enumeration defined in the

resource. Must be set if HasDefault = true.
CurrentValue ? enumeration Current value for the current running job set in the device. Must match

the enumeration defined in the resource. Default = unknown.
AllowedValueList ? enumerations A list of all potential legal values. Must match the enumeration

defined in the resource. Default = the empty list, which specifies an
unrestricted range.

PresentValueList ? enumerations A list of values that can be chosen without operator intervention. Must
match the enumeration defined in the resource. If not specified, the
value of AllowedValueList is applied.

7.3.5.3 Structure of the IntegerState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of integer values. It inherits from the abstract State element
described above.

Name Data Type Description
DefaultValue ? integer Expected, initial value. Must be set if HasDefault = true.
CurrentValue ? integer Current value for the current running job set in the device. Default =

unknown.
AllowedValueList ? IntegerList A list of all legal values. Default = the empty list, which specifies an

unrestricted range.
AllowedValueMax ? integer Inclusive maximum allowed value.
AllowedValueMin ? integer Inclusive minimum allowed value.
PresentValueList ? IntegerList A list of values that can be chosen without operator intervention. If not

specified, the value of AllowedValueList is applied.
PresentValueMax ? integer Inclusive maximum allowed value that can be chosen without operator

intervention. If not specified, the value of AllowedValueMax is
applied.

PresentValueMin ? integer Inclusive minimum allowed value that can be chosen without operator
intervention. If not specified, the value of AllowedValueMin is
applied.

Page 502

Page 502

7.3.5.4 Structure of the MatrixState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of matrix values. It inherits from the abstract State element
described above. It is primarily intended to specify orientations and manipulation capabilities of physical resources,
e.g. in finishing devices.

Name Data Type Description
DefaultValue ? matrix Expected, initial value. Must be set if HasDefault = true.
CurrentValue ? matrix Current value for the current running job set in the device. Default =

unknown.
Value * element A list legal values.

Structure of the Value element

Name Data Type Description
AllowedValue matrix A legal value for a matrix variable.
PresentValue ? matrix A legal value for a matrix variable that can be chosen without operator

intervention. If not specified, the value of AllowedValue is applied.

7.3.5.5 Structure of the NameState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of NMTOKEN values. It inherits from the abstract State element
described above.

Name Data Type Description
DefaultValue ? NMTOKEN Expected, initial value. Must be set if HasDefault = true.
CurrentValue ? NMTOKEN Current value for the current running job set in the device. Default =

unknown.
AllowedValueList ? NMTOKENS A list legal values. Default = the empty list, which specifies an

unrestricted range.
PresentValueList ? NMTOKENS A list of values that can be chosen without operator intervention. If

not specified, the value of AllowedValueList is applied.

7.3.5.6 Structure of the NumberState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of integer values. It inherits from the abstract State element
described above.

Name Data Type Description
DefaultValue ? number Expected, initial value. Must be set if HasDefault = true.
CurrentValue ? number Current value for the current running job set in the device. Default =

unknown.
AllowedValueList ? DoubleList A list legal values. Defaults to the empty list, which specifies an

unrestricted range.
AllowedValueMax ? number Inclusive maximum allowed value.
AllowedValueMin ? number Inclusive minimum allowed value.
PresentValueList ? DoubleList A list of values that can be chosen without operator intervention. If

not specified, the value of AllowedValueList is applied.
PresentValueMax ? number Inclusive maximum allowed value that can be chosen without

operator intervention. If not specified, the value of
AllowedValueMax is applied.

Page 503

Page 503

PresentValueMin ? number Inclusive minimum allowed value that can be chosen without
operator intervention. If not specified, the value of
AllowedValueMin is applied.

7.3.5.7 Structure of the ShapeState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of Shape values. It inherits from the abstract State element
described above.

Name Data Type Description
DefaultValue ? shape Expected, initial value. Must be set if HasDefault = true.
CurrentValue ? shape Current value for the current running job set in the device. Default =

unknown.
AllowedValueList ? DoubleList A list of values that can be chosen. The DoubleList must have a

number of entries that is a multiple of three and three adjacent
entries define one shape.

AllowedValueMax ? shape Inclusive maximum allowed value.
AllowedValueMin ? shape Inclusive minimum allowed value.
PresentValueList ? DoubleList A list of values that can be chosen without operator intervention.

The DoubleList must have a number of entries that is a multiple of
three and three adjacent entries define one shape. If not specified,
the value of AllowedValueList is applied.

PresentValueMax ? shape Inclusive maximum allowed value that can be chosen without
operator intervention. If not specified, the value of
AllowedValueMax is applied.

PresentValueMin ? shape Inclusive minimum allowed value that can be chosen without
operator intervention. If not specified, the value of
AllowedValueMin is applied.

7.3.5.8 Structure of the StringState Subelement
New in JDF 1.1
This State subelement is used to describe ranges of string values. It inherits from the abstract State element
described above.

Name Data Type Description
DefaultValue ? string Expected, initial value. Must be set if HasDefault = true.
CurrentValue ? string Current value for the current running job set in the device. Default =

unknown.
Value + element A list legal values.

Structure of the Value element
New in JDF 1.1
Name Data Type Description
AllowedValue string A legal value for a string variable.
PresentValue ? string A legal value for a string variable that can be chosen without

operator intervention. If not specified, the value of AllowedValue is
applied.

7.3.5.9 Structure of the XYPairState Subelement
New in JDF 1.1

Page 504

Page 504

This State subelement is used to describe ranges of XYPair values. It inherits from the abstract State element
described above.

Name Data Type Description
DefaultValue ? XYPair Expected, initial value. Must be set if HasDefault = true.
CurrentValue ? XYPair Current value for the current running job set in the device. Default =

unknown.
AllowedValueList ? DoubleList A list of values that can be chosen. The DoubleList must have an

even number of entries and two adjacent entries define one XYPair.
AllowedValueMax ? XYPair Inclusive maximum allowed value.
AllowedValueMin ? XYPair Inclusive minimum allowed value.
PresentValueList ? DoubleList A list of values that can be chosen without operator intervention.

The DoubleList must have an even number of entries and two
adjacent entries define one XYPair. If not specified, the value of
AllowedValueList is applied.

PresentValueMax ? XYPair Inclusive maximum allowed value that can be chosen without
operator intervention. If not specified, the value of
AllowedValueMax is applied.

PresentValueMin ? XYPair Inclusive minimum allowed value that can be chosen without
operator intervention. If not specified, the value of
AllowedValueMin is applied.

7.3.6 Examples of Device Capabilities
New in JDF 1.1 Modified in JDF 1.1A

Device Description of a Scanner
Simple example of a Scanner description in a Device resource. The JMF based hand shaking is also illustrated.
NodeInfo, ExposedMedia, and ScanParams are restricted.

Device Query:
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1" TimeStamp="2002-04-
05T16:45:43+02:00" SenderID=”Controller”>
 <Query ID=”DeviceQuery” Type=”KnownDevices”>
 <DeviceFilter DeviceDetails=”Capability”/>
 </Query>
</JMF>

Device Response:
<?xml version='1.0' encoding='utf-8' ?>
<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1" TimeStamp="2002-06-
05T16:45:43+02:00" SenderID=”Scanner”>
 <Response ID=”xyz” refID=”DeviceQuery” Type=”KnownDevices”>
 <DeviceList>
 <DeviceInfo>
 <Device ID="IDXYZ" Class="Implementation" Status="Available"
 DeviceID=”Joe the Drum” ModelName=”Bongo”>
 <DeviceCap Type="Scanning"

 GenericAttributes=”ID Class SettingsPolicy BestEffortExceptions
 OperatorInterventionExceptions MustHonorExceptions
 PartIDKeys DocIndex rRefs”>

 <!— the scanner takes a minute to set up and scans an average of 2 sheets a min. -->
 <Performance Name=”ExposedMedia” AverageSetup=”P1T0H1M” AverageAmount=”120”/>
 <DevCaps Name="NodeInfo">
 <DevCap>
 <!-- NodeInfo only supports the JobPriority and TargetRoute attributes -->
 <StringState Name=”TargetRoute”/>

Page 505

Page 505

 <IntegerState Name="JobPriority"/>
 </DevCap>
 </DevCaps>
 <DevCaps Name="ExposedMedia">
 <DevCap>
 <!-- ExposedMedia restrictions -->
 <DevCap Name="Media">
 <NameState Name="MediaUnit" DefaultValue="Sheet"/>
 <XYPairState Name="Dimension" AllowedValueMax="600 1200"
 AllowedValueMin="0 0"/>
 </DevCap>
 </DevCap>
 </DevCaps>
 <DevCaps Name="ScanParams">
 <DevCap>
 <!-- Black and white 1 bit mode -->
 <IntegerState Name="BitDepth" DefaultValue="1" AllowedValueList="1"/>
 <EnumerationState Name="CompressionFilter"
 AllowedValueList="CCITTFaxEncode None"/>
 <NumberState Name="Magnification" AllowedValueMax="100"
 AllowedValueMin="1.e-002"/>
 <EnumerationState Name="OutputColorSpace" AllowedValueList="GrayScale"/>
 <XYPairState Name="OutputResolution" DefaultValue="2400 2400"/>
 </DevCap>
 <DevCap>
 <!-- Grayscale 12 bit mode -->
 <IntegerState Name="BitDepth" DefaultValue="8" AllowedValueMax="12"
 AllowedValueMin="1"/>
 <EnumerationState Name="CompressionFilter"
 AllowedValueList="FlateEncode DCTEncode None"/>
 <NumberState Name="Magnification" AllowedValueMax="100"
 AllowedValueMin="1.e-002"/>
 <EnumerationState Name="OutputColorSpace" AllowedValueList="GrayScale"/>
 <XYPairState Name="OutputResolution" DefaultValue="600 600"
 AllowedValueMax="2400 2400" AllowedValueMin="100 100"/>
 </DevCap>
 <DevCap>
 <!-- Color 10 bit mode -->
 <IntegerState Name="BitDepth" DefaultValue="8" AllowedValueMax="10"
 AllowedValueMin="1"/>
 <EnumerationState Name="CompressionFilter"
 AllowedValueList="FlateEncode DCTEncode None"/>
 <NumberState Name="Magnification" AllowedValueMax="10"
 AllowedValueMin="1.e-002"/>
 <EnumerationState Name="OutputColorSpace" AllowedValueList="CMYK RGB LAB"/>
 <XYPairState Name="OutputResolution" DefaultValue="600 600"
 AllowedValueMax="2400 2400" AllowedValueMin="100 100"/>
 </DevCap>
 </DevCaps>
 </DeviceCap>
 </Device>
 </DeviceInfo>
 </DeviceList>
 </Response>
</JMF>

JDF node that is accepted by the scanner of the previous example
All parameters of the following Scanning node are compliant with the device capabilities.

?xml version='1.0' encoding='utf-8' ?>
<JDF xmlns=http://www.CIP4.org/JDFSchema_1 ID="GoodScan" Type="Scanning"
Status="Waiting" Version="1.1">
 <ResourcePool>
 <ScanParams ID="Link0007" Class="Parameter" Status="Available"
BitDepth="8" OutputColorSpace="RGB" OutputResolution="600. 600."/>
 <ExposedMedia ID="Link0008" Class="Handling" Status="Available">
 <Media Dimension="425.196850394 566.929133858"/>

Page 506

Page 506

 </ExposedMedia>
 </ResourcePool>
 <ResourceLinkPool>
 <ScanParamsLink rRef="Link0007" Usage="Input"/>
 <ExposedMediaLink rRef="Link0008" Usage="Input"/>
 </ResourceLinkPool>
</JDF>

JDF node that is rejected by the scanner of the previous example
All parameters of the following Scanning node except Magnification are compliant with the device capabilities.
Therefore, the device can NOT execute the job.

<?xml version='1.0' encoding='utf-8' ?>
<JDF xmlns=http://www.CIP4.org/JDFSchema_1” ID="BadScan" Type="Scanning"
Status="Waiting" Version="1.1">
 <ResourcePool>
 <ScanParams ID="Link0012" Class="Parameter" Status="Available"
BitDepth="8" Magnification="1000. 1000." OutputColorSpace="RGB"
OutputResolution="600. 600."/>
 <ExposedMedia ID="Link0013" Class="Handling" Status="Available">
 <Media Dimension="425.196850394 566.929133858"/>
 </ExposedMedia>
 </ResourcePool>
 <ResourceLinkPool>
 <ScanParamsLink rRef="Link0012" Usage="Input"/>
 <ExposedMediaLink rRef="Link0013" Usage="Input"/>
 </ResourceLinkPool>
</JDF>

Page 507

Page 507

Chapter 8 Building a System Around JDF
8.1 Implementation Considerations and Guidelines
JDF parsing: JDF devices must implement JDF parsing. At a minimum, a device must be able to search the JDF to
find a node whose process type it is able to execute. In addition, a device must be able to consume the inputs and
produce the outputs for each process type it is able to execute.

Test run: To reduce failures during processing, it is recommended that either individual devices or their controller
support the testrun functionality. This prevents the case where a device begins processing a node that is incomplete
or malformed.

8.2 JDF [RP537]and JMF Interchange Protocol
A system of vendor independent elements should define a protocol that allows them to interchange information
based on JDF and JMF. In version JDF 1.2 and above the restrictions on transport layer have been loosened.

8.2.1 File-Based Protocol (JDF + JMF)
The file-based protocol is a solution for JDF job tickets and JMF messages. A file-based protocol may be based on
hot folders. , A Device that implements hot folders must define an input hot folder and an output folder for JDF. In
addition the “SubmitQueueEntry” message contains a URL attribute that allows specification of arbitrary JDF
locators.

Implementation of JDF file-based protocol is simple, but it is important to note that the protocol does not
support acknowledgement receipts for protocol error handling. It requires that the receiver polls the output folder of
the processor. Finally, granting read/write access to your hot folder negates the security functions.[RP538]

8.2.1.1 JMF transport using the File Protocol
In order to allow JMF messaging based on a File protocol a set of additional conventions must be defined. There are
some important differences between http and file based protocols that must be taken into account:

• http is a synchronous protocol that ensures an immediate reponse whereas the file protocol is asynchronous.
Therefore an application must either poll for responses or react to operating system events that signal the
existence of the response file.

• http provides a method for detecting that an incoming request is complete. Access to the file from the
reading and writing application must be synchronized, so that the reader does not read an incomplete file
that is still being written.

• When the receiving end of an http connection is unavailable, the sender is unable to to connect to it. In case
of a file, the file will simply be orphaned and the sender must check whether the file has been retrieved by
the receiver.

• http connections are transient. Files must be removed by the receiver after reading them.
• The response to an http command is received on the same connection, whereas the response to a file query

must be placed into a new file. Therefore the expected location of the response file must be specified by the
application that generates the query.

• An http socket can accept multiple Acknowledge messages on the same socket in sequence. Multiple
Acknowledges as files must follow a unique naming scheme in order to avoid overwriting existing
Acknowledge files. [RP539]

8.2.2 HTTP-Based Protocol (JDF + JMF)
HTTP is a stable, vendor-independent protocol, and it supports a variety of advantageous features. For example, it
offers a wide availability of tools, it is already a common technology among vendors who use HTTP, and it has a
well defined query-response mechanism (HTTP post message). It also offers widespread firewall support and
secure connections via SSL when using HTTPS.

8.2.2.1 Protocol Implementation Details
JDF Messaging will not specify a standard port. [RP540]

Page 508

Page 508

Implementation of Messages
Only HTTP servers may be targeted by Query or Command messages. This is done with a standard HTTP Post
request. The JMF is the body of the HTTP post message. The Response is the body of the initiated HTTP post
response. Signal and Acknowledge messages are also implemented as HTTP post messages. The body of the
HTTP response to these messages is empty.

HTTP Push Mechanisms
Since HTTP is a stateless protocol, push mechanisms, such as regular status bar updates, are non-trivial when
communicating with a client. Work-arounds can, however, be implemented. For example, a Java applet that polls
the server in regular intervals can be used.

8.2.3 MIME Types and File Extensions
The MIME type for JDF is not yet registered with IANA: http://www.iana.org/. The registration process is ongoing and
the MIME types will be registered as:
JDF: application/vnd.cip4-jdf+xml
JMF: application/vnd.cip4-jmf+xml
It is recommended that the controller use a file extension of .jdf when using file-based JDF in an environment that supports
file name extensions.
Agents that serialize JMF to a file should use a file extension of .jmf.
When a MIME package containing JDF or JMF is serialized to a file, it is suggested to use .mjd for packages where
a JDF is the first entity. Use .mjm when a JMF message is the first package.[RP541]

CIP4 will also register a mime type for CIP3 ppf: application/vnd.cip3-ppf. It is recommended that the
controller use a file extension of .ppf when writing CIP3 ppf files.[RP542]

8.2.3.1 MIME Fields
This section defines the normative extensions when using MIME to package JMF or JDF.

8.2.3.1.1 Content Type
This field is required for an individual JDF or JMF and for the root and for the individual body parts of a MIME
multipart/related package. Content Type identifies the MIME type of the message (part). The Multipart header uses
this to identify itself as a multipart message and the subparts also have MIME types to identify their content. The
following content types are defined for JDF:

MIME type Description
application/vnd.cip4-jdf+xml A JDF File. The root XML element must be JDF.
application/vnd.cip4-jmf+xml A JMF File. The root XML element must be JMF.
multipart/related A package of a JDF or JMF file + optional additional referenced data.

The root XML element of the first body part must be JDF or JMF.

8.2.3.1.2 Content ID
This field is required for every part that is referenced by other parts in a multipart/related message. Content ID
identifies each different part within a multipart MIME message. Its value can be anything as long as it is defined
using USASCII. It is good practice to limit yourself to using only alphanumeric characters or only the first 127
characters of the USASCII character set in order to avoid confusing less intelligent MIME agents.

This field is required for every part that is referenced by other parts in a multipart/related message. Content ID
identifies each different part within a multipart MIME message. Its value can be anything as long as it is defined
using USASCII. It is good practice to limit yourself to using only alphanumeric characters or only the first 127
characters of the USASCII character set in order to avoid confusing less intelligent MIME agents.

8.2.3.1.3 Content Length
JDF allows a Content-Length mechanism that may be used to enable fast scanning of MIME files of the body
parts.[RP543]

Page 509

Page 509

8.2.3.1.4 Content Transfer Encoding
This field is optional. RFC1521defines the following different encodings.
"7bit"
"quoted-printable"
"base64"
"8bit"
"binary"[RP544]
Private encodings may be defined and begin with the prefix “X-“.When no encoding is used, the data are only
encapsulated by MIME headers. base64 and quoted-printable encodings are commonly used algorithms for
converting 8-bit and binary data into 7-bit data and vice versa. Although these encodings are not imposed, JDF
agents that support MIME must be able to handle them.

8.2.3.2 Example Packaging of Individual JDF/JMF files in MIME
The following example displays MIME packaging of a JDF file as an individual MIME object.

MIME-Version: 1.0
Content-Type: application/vnd.cip4-jdf+xml
Content-Length: 1234
--abcdefg0123456789
<JDF … >
<PreviewImage Separation = "PANTONE 128" URL="cid:123456.png" />
</JDF>
--abcdefg0123456789--

8.2.3.3 CID URL scheme
One of the benefits of the MIME multipart/related mediatype is the ability to refer from one bodypart to another
bodypart. This is done by using the cid: URL addressing scheme, specified in http://www.ietf.org/rfc/rfc2392.txt
[RP545]“Content-ID and Message-ID Uniform Resource Locators”. Please look at the example to see how it is used.

Example
MIME-Version: 1.0
Content-Type: multipart/related; boundary=abcdefg0123456789

--abcdefg0123456789
Content-Type: application/vnd.cip4-jdf+xml
Content-Length: 1234

<JDF … >
<PreviewImage Separation = "PANTONE 128" URL="cid:123456.png" />
</JDF>

--abcdefg0123456789
Content-Type: image/png
Content-Transfer-Encoding: base64
Content-ID: 123456.png
Content-Length: 12345

BASE64DATA
BASE64DATA

--abcdefg0123456789--

8.2.3.4 Ordering of JDF/JMF in MIME Multipart/Related
A Mime multipart/related JDF or JMF contains a JDF or JMF file as its first body part. This root JDF or JMF
provides the context for the complete MIME package. Additional body parts may be appended to the root JDF or
JMF. When a JMF references a JDF, e.g. in a Queue[RP546]Submission JMF, thje JMF provides the context and thus
comes first.[RP547]

Page 510

Page 510

8.2.4 Issues with Hot Folders[RP548]

8.3 MIS Requirements
MIS systems may:

• Ignore Audit elements when they receive complete information about a process execution via JMF.
• Decompose JDF into an internal format such as database tables.

Page 511

Page 511

Appendix A Encoding
This appendix lists a number of commonly used JDF data types and structures and their XML encoding. Data types
are simple data entities such as strings, numbers and dates. They have a very straightforward string representation
and are used as XML attribute values. Data structures, on the other hand, describe more complex structures that are
built from the defined data types, such as colors

A.1 XML Schema Data Types
JDF is based on the XML Schema specification. The JDF data types used in this specification are summarized in
the table below and comply with the lexical representation of (primitive) data types defined by [XML Schema Part
2: Datatypes]. For a complete definition of each of these data types, please refer to the specification of XML
Schema Datatypes.

Table A.1 XML Schema Data Types

XML Data Type Description Example
boolean Has the value space required to

support the mathematical concept of
binary-valued logic: {true, false}.

<Example Enable="true"/>

date A calendar date, it represents a time
period that starts at midnight on a
specified day and lasts for 24 hours.
Based on ISO 8601.

<Example StartDate="1999-05-31"/>

dateTime Represents a specific instant of time.
It must be a Coordinated Universal
Time (UTC) or the time zone must be
indicated by the offset to UTC. In
other words, the time must be unique
in all time zones around the world.

<Example Start="1999-05-
31T18:20:00Z"/>
<Example Start="1999-05-
31T13:20:00-05:00"/>

double Corresponds to IEEE double-precision
64-bit floating point type

<Example Pi="3.14"/>

duration Represents a duration of time. Based
on ISO 8601.

<Example Duration=
"P1Y2M3DT10H30M"/>

enumeration Limited set of NMTOKEN. <Example Orientation=”Flip90”/>

enumerations Whitespace-separated list of
enumeration data types.

<Example Orientations=”Rotate90
Flip90”/>

gYearMonth Represents a specific Gregorian
month in a specific Gregorian year.
Based on ISO 8601.

<Example Month=”2002-11”/>

hexBinary Represents arbitrary hex encoded
binary data.

<Example Hex=”0A1C”/>

ID Represents the ID attribute from
[XML Specification Version 1.0]. It
basically represents a name or string
that contains no space characters.

<Example ID="R-16"/>

IDREF Represents the IDREF attribute from
[XML Specification Version 1.0]. For
a valid XML-document, an element
with the ID value specified in IDREF
must be present in the scope of the
document.

<Example IDREF="R-16"/>

Page 512

Page 512

XML Data Type Description Example
IDREFS Represents the IDREFS attribute from

[XML Specification Version 1.0].
More specifically, this is a
whitespace-separated list of IDREFs.

<Example IDREFS="R-12 R-16"/>

integer Represents numerical integer values. <Example Copies="36"/>

language Represents a natural language defined
in IETF rfc 1766.
http://www.ietf.org/rfc/rfc1766.txt

<Example Language=”de”/>

NMTOKEN Represents the NMTOKEN attribute
type from [XML Specification
Version 1.0]. It basically represents a
name or string that contains no space
characters.

<Example Alias="ABC_6"/>

NMTOKENS Represents the NMTOKENS attribute
type from [XML Specification
Version 1.0]. More specifically, this
is a whitespace-separated list of
NMTOKENs.

<Example AliasList="ABC_6 ABCD_3
DEGF"/>

regExp Represents a regular expression as
defined in XML schema:
http://www.w3.org/TR/xmlschema-
2/#regexs

<Example
expression=”Foo({1|2}*)”/>[RP549]

string Represents character strings in XML. <Example Name="Test"/>

URI Short for URI-reference. Represents a
Uniform Resource Identifier (URI)
Reference as defined in Section 4 of
[RFC 2396].

<Example
URI="http://www.w3.org/1999/XMLSche
ma"/>

URL Short for URL-reference. Represents
a Uniform Resource Locator (URL)
Reference as defined in Section 4 of
[RFC 2396].

<Example URL="
file://hubble/test.txt"/>

xpath Represents a path to an element or
attribute in an XML document.[xpath]

<Example xpath=
“JDF/AuditPool/Created/@TimeStamp”
/>[RP550]

Error! Hyperlink reference not valid.

A.2 JDF Data Types
The data types listed and described in this section are defined by JDF. They are also found in PJTF and CIP3.

A.2.1 CMYKColor
XML attributes of type CMYKColor are used to specify CMYK colors.

Encoding
CMYKColor attributes are primitive data types and are encoded as a string of four numbers[GCM551] in the range of
[0…1.0] separated by whitespace. A value of 0 specifies no ink and a value of 1 specifies full ink.

Example:
<Color cmyk = "0.3 0.6 0.8 0.1"> (brick red)

A.2.2 DateTimeRange
XML attributes of type DateTimeRange are used to describe a range of points in time. More specifically, it
describes a time span that has an absolute start and end.

Page 513

Page 513

Encoding
A DateTimeRange is represented by one or two dateTimes [GCM552]or the special tokens “INF” or “-INF”,
[RP553]separated by a “~” (tilde) character.

Examples[RP554]:
<XXX range="1999-05-31T18:20:00Z~1999-05-31T18:20:00Z"/>
<XXX range="1999-05-31T18:20:00Z~INF"/>
<XXX range="-INF~1999-05-31T18:20:00Z"/>[RP555]

A.2.3 DateTimeRange List
XML attributes of type DateTimeRangeList are used to describe a list of ranges of time durations. More
specifically, it describes a list of time spans that have a relative start and end.

Encoding
A DateTimeRangeList is represented by sequence of DateTimeRanges and dateTimes[GCM556], separated by
whitespace.

Example:
<XXX RangeList="1999-05-31T18:20:00Z~1999-05-31T18:20:00Z 1999-05-
31T13:20:00-05:00"/>

A.2.4 DurationRange
XML attributes of type DurationRange are used to describe a range of time durations. More specifically, it
describes a time span that has a relative start and end.

Encoding
A DurationRange is represented by two durations [GCM557]or the special token “INF”[RP558], separated by a “~”
(tilde) character[GCM560]

Examples[RP561]:
<XXX range="P1Y2M3DT10H30M~P1Y2M3DT10H35M"/>
<XXX range="P1Y2M3DT10H30M~INF"/>[RP562]

A.2.5 DurationRangeList
XML attributes of type DurationRangeList are used to describe a list of ranges of time durations. More
specifically, it describes a list of time spans that have a relative start and end.

Encoding
A DurationRangeList is represented by sequence of DurationRanges and duration[GCM563]s, separated by
whitespace.

Example:
<XXX RangeList="P1Y2M3DT10H30M~P1Y2M3DT10H35M P1Y3M2DT10H30M"/>

A.2.6 IntegerList
XML attributes of type IntegerList are used to describe a variable length list of integer values.

Encoding
An IntegerList is encoded as a string of integer[GCM564]s separated by whitespace.

Example
<XXX list="0 1 2 3 4 1 3 0"/>

Page 514

Page 514

A.2.7 IntegerRange
XML attributes of type IntegerRange are used to describe a range of integers. In some cases, ranges are defined
for an unknown number of objects. In these cases, a negative value denotes a number counted from the end. For
example, -1 is the last object, -2 the second to last, and so on. IntegerRanges that follow this convention are
marked in the respective attribute descriptions.

If the first element of an IntegerRange specifies an element that is behind the second element, the Range
specifies a list of integers in reverse order, counting backwards. For example “6~4” = “6 5 4” and “-1~0” = “last…
2 1 0”.

Encoding
An IntegerRange is represented by two integer[GCM565]s, separated by a “~” (tilde) character.

Examples[RP566]:
<XXX range="-3~-5"/>
<XXX range="INF~-5"/>: ∞ ∞-1 … -4 –5.[RP567]

A.2.8 IntegerRangeList
XML attributes of type IntegerRangeList are used to describe a list of IntegerRanges and/or enumerated integers.

Encoding
A IntegerRangeList is represented by a sequence of IntegerRanges and integer[GCM568]s, separated by
whitespace.

Example:
<XXX list="-1~-6 3~5 7 9~128 131"/>

A.2.9 LabColor
XML attributes of type LabColor are used to specify absolute Lab colors. The Lab values are normalized to a Light
of D50 and an angle of 2 degrees as specified in CIE Publication 15.2 - 1986 "Colorimetry, Second Edition" and
ISO 13655:1996 "Graphic technology - Spectral measurement and colorimetric computation for graphic arts
images"

This corresponds to a white point of X = 0.9642, Y = 1.0000, and Z = 0.8249 in CIEXYZ color space. L is
restricted to a range of [0..100]; a and b are unbounded.

Encoding
LabColors are primitive data types and are encoded as a string of three number[GCM569]s separated by whitespace:
“L a b”

Example:
<Color … Lab="51.9 12.6 -18.9">

A.2.10 Matrix
Coordinate transformation matrices are widely used throughout the whole printing process, especially in layout
resources. They represent 2D transformations as defined by the PostScript and PDF Reference manuals. For more
information, refer to the respective Reference Manuals, and look for “Coordinate Systems and Transformations.”

Encoding
Coordinate transformation matrices are primitive data types and are encoded as a string attribute of six
number[GCM570]s, separated by whitespace:

"a b c d Tx Ty"

Tx and Ty describe distances and are defined in points.

Example:
<ContentObject CTM="1 0 0 1 3.14 21631.3" … />

Page 515

Page 515

A.2.11 NamedColor
XML attributes of type NamedColor are not sufficient for process color definition, but rather serve to define the
colors of preprocessed products such as Wire-O binders and cover leaflets.

The entries in the following table may be prefixed by either “Dark” or “Light”. The result may additionally be
prefixed by “Clear” to indicate translucent material. For example, “ClearDarkBlue” indicates a translucent dark blue,
“ClearBlue” a translucent blue and “Blue” indicates an opaque blue.

Table A.Named colors

Color name
White
Black
Gray
Red
Yellow
Green
Blue
Turquoise
Violet
Orange

Brown

Gold

Silver

Pink

Buff

Ivory

Goldenrod

Mustard
New in JDF 1.1
MultiColor
New in JDF 1.1
NoColor

Encoding
NamedColor are based on NMTOKEN.

Example:
<SomePlasticStuff CoverColor="ClearDarkBrown" … />

A.2.12 NameRange
XML attributes of type NameRange are used to describe a range of NMTOKEN data that are acquired from a list
of named elements, such as named pages in a PDL file. It depends on the ordering of the targeted list, which names
are assumed to be included in the NameRange. The following two possibilities exist:
1. There is no explicit ordering. In this case, alphabetical ordering is implied.
2. There is explicit ordering, such as in a list of named pages in a RunList. In this case, the ordering of the

Runlist defines the order and all pages between the end pages are included in the NameRange.

Page 516

Page 516

Encoding
A NameRange attribute is represented by two NMTOKEN[RP571], separated by a “~” (tilde) character

Example:
<XXX NameRange="Jack~Jill"/>

A.2.13 NameRangeList
XML attributes of type NameRangeList are used to describe a list of NameRanges.

Encoding
A NameRangeList is represented by a sequence of NameRanges and NMTOKEN[GCM572], separated by
whitespace.

Example:
<XXX list="A b~f x z"/>

A.2.14 DoubleList
XML attributes of type DoubleList are used to describe a variable length list of numbers [GCM573]

Encoding
A DoubleList is encoded as a string of whitespace[RP574]-separated number[GCM575]s.

Example:
<XXX list="3.14 1 .6"/>

A.2.15 DoubleRange
XML attributes of type DoubleRange are used to describe a range of numbers. Mathematical spoken, the two
numbers define a closed interval.

Encoding
A DoubleRange is represented by two number[GCM576]s,separated by a “~” (tilde) character [GCM577]

Example:
<XXX range="-3.14~5.13"/>
<XXX range="0~INF"/>

A.2.16 DoubleRangeList
XML attributes of type DoubleRangeList are used to describe a list of DoubleRanges and/or enumerated
numbers.

Encoding
A DoubleRangeList is a sequence of DoubleRanges and number[GCM578]s separated by whitespace.

Example:
<XXX list="-1~-6 3.14~5.13 7 9~128 131 255~INF[RP579]"/>

A.2.17 PDFPath[RP580]
XML attributes of type PDFPath are used in JDF for describing parameters such as trap zones and clip paths. In
PJTF, PDFPaths are encoded as a series of moveto-lineto operations. JDF has a different encoding, which is able
to describe more complex paths, such as Beziers.

Encoding
PDFPaths are encoded by restricting[GCM581] an XML string[GCM582] attribute formatted with PDF path operators.
This allows for easy adoption in PS and PDF workflows. PDF operators are limited to those described in Section
8.6.1 “Path Construction Operators” in [pdf][RP583]

Example:
<ElementWithPath path="0 0 m 10 10 l 20 20 l"/>

Page 517

Page 517

A.2.18 Rectangle
XML attributes of type Rectangle are used to describe rectangular locations on the page, sheet, or other printable
surface. A Rectangle is represented as an array of four numbers—llx lly urx ury—specifying the lower-left x,
lower-left y, upper-right x, and upper-right y coordinates of the rectangle, in that order. This is equivalent to the
ordering: Left Bottom Right Top. All numbers are defined in points.

Encoding
To maintain compatibility with PJTF, Rectangles are primitive data types and are encoded as a string of four
number[GCM584]s, separated by whitespace:

"llx lly urx ury" or “l b r t"

Example:
<ContentObject ClipBox="0 0 3.14 21631.3" … >

Implementation Remark
Since all numbers are real numbers, any comparison of boxes should take into account certain rounding errors. For
example, different XYPairs may be considered equal when all numbers are the same within a range of 1 point.

A.2.19 RectangleRange
XML attributes of type RectangleRange are used to describe a range rectangles.

Encoding
A RectangleRange is represented by one or two Rectangle[GCM585]s, separated by a “~” (tilde) character.

Example:
<XXX range="1 2 3 4~5 6 7 8"/>
<XXX range="-INF -INF 3 4~0 1 INF INF"/>

A.2.20 RectangleRange List
XML attributes of type RectangleRangeList are used to describe a list of rectangle ranges.

Encoding
A RectangleRangeList is represented by sequence of RectangleRanges and Rectangles, separated by
whitespace.

Example:
<XXX RectangleRangeList="1 2 3 4~[GCM586]5 6 7 8 9 10 11 12 13 14 15 16"/>[rp587]
 () ()() ()

A.2.21 shape
XML attributes of type shape are used to describe a three dimensional box.

Encoding
A shape is represented as an array of three positive or zero number[GCM588]s—x y z—specifying the Width x,
height y and depth z coordinates of the shape, in that order.

Example:
<XXX Dimensions=”10 20 40"/>

A.2.22 ShapeRange
XML attributes of type ShapeRange are used to describe a range of Shapes (three dimensional boxes). The range
“x1 y1 z1~x2 y2 z2” describes the area x1<=x<=x2 and y1<=y<=y2 and z1<=z<=z2. Thus the Shape “2 3 4” is
within “1 2 1~ 3 4 4”. Note that this implies that all three values of the second entry must be >= the corresponding
values of the first entry. The following example is therefore invalid: “1 2 1~[GCM589]0 4 4”.

Page 518

Page 518

Encoding
A ShapeRange is represented by two Shapes, separated by a “~” (tilde) character

Examples[RP590]:
<XXX Shaperange=”1 2 3~4 5 6"/>
<XXX Shaperange=”1 2 3~4 INF 6"/>[RP591]

A.2.23 ShapeRangeList
XML attributes of type ShapeRangeList are used to describe a list of ShapeRange and/or Shapes.

Encoding
A ShapeRangeList is a sequence of ShapeRange and Shapes separated by whitespace.

Example:
The brackets below the example illustrate the grouping of Shapes and ShapeRanges.
<XXX Shapelist="100 200 300~110 220 330 150 300 150 2 3 0~[RP592]3 4 5"/>
 ()()()

A.2.24 sRGBColor
XML attributes of type sRGBColors are used to specify sRGB colors.

Encoding
sRGBColors are primitive data types and are encoded as a string of three number[GCM593]s in the range of [0…1.0]
separated by whitespace A value of 0 specifies no intensity (black) and a value of 1 specifies full intensity:
“r g b”

Example:
<Color sRGB="0.3 0.6 0.8" … >

 TimeRangeDeprecated in JDF 1.2. Renamed to DateTimeRange
[rp594]

A.2.25 TransferFunction
XML attributes of type TransferFunction are functions that have a one-dimensional input and output. In JDF, they
are encoded as a simple kind of sampled functions and used to describe transfer curves of processes such as Film-
to-Plate-copy, LaserCalibration and Press Calibration. They may also be used in Color specifications, e.g.,
when converting a spot tint value to a CMYK value.

A transfer curve consists of a series of XY pairs where each pair consist of the stimuli(X) and the resulting
value(Y). To calculate the result of a certain stimuli, the following algorithms must be applied:

1. If x < = first stimuli, then the result is the y value of the first xy pair.
2. If x > = the last stimuli, then the result is the y value of the last xy pair.
3. Search the interval in which x is located.
4. Return the linear interpolated value of x within that interval.

Encoding
A TransferCurve is encoded as a string of space-separated number[GCM595]s. The numbers are the XY pairs that
build up the transfer curve.

Example:
<someElementWithTransferCurve someCurve="0 0 .1 .2 .5 .6 .8 .9 1 1"/>

A.2.26 XYPair
XML attributes of type XYPair are used to describe sizes like Dimensions and PageSize. They can also be used
to describe positions on a page. All numbers that describe lengths are defined in points.

Page 519

Page 519

Encoding
XYPair attributes are primitive data types and are encoded as a string of two number[GCM596]s, separated by
whitespace:
“x y”

Example:
<CutBlock BlockSize="612 792">

Implementation Remark
Since all numbers are real numbers, comparison of XYPairs should take into account certain rounding errors. For
example, different XYPairs may be considered equal when all numbers are the same within a range of 1 point.

A.2.27 XYPairRange
XML attributes of type XYPairRange are used to describe a range of XYPairs. The range “x1 y1~x2 y2” describes
the area x1<=x<=x2 and y1<=y<=y2. Thus the XYPair “2 3” is within “1 2~[GCM597]3 4”. Note that this implies
that both values of the second entry must be >= the corresponding values of the first entry. The following example is
therefore invalid: “1 2~[GCM598]0 4”.

Encoding
An XYPairRange is represented by two XYPairs, separated by a “~” (tilde) characte[GCM599]
[RP600]

Examples[RP601]:

<XXX XYrange=”1 2~3 4"/>
<XXX XYrange=”-INF 2~3 INF"/>[RP602]

A.2.28 XYPairRangeList
XML attributes of type XYPairRangeList are used to describe a list of XYPairRange and/or XYPairs.

Encoding
A XYPairRangeList is a sequence of XYPairRange and XYPairs separated by whitespace.

Example:
The brackets below the example illustrate the grouping of XYPairs and XYPairRanges.
<XXX XYlist="100 200~110 220 150 300 150 350 ~INF INF[RP603]"/>
 ()()()()

A.2.29 xpath New in JDF 1.2
XML attributes of type xpath are used to represent a path to an element or
attribute in an XML document. Refer to XPath [http://www.w3.org/TR/xpath]

Encoding
An xpath is a token (a constrained string [refer to XML Schema Part 2: datatypes
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#token])

Example
<XXX XYPath=”//ResourcePool/RunList/@Status”/>[GCM604]

A.2.30 XYRelation
XML attributes of type XYRelation define the relationship between two ordered numbers. The allowed values are
specified in the following table.

gt X>Y
ge X>=Y
eq X==Y

Page 520

Page 520

le X<=Y
lt X<Y
ne X!=Y

Encoding
XYRelation is based on NMTOKEN.

Example:
<SomeBox XYRelation="gt" … />

A.3 JDF Data Structures
The following data structures are unique to JDF, although they may be comprised of existing XML structures.

A.3.1 Links
Links are defined by a combination of XML attributes of type ID and XML attributes of type IDREF. The
referenced element or target of the link contains the actual information and an ID attribute, whereas the reference or
link itself contains an IDREF attribute. The value of an ID attribute must be unique within an XML file. In order to
keep the implementation burden on JDF compliant processors low, linking between distributed JDF files is not
supported. The ID attribute of the target is always named ID. This is not required by XML, but it makes
implementation simpler. The IDREF attribute in a link, however, can have varying names depending on the link
type. The names of the IDREF attributes are defined in this document. The following example specifies a trivial
link and target pair1:

<Target ID="id1" (lots of attributes)><Subelement/></Target>
…
<Link rRef="id1"/>

A.4 JDF File Formats
This section describes the specific file formats used by JDF. JDF uses MIME files to package different files in a
single file for transmission, and when representing preview images, JDF uses the PNG image file format. The
following sections explain in what ways MIME and PNG are used in JDF.

A.4.1 MIME File Packaging[rp605]
JDF files are XML files but may contain references (URLs) to external data files. The following external data file
types are identified, although any valid MIME file type may be referenced:
• Preview images (They are encoded using the PNG format.)
• ICC Profiles
• Preflight Profiles
• PDL files (PageDescription files)

One of the requirements for JDF is to support the ability to make a single, self-contained job package that contains
the JDF with all of its related files, maintaining the external data references. That package will be send to a remote
location where it is used for further processing. This section describes how JDF uses MIME to achieve this
requirement.

MIME (Multipurpose Internet Mail Extensions) is an Internet standard that defines mechanisms for specifying
and describing the format of Internet message bodies. One of its applications is the MIME Multipart/related type and
is used by JDF. The MIME Multipart/Related Content-type specification can be found at
http://www.ietf.org/rfc/rfc2387.txt“The MIME Multipart/Related Content-type”

1 Note that the element names were chosen for simplicity and do not imply any naming conventions for targets and
links.

Page 521

Page 521

A 4.1.1 MIME Basics
MIME is comprised of headers and bodies. In case of Multipart messages, the body consists of multiple messages,
each identified by the individual MIME header and separated by an unique boundary string. Normally a MIME-user
agent uses the boundary string to separate different message parts, and JDF MIME files are compliant with that
mechanism. Furthermore, JDF defines a Content-Length mechanism that enables fast scanning of MIME files for
their body parts.

A 4.1.2 JDF Agent and Consumer [RP606]Requirements
All JDF Consumers [RP607]must be prepared to receive JDF files that are MIME encoded. They may choose not to
support it, but they should be able to handle these JDF files gracefully. Agents that do support MIME must support
Base64 and QuotedPrintable encodings.

A.4.2 HTTP 1.0 Field

Content Length
Although this field is optional, it is recommended that it be included. Content Length is used to optimize the
performance of scanning multipart messages. Each multipart bodypart may have an optional Content-Length header
field. Its syntax is identical to the syntax defined by RFC1945 “HTTP1.0”.
When present, the Content Length identifies the number of octets of the encoded bodypart. When no encoding as is the
case with 7bit, 8bit, binary, it represents the size of the bodypart. Otherwise it depends on what encoding method is
used encoding (Base64, QuotedPrintable) and what the relationship is between the encoded size and the bodypart size.
If an agent composing a MIME message can not derive a Content Length for its encoded body parts, it must omit the
Content-Length field.
An agent parsing such a message can use the Content-Length field to seek to the end of the body. This position is
calculated by using the position of the first byte of the bodypart and adding the Content Length. At that position (one
byte after the bodypart contents), the agent must check if the following characters are one of either “\r\n—boundary” or
“—boundary.” If not, the agent must ignore the Content-Length field and resume the normal MIME Multipart
behavior and restart scanning for the boundary from the beginning of the bodypart.

A.4.3 PNG Image Format
JDF uses the PNG images for representing preview images. CIP3 defined two formats: composite CMYK and
separated. With PNG, only the separated format is supported for color spaces other than RGB. The composite
CMYK or spot color representations must be represented as separated CMYK or spot colors. Thus, preview images
are stored as separate PNG images and JDF links them together. Viewable images and thumbnails can be
represented as composite RGB PNG images.

References: http://www.w3.org/Graphics/png.

Page 522

Page 522

Appendix B Schema

XML Schema for JDF (and JMF) will be published
on: http://www.CIP4.org .

The XML Schema in the current version is not
sufficient to completely validate a JDF job. For
example, partitioned resources or process node types
as defined in JDF cannot be validated by XML
Schema processors. In other words, the structure of
some elements depends on the context of usage
which cannot currently described by XML Schema.
Thus, the XML Schema for JDF will be structured in
a way that it enables a prevalidation of valid JDF-
candidates but does not preclude all syntactically
invalid files to be validated.

B.1 Using xsi:Type
XML Schema permits that multiple type definitions be derived from a base type. Wherever the schema has define an
element of that base type, it is possible for the document to indicate to a validator the particular derived type that it
has used. This it does by using the xsi:type attribute with a value of the name of the type, where the xsi tag is
associated with the Schema Instance namespace that has to be declared in the document.

Note: Use of xsi as the tag is normal practice.
Note: The selected type is namespace qualified (which permits extensions)
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.CIP4.org/JDFSchema_1_1 JDF.xsd"
 ID="BackCover" Type="DigitalPrinting" Status="InProgress" xsi:type="DigitalPrinting" Version="1.1">
 <ResourceLinkPool>
 <DeviceLink rRef="Entire_Book" Usage="Input"/>
 <RunListLink rRef="Entire_Book" Usage="Input"/>
 </ResourceLinkPool>
</JDF>
If the JDF is not in the default namespace then the type name needs to be altered accordingly
eg
<jdf:JDF
 xmlns:jdf="http://www.CIP4.org/JDFSchema_1_1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.CIP4.org/JDFSchema_1_1 ..\Version_1_2\JDF.xsd"
 ID="BackCover" Type="DigitalPrinting" Status="InProgress" Version="1.1"
 xsi:type="jdf:DigitalPrinting" >
 <jdf:ResourcePool>
 <jdf:Device ID="Device_001" Status="Available" Class="Implementation" DeviceID="Unknown
Device"/>
 <jdf:RunList ID="RunList_001" Status="Unavailable" Class="Parameter"/>
 </jdf:ResourcePool>
 <jdf:ResourceLinkPool>
 <jdf:DeviceLink rRef="Device_001" Usage="Input"/>
 <jdf:RunListLink rRef="RunList_001" Usage="Input"/>
 </jdf:ResourceLinkPool>
</jdf:JDF>

Your MIS system should be capable of validating
whether or not a JDF Job is complete and meets
JDF requirements. The schema itself may be sub-
setted into multiple schemas that are used for
validation purposes at different points in the
workflow. For instance, a JMF schema subset may
be used to test and operated JDF-compliant
devices on your shop floor. A process intent subset
may be used to check customer submitted job
specifications.

Using JDF Schema

Page 523

Page 523

The JDF Schema defines types for JDF Process nodes and JMF Messages. It is recommended that these types are
used with xsi:type.

B.1.1 Using xsi:type with JDF Nodes
When used with JDF Nodes then all processes defined in Section 6 are supported. Furthermore the value to be used
is identical to the process type, thus a JDF Node that has a Type of 'DigitalPrinting' can inform validators to use the
schema definition for DigitalPrinting nodes by also setting xsi:type to 'DigitalPrinting'.
Some JDF Nodes are general in their nature and do not have a restricted definition eg Product, Combined.
General definitions with the appropriate name are provided to enable consistent use of xsi:type.

B.1.2 Using xsi:type with JMF Messages
JMF Messages are organized into categories - Command, Acknowledge etc, and each of these categories has
messages for each message class - Events, KnownControllers etc. Because it is the convolution of these two that are
the unique derived types the name used in xsi:type has to be the convolution of the message category and class.
The to query an event a Query message with an Event QueryTypeObj would be used. The type definition name
employed by the JDF Schema would therefore be QueryEvent.

<JMF TimeStamp="2000-11-07T12:15:56Z" SenderID="TestSender"
 xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.CIP4.org/JDFSchema_1_1 JDF.xsd">
 <Query ID="Message_001Q" Type="Events" xsi:type="QueryEvents">
 <NotificationFilter/>
 </Query>
 <Response ID="Message_001R" Type="Events" refID="Q001" xsi:type="ResponseEvents">
 <NotificationDef Classes="Error" Type="Barcode"/>
 </Response>
</JMF>

Note JMF messages also do not have to be in the default namespace as in the JDF Node example above. [RP608]

Page 524

Page 524

Appendix C Converting PJTF to JDF
This appendix is provided as a non-normative guide to developers writing applications that will consume PJTF
version 1.1 jobs and produce JDF.

C.1 PJTF Object Conversion
Many PJTF objects are directly translatable to JDF processes or resources. Others, especially those containing
multiple keys, correspond to multiple processes and resources. For example, the JobTicketContents object
corresponds to four JDF processes and three JDF resources. And still others, such as AuditObject, cannot be
translated to JDF at all.

Listed below are the prominent PJTF objects and the JDF components to which they correspond. Each section
heading contains the title of the object in question, and each section contains a descriptive table. The first column in
the tables, entitled JDFKey or Object, contains a list of the keys or objects contained within the object being
described. For example, the Accounting object contains an Address object, while the Address object contains an
Address key. If no subobject or key is contained within the object, then the first column is left blank and the
process or resource listed is assumed to correspond directly to that object.

C.1.1 Accounting
PJTF Key or Object JDF Process JDF Resource Description
Address - Address -

C.1.2 Address
PJTF Key or Object JDF Process JDF Resource Description
Address - Address Used whenever people or organizations need to

be identified.

C.1.3 Analysis
PJTF Key or Object JDF Process JDF Resource Description
All keys - Analysis -

C.1.4 AuditObject
Audit objects must not be translated. PJTF Audit objects describe the results of operations on files, while JDF Audit
elements describe the results of processes, so there is a basic incompatibility between the two. In addition, PJTF
Audit objects will not be needed to direct further processing of the job after it is converted to JDF.

C.1.5 ColorantAlias
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a subelement of the

ColorantControl resource.

C.1.6 ColorantControl
PJTF Key or Object JDF Process JDF Resource Description
All keys - ColorantControl -

C.1.7 ColorantDetails
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Keys in the PJTF ColorantDetails dictionary

are a set of colorant names. The values are
DeviceColorant objects.

Page 525

Page 525

C.1.8 ColorantZoneDetails
PJTF Key or Object JDF Process JDF Resource Description
All keys - TrappingParams DeviceColorant map to the

ColorantZoneDetails subelement of the
TrappingParams. resource.

C.1.9 ColorSpaceSubstitute
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a subelement of the

ColorantControl resource.

C.1.10 Delivery
PJTF Key or Object JDF Process JDF Resource Description
All keys Delivery Address Specifies a quantity of a product to be

delivered to an address.

C.1.11 DeviceColorant
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a Color subelement of the ColorPool

resource. The name is entered in the
SeparationSpec of a TrappingDetails
resource.

C.1.12 Document
JobTicketContents, Document and PageRange objects are decomposed into a number of different JDF objects.
Most of the key/value pairs translate into various resources.

PJTF Key or Object JDF Process JDF Resource Description
bleed media trim - RunList Maps to attributes of the RunList

resource or to processes in which
they are used.

ColorantControl - ColorantControl -
Files - RunList

FileSpec
Maps to FileSpec resources
contained within RunList elements.

Finishing AdhesiveBinding
EndSheetGluing
SaddleStitching
SideSewing
Stitching
ThreadSewing

AdhesiveBinding-
Params
EndSheetGluing-
Params
SaddleStitching-
Params
SideSewingParams
StitchingParams
ThreadSewingParams

-

FontPolicy - FontPolicy The resource is attached to the
applicable processes.

IgnoreHalftone - - Maps to the IgnoreHalftone attribute
of the PDFToPS-
ConversionParams resource.

Page 526

Page 526

PJTF Key or Object JDF Process JDF Resource Description
InsertPage Imposition RunList

Sheet
Occurs as an attribute either of
RunList resources or of Sheet
resources referenced by Imposition
processes.

NewSheet Imposition InsertSheet NewSheets become instances of
InsertSheet resources on
RunLists with a SheetUsage
attribute of “Header”.

Media - Media Maps to a subelement of the
ExposedMedia resource.

MediaSource - - Maps to a Media resource
refelement of a
DigitalPrintingParams resource.

MediaUsage Dividing DividingParams Specifies controls for roll-fed media.
Rendering Rendering - -
Trailer Imposition InsertSheet Trailers become instances of

InsertSheet resources on
RunLists with a Usage attribute of
“trailer”

Trapping Trapping - -

C.1.13 Finishing
Finishing operations are derived from CIP3 PPF. Conversion of PJTF Finishing objects is vendor-dependent, since
the PJTF specification does not describe any detail for Finishing objects.

PJTF Key or Object JDF Process JDF Resource Description
All keys AdhesiveBinding

EndSheetGluing
SaddleStitching
SideSewing
Stitching
ThreadSewing

AdhesiveBinding-Params
EndSheetGluing-Params
SaddleStitching-Params
SideSewing-Params
StitchingParams
ThreadSewing-Params

-

C.1.14 FontPolicy
PJTF Key or Object JDF Process JDF Resource Description
All keys Interpreting FontPolicy

C.1.15 InsertPage
PJTF Key or Object JDF Process JDF Resource Description
All keys - RunList InsertPage objects may generate a

InsertSheet resource within a RunList.

C.1.16 InsertSheet
PJTF Key or Object JDF Process JDF Resource Description
All keys - InsertSheet -

Page 527

Page 527

C.1.17 Inventory
PJTF Key or Object JDF Process JDF Resource Description

C.1.18 JobTicket
PJTF Key or Object JDF Process JDF Resource Description
All keys except Audit,
Scheduling,
PreflightResults

Any process Any resource Keys may be represented at various levels of
the JDF tree. Contents are represented as
processes, resources, and versions.

C.1.19 JobTicketContents
JobTicketContents, Document and PageRange objects are decomposed into a number of different JDF objects.
Most of the key/value pairs translate into various resources.

PJTF Key or Object JDF Process JDF Resource Description
Accounting - - Maps to the CustomerInfo element.
Administrator - - Maps to the CustomerInfo element.
ColorantControl - ColorantControl -
Delivery Delivery DeliveryParams -
Documents - RunList May require more than one RunList

resource.
EndMessage - - Maps to the End attribute of the NodeInfo

element.
Finishing AdhesiveBinding

EndSheetGluing
SaddleStitching
SideSewing
Stitching
ThreadSewing

AdhesiveBinding-
Params
EndSheetGluing-
Params
SaddleStitching-
Params
SideSewing-
Params
StitchingParams
ThreadSewing-
Params

-

FontPolicy Interpreting
PDFToPS-
Conversion

FontPolicy The FontPolicy resource is attached to any
process that uses it.

IgnoreHalftone - - Maps to the IgnoreHalftone attribute of the
PDFToPS-ConversionParams
resource.

InsertPage Imposition RunList
Sheet

Occurs as an attribute either of RunList
resources or of Sheet resources referenced
by Imposition processes.

JobName CustomerJobName in the CustomerInfo
element of the JobInfo node.

Layout Imposition Layout -

Page 528

Page 528

PJTF Key or Object JDF Process JDF Resource Description
MarkDocuments Imposition RunList Requires one of two RunList resources,

each of which is a resource of the
Imposition process.

MediaSource - - Maps to a MediaSource resource
refelement of a DigitalPrintingParams
resource.

MediaUsage Dividing DividingParams Specifies controls for roll-fed media.
NewSheet Imposition InsertSheet NewSheets become instances of

InsertSheet resources on RunLists with
a Usage attribute of “header”

PrintLayout Imposition - Maps to a subelement of the Layout
resource.

Rendering Rendering - Maps to the attribute of the Rendering
process.

Scheduling - - The Scheduling object is not translated.
StartMessage - - Maps to the Start attribute of the NodeInfo

element.
Submitter - - Maps to the CustomerInfo element.
Trailer Imposition InsertSheet Trailers become instances of InsertSheet

resources on RunLists with a Usage
attribute of “trailer”

Trapping Trapping - -

C.1.20 JTFile
PJTF Key or Object JDF Process JDF Resource Description
All keys - - In most cases, JTFile objects will become

FileSpec resources.
If a FilesDictionary is present, the resource
may need to be partitioned by Separation.
If a PlaneOrder is present, RunLists which
reference the file will need to be partitioned by
Separation and structured to reference the page
in the file appropriately.

C.1.21 Layout
PJTF Key or Object JDF Process JDF Resource Description
All keys Imposition Layout -

C.1.22 Media
PJTF Key or Object JDF Process JDF Resource Description
All keys - Media Maps to a subelement of the ExposedMedia

resource.

Page 529

Page 529

C.1.23 MediaSource
PJTF Key or Object JDF Process JDF Resource Description

ManualFeed

- - Maps to the ManualFeed attribute of a
MediaSource resource pointed to by a refelement
of a DigitalPrintingParams or
IDPrintingParams resource.

LeadingEdge Maps to the LeadingEdge attribute of a
MediaSource resource refelement of a
DigitalPrintingParams or IDPrintingParams
resource.

Media - - Maps to a Media refelement of a MediaSource
resource.

MediaClass - - Maps to the MediaTypeDetails attribute of a Media
resource of a DigitalPrintingParams or
IDPrintingParams resource.

Position - - Maps to the MediaLocation attribute of a
MediaSource resource.

C.1.24 MediaUsage
PJTF Key or Object JDF Process JDF Resource Description
All keys Dividing DividingParams Specifies controls for roll-fed media.

C.1.25 PageRange
JobTicketContents, Document and PageRange objects are decomposed into a number of different JDF objects.
Most of the key/value pairs translate into various resources.

PJTF Key or Object JDF Process JDF Resource Description
bleed media trim - RunList Maps to attributes of the RunList resource

or to processes in which they are used.
ColorantControl - ColorantControl -
Delivery Delivery DeliveryParams -
Files - RunList

FileSpec
Maps to FileSpec resources contained
within RunList elements.

Finishing AdhesiveBinding
EndSheetGluing
SaddleStitching
SideSewing
Stitching
ThreadSewing

AdhesiveBinding-
Params
EndSheetGluing-
Params
SaddleStitching-
Params
SideSewing-
Params
StitchingParams
ThreadSewing-
Params

-

FontPolicy Interpreting
PDFToPS-
Conversion

FontPolicy The FontPolicy resource is attached to any
process that uses it.

Page 530

Page 530

PJTF Key or Object JDF Process JDF Resource Description
IgnoreHalftone - - Maps to the IgnoreHalftone attribute of the

PDFToPS-ConversionParams resource.
InsertPage Imposition RunList

Sheet
Occurs as an attribute either of RunList
resources or of Sheet resources referenced
by Imposition processes.

Media - Media Maps to a subelement of the
ExposedMedia resource.

MediaSource - -- Maps to a Media resource refelement of a
DigitalPrintingParams resource.

MediaUsage Dividing DividingParams Specifies controls for roll-fed media.
NewSheet Imposition InsertSheet NewSheets become instances of

InsertSheet resources on RunLists with a
Usage attribute of “header”

Rendering Rendering - -
Trailer Imposition InsertSheet Trailers become instances of InsertSheet

resources on RunLists with a Usage
attribute of “trailer”

Trapping Trapping - -
Which - RunList The Pages attribute or combination of

FirstPage and SkipPage in RunLists
reflect the values of Which. Note: More
than one PageRange may generate Pages
entries for a single Run.

C.1.26 PlacedObject
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a subelement of the Surface

resource.

C.1.27 PlaneOrder
PJTF Key or Object JDF Process JDF Resource Description
All keys - RunList See Section 0,

Translating the Contents Hierarchy

C.1.28 Preflight
PJTF Key or Object JDF Process JDF Resource Description
All keys Preflight - -

C.1.29 PreflightConstraint
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a subelement of the PreflightProfile

resource.

C.1.30 PreflightDetail
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a subelement of the

PreflightAnalysis resource.

Page 531

Page 531

C.1.31 PreflightInstance
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Subelement of the PreflightAnalysis

resource

C.1.32 PreflightInstanceDetail
PJTF Key or Object JDF Process JDF Resource Description
All keys Subelement of the PreflightAnalysis

resource

C.1.33 PreflightResults
PJTF Key or Object JDF Process JDF Resource Description
All keys - - This object is not translated.

C.1.34 PrintLayout
PJTF Key or Object JDF Process JDF Resource Description
All keys Imposition - Maps to a subelement of the Layout resource.

C.1.35 Profile
PJTF Key or Object JDF Process JDF Resource Description
All keys Preflighting PreflightProfile

C.1.36 Rendering
PJTF Key or Object JDF Process JDF Resource Description
All keys Rendering RenderingParams -

C.1.37 ResourceAlias
PJTF Key or Object JDF Process JDF Resource Description
Location PDLResourceAlias Location is Device
File PDLResourceAlias File is supported via the SourceFile fileref.
This PDLResourceAlias This is supported via the SourceFile fileref.
ResourceName PDLResourceAlias This key is not used. References to the aliased

resource run via the ResourceLink element.
SourceFile PDLResourceAlias Source file maps to an attribute of this

resource.

PJTF ResourceAlias objects provide a unified namespace that allows each PJTF object to refer to the resources it
needs to execute the job of which it is a part. More specifically, PJTF version 1.1 supports the use of
ResourceAlias objects to allow references to halftones and colorspaces.

For the ResourceAlias::Location key, the File and This keys are supported by a SourceFile attribute whose
value is a fileref. The translator must provide a reference to the original PJTF file (for this) or a copy that contains
the referenced resources.

C.1.38 Scheduling
Scheduling objects are not translated. It is presumed that translation of PJTF jobs into JDF is performed to allow
the reuse of PJTF jobs that have been archived. Thus, the original scheduling information embedded in the PJTF is
irrelevant.

Page 532

Page 532

C.1.39 Signature
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a subelement of the Layout resource.

C.2 Sheet
PJTF Key or Object JDF Process JDF Resource Description
All keys - Sheet -

C.2.1 SlipSheet
PJTF Key or Object JDF Process JDF Resource Description
All keys - InsertSheet SlipSheets become an InsertSheet resource

which may define new media, and which has a
Usage attribute of “trailer”.

C.2.2 Surface
PJTF Key or Object JDF Process JDF Resource Description
All keys - Surface -

C.2.3 Tile
PJTF Key or Object JDF Process JDF Resource Description
All keys Tiling Tile -

C.2.4 Trapping
PJTF Key or Object JDF Process JDF Resource Description
All keys Trapping TrappingParams -

C.2.5 TrappingDetails
PJTF Key or Object JDF Process JDF Resource Description
All keys - TrappingDetails See the PJTF DeviceColorant object entry for

details on how it is translated.

C.2.6 TrappingParameters
PJTF Key or Object JDF Process JDF Resource Description
All keys - TrappingParams -

C.2.7 TrapRegion
PJTF Key or Object JDF Process JDF Resource Description
All keys - TrapRegion -

C.3 Translating Values
The PJTF version 1.1 specification lists twelve data types that may occur for the values of keys in PJTF objects.
The following table describes how each of these datatypes must be represented in JDF.

PJTF Data Type JDF Representation Comment
boolean boolean -
Number number -
Name name -

Page 533

Page 533

PJTF Data Type JDF Representation Comment
Dictionary element All PJTF objects are dictionaries. These dictionaries generally

become resources or processes as specified above.
In addition, some PJTF objects contain embedded dictionaries
whose keys are not specified (examples include TrappingParameters
and ColorantDetails). These dictionaries are converted to arrays of
elements, with the key name from the PJFT dictionary becoming an
attribute of the subelement.

Stream URL PJTF supports PDF streams by reference to an object in a PDF file.
The same mechanism is supported in JDF, with the JDF URL data
type being used to identify the PDF file.

Rectangle rectangle -
Filespec URL -
Text string -
String string -
Date date -
Phone number Phone number The standard for the representation of phone numbers in PJTF is

used here as well.

C.4 Translating the Contents Hierarchy
The contents of a PJTF job are represented in the “contents hierarchy”. The hierarchy is headed by the
JobTicketContents object, with Document, PageRange and JTFile objects occurring below. The hierarchy implicitly
specifies the sequence of source pages for the job.

The contents sequence comprises all the pages specified by the first, then second, then last PageRange for the
first Document, followed by the pages specified by the first, then last PageRange for the second Document,
followed by the pages for the first, then last PageRange for the last Document. This sequence of source pages is
consumed when the job is printed via PrintLayout (discussed below).

The contents hierarchy must be translated into a JDF RunList resource. Each LayoutElement entry in a RunList
can reference a file via the FileSpec:URL attribute and a set of pages in the file via the Pages element. There are
several additional issues related to this translation which are discussed below.

C.5 Representing Pages
In PJTF, source pages are represented as a hierarchy of Document and PageRange objects. Pages are referenced
by page number out of files; files are represented in JTFile objects. PageRange objects can reference a single
page, or a set of contiguous pages.

In JDF, source pages are represented as a set of partitions of the RunList, which reference files via URL, and
pages from the files via an IntegerRangeList (such as ‘1 3~5 7~ -1‘).

As a consequence of this difference, pages from more than one PJTF PageRange object can be represented in a
single RunList resource, assuming that all the other keys for the multiple PageRanges have the same values.

C.6 Representing Preseparated Documents
In preseparated workflows, all planes of each page may occur in the same file, or there may be a separate file for
each plane. When all the planes occur in a single file, PJTF JTFile objects use a PlaneOrder object to specify
which pages in the file represent each colorant plane for each source page. When each plane occurs in a separate
file, the JTFile objects use a FilesDictionary to associate files with each colorant.

In JDF, both of these cases are handled through the RunList resource. In the case where the planes occur in
separate files, the RunList is partitioned; and each partition contains the name of the colorant and the URL for the
file for that colorant. In the case where the colorant planes are intermingled via PlaneOrder objects, the RunLists

Page 534

Page 534

are partitioned, but only a single URL is used for each RunList partition. Each PlaneOrder object will become one
RunList partition.

C.7 Representing Inherited Characteristics
In PJTF, many of the characteristics of source pages—including MediaBox, ColorantControl, and InsertPage—
may occur at all levels of the contents hierarchy. This inheritance scheme is not provided in JDF. Therefore, the
correct values for each of the attributes must be translated to the appropriate element for each RunList element.

C.8 Translating Layout
PJTF provides two mechanisms to image a set of source pages onto a larger surface for printing: Layout and
PrintLayout. Layout is a mechanism for explicitly associating specific source pages with specific locations on the
surface. PrintLayout is a method for automatically positioning a sequence of source pages onto a series of surfaces.

Layout is represented as a hierarchy of PJTF objects: Signatures, Sheets, Surfaces and PlaceObjects. The
Layout hierarchy may have one or more Signature objects. Each Signature must have one or more Sheets. Each
Sheet must have 1 or 2 Surfaces. Each Surface may have 0 or more PlacedObjects.

PlacedObjects directly reference source pages by referring to a Document object via its Doc key, and a specific
page within the sequence of pages specified by all the PageRanges in Pages arrays for that Document.

JDF defines resources which are direct translations of Signature, Sheet and Surface. PlacedObjects and
MarkObjects are subelements of the Surface resource. Note: PlacedObjects identify specific source pages via a
combination of Ord and either Doc or MarkDoc. Ord identifies one page out of the sequence of pages specified by
all the PageRange objects for the document identified by either Doc or MarkDoc.
In the JDF PlacedObject subelement, the Ord attribute is an index into the entire sequence of pages specified by all
the partitions with IsPage = true in the RunList. So there is a translation required between the PJTF Ord value
and the JDF Ord attribute.

Similarly, in the JDF MarkObject subelement, the Ord attribute is an index into the entire sequence of pages
specified by all the partitions in the RunList for marks. So there is a translation required between the PJTF Ord
value and the JDF Ord attribute.

C.9 Translating PrintLayout
PrintLayout uses the same hierarchy of objects as Layout, but with the restriction that there can be only a single
Signature. The Signature is used as a template that is repeated to consume all the source pages specified by the
contents hierarchy for the job.

In addition, the PlacedObjects that occur in a PrintLayout hierarchy are not references to specific source pages.
Instead, they represent the intent that a page from the sequence of source pages specified by the contents hierarchy be
consumed and placed onto the Surface each time the Signature is executed.

In JDF, PrintLayout is represented via the same set of resources as Layout, except that the top of the hierarchy is
an AutomatedLayout resource instead of Layout. This resource is constrained to have only one Signature resource.
Note that when translating PJTF PlacedObjects to PlacedObject subelements of a Surface resource in the
AutomatedLayout hierarchy, the Ord values from the PJTF PlacedObjects need not be modified. However, as in the
creation of Layout, the Ord attribute for JDF MarkObject subelements are indices into the entire sequence of pages
specified by all the partitions in the RunList for marks. So there is a translation required between the PJTF Ord
value and the JDF Ord attribute.

C.10 Translating Trapping
Trapping controls are represented in PJTF as several objects: Trapping, TrappingDetails, ColorantDetails and
DeviceColorants; TrappingParameters and ColorantZoneDetails; and TrapRegions. These objects can occur in
multiple places in the PJTF job, and they work together to determine, for each page in the job, whether it will be
trapped and how. There is also a key in the JobTicketContents object, TrappingSourceSelector, which determines
which set of trapping controls will be honored.

The trapping controls in PJTF are the same, whether the trapping will be done pre-RIP or in-RIP. In translating
PJTF trapping controls to JDF, there are several tasks to perform:
• Create the required Trapping node

Page 535

Page 535

• Add the resources to represent the TrappingParameters which will be used
• Create the resources which represent the TrapRegions which will be used
• Determine the pages to be trapped
• Determine which controls to use for each page
• Add references to the pages in the RunList in the TrapRegion resource

Note: The contents hierarchy for the PJFT job must be translated into RunLists before trapping objects can be
translated. Paths in JDF are specified as a set of path operators. PJTF TrapZone paths are a sequence of coordinates
with an implied moveto at the beginning, and an implied closepath the end.

Page 536

Page 536

Appendix D Converting PPF to JDF
This appendix gives non-normative advice on how to convert CIP3 PPF 3.0 files to JDF encoded files. Since JDF was
designed with the intention of providing the highest possible level of compatibility with PPF, many of these
conversions are relatively straightforward. From the point of view of JDF, CIP3’s PPF is mainly resource-based. Most
of the PPF structures were, therefore, translated to JDF resources of a corresponding process. Meanwhile, the PPF
product definition operations are easily translated to JDF processes of the same name, as quoted in
CIP3ProductOperation. This kind of conversion is possible because the component structure of PPF is adopted by
JDF, with some enhancements. Parameters of PPF product definition operations (CIP3ProductParams) are given the
abbreviated name “Params,” and this name is appended to the CIP3ProductOperation name. Thus SideSewing
becomes SideSewingParams.

In many cases, PPF key names became JDF attribute or element names with the “CIP3” prefix removed. An
example of this kind of translation is provided below, and the CIP3 product structure shown in the example is
expressed as a JDF process in Figure D.1, following the example.

Example: A CIP3 PPF product definition operation

/CIP3Products [
<<

/CIP3ProductName (sewed book block)
/CIP3ProductOperation /ThreadSewing
/CIP3ProductParams <<

/NumberOfNeedles 4
/GlueLineRefSheets [0]
/GlueLine <<

...
>>
/BlindStitch false
/Sealing false

>>
/CIP3ProductComponents
[

<<
/SourceType /PartialProduct
/SourceProduct (book block)
...

>>
]

>>

<<
 /CIP3ProductName (book block)
 % ... the definition of the book block operation would go here ...
>>
] def

Component
Component

ThreadSewing
ThreadSewingParams

Figure D.8.1 JDF node of a CIP3 product structure

In Figure D.1, the input Component represents the “book block,” the output Component represents the “sewed
book block,” and ThreadSewingParams covers all information of the CIP3ProductParams structure. Whenever
possible, the formal conversion and translation conventions described above were followed, but because extensions
and operations new to PPF are included in JDF, some exceptions were made. These exceptions are explained in

Page 537

Page 537

detail for each PPF structure in the sections that follow. Before they are explained, however, a translation of PPF
data types is provided.

D.1 Converting PPF Data Types
The following table shows all PPF data types, and how they are transformed. All measuring units of CIP3 must be
converted to the JDF native unit point (1/72 inch). Comments are only provided when there is something unusual or
noteworthy about the translation; thus, not all translations require comment.

Table D.1 Conversion of PPF Data Types

PPF Data Type JDF Data Type Comments
boolean boolean -
Integer integer -
Real double The exponent symbol must be a capital “E” in XML.
Number double The exponent symbol must be a capital “E” in XML.
Name enumeration or

NMTOKEN
When PPF Names are used as a closed set of predefined values, they are
converted to an enumeration. Otherwise, they are converted to an
NMTOKEN.

String string Some PostScript string characters cannot be used in XML.
Array Sequence of

elements or
IntegerList or
DoubleList

If the array consists of homogeneous integers or doubles, it is converted
to an IntegerList or DoubleList, otherwise to a sequence of
corresponding elements.

Dictionary element In most cases, the structure of a Dictionary is directly converted to a
XML element. Exceptions to this rule are described in the following
sections.

D.2 PPF Product Definitions
The information stored in CIP3Products and CIP3FinalProducts is implicitly expressed by the structure of the
JDF tree. Each product definition step is converted to a JDF node, and a product node is created for every final
product of a PPF file. This is also the case for each partial product that is used in two or more final products. The
following table provides information that explains how to accomplish these transformations and make these
conversions. The content of the entities CIP3ProductJobName, CIP3ProductJobCode, CIP3ProductCopyright
and CIP3ProductCustomer must also be copied to the parent product node. The sections that follow contain
information about the conversion requirements of prominent postpress processes.

Table D.2 JDF Representation of a product definition step

PPF Key JDF Representation Comments
CIP3ProductName This is expressed by an output

resource link.
-

CIP3ProductOperation JDF node See Section 3.1 JDF Nodes.
CIP3ProductParams Resource identified by the name

of the JDF node + “Params”
For example, during a CIP3ProductOperation
of the type “SaddleStitching”, the JDF
representation of the CIP3ProductParams is
SaddleStitchingParams

CIP3ProductComponent Component See Section D.2.1, below
CIP3ProductJobName Comment element of the JDF

node
-

Page 538

Page 538

PPF Key JDF Representation Comments
CIP3ProductJobCode JobID or JobPartID attribute of

the JDF node
If the output of this step is a final product and it is
only final product, it should be converted into
JobID of the root node. Otherwise, it is
converted into a JobPartID of the corresponding
process node.

CIP3ProductCopyright Comment element of the JDF
node

-

CIP3ProductCustomer CustomerInfo element of the
JDF node

Note that the CustomerInfo element is
structured, while the CIP3ProductCustomer is
not.

CIP3ProductVolume Amount attribute of the output
Component resource link

-

D.2.1 Comparison of the PPF Component to the JDF Component
The structure of the PPF Component is very similar to the structure of the JDF Component, so it is easy to
convert one to the other. The following table gives advice on how to do this. Some information stored in the PPF
Component must be used for linking the correct resources to a process. Other implicit information, such as the
bounding box of the component or an overfold, must be calculated and explicitly specified in the subelements of the
Component. Furthermore, the appropriate algorithms can be very complex for some operations, such as folding.
For further information about the Component resource, see Section 7.2.28 Component.

Table D.3 Converting a PPF Component

PPF Key JDF Representation Comments
SourceType ComponentType attribute of Component -
SourceSheet SourceSheet attribute of Component -
- SheetPart attribute of Component Calculable out of the cut block structure.
SourceBlock Expressed by an input resource link to an

output Component of a previous Cutting
process.

see Section D.3.6 Cutting Data

SourceProduct Expressed by an input resource link to a
Component.

-

Params Transformation attribute of Component In most CIP3 operations, there is only one
component parameter called Orientation. This
matrix is renamed to Transformation. The only
exception is the EndSheetGluing process. See
Section EndSheetGluing for more information.

D.2.2 Collecting
To convert a Collection operation, follow the previous descriptions. This process contains no special considerations
to take into account.

D.2.3 Gathering
To convert a Gathering operation, follow the previous descriptions. This process contains no special considerations
to take into account.

D.2.4 ThreadSewing
Convert the entries of CIP3ProductParams structure directly to the ThreadSewingParams resource. Add this
resource as an input resource link to the originated ThreadSewing process. See Section 7.2.143
ThreadSewingParams for more information.

Page 539

Page 539

D.2.5 SaddleStitching
Convert the entries of CIP3ProductParams structure directly to the StitchingParams resource. Set
StitchType=”Saddle”. Add this resource as an input resource link to the originated Stitching process. See
Stitching for more information.

D.2.6 Stitching
Convert the entries of CIP3ProductParams structure directly to the StitchingParams resource. Set
StitchType=”Side”. Add this resource as an input resource link to the originated Stitching process. See Section
Stitching for more information.

D.2.7 SideSewing
Convert the entries of CIP3ProductParams structure directly to the ThreadSewingParams resource. Add this
resource as an input resource link to the originated ThreadSewing process. See ThreadSewing for more information.

D.2.8 EndSheetGluing
The EndSheetGluing CIP3 operation is the only operation that requires more information than Orientation in the PPF
Component Params. This additional information of the front and the back end sheet components is transferred to the
EndSheetGluingParams resource, as described in the following table. See Section 7.2.52 for more information.

Table D.4 Converting the PPF EndSheetGluing operation to JDF

PPF Key JDF Representation Comments
Offset Offset attribute of the EndSheet element

of EndSheetGluingParams
-

GlueLine GlueLine element of the EndSheet
element of EndSheetGluingParams

See Section 7.2.52 for information on how to
convert the GlueLine structure.

D.2.9 AdhesiveBinding
The PPF main adhesive binding operation dictionary is translated to the AdhesiveBindingParams resource. All
single suboperations that were resident in the PPF Processes array are converted to special elements inside the
AdhesiveBindingParams (see Section 7.2.3 AdhesiveBindingParams). For each type of adhesive binding
suboperation there exists one extra element. The suboperations SpinePreparation and GlueApplication can
simply be translated by removing the ProcessType entry and converting all other entries directly to the appropriate
element.

The following tables show how to convert the main operation and its other suboperations. Because new
features were added, the CIP3 Lining operation was renamed to SpineTaping.

Table D.5 Converting the PPF AdhesiveBinding operation to JDF

PPF Key JDF Representation Comments
Processes
- BackPreparation
- GlueApplication
- Lining
- CoverApplication

Several single process:
SpinePreparation
Gluing
SpineTaping
CoverApplication

See description above.

PullOutValue PullOutValue attribute of all
SpinePreparationParams resources, which are
part of the AdhesiveBinding process chain.

-

PullOutMake - Not needed.
FlexValue FlexValue attribute of AdhesiveBinding-

Params
-

FlexMake - Not needed.

Page 540

Page 540

The following tables show how to convert the main operation and its other sub-operations. Because new features
were added, the CIP3 Lining operation was renamed to SpineTaping. Convert the PPF AdhesiveBinding sub-
operation Lining to a SpineTaping process. Copy the parameters of the sub-operation to the equivalent attributes
of the SpineTapingParams resource and link them with the process.

Table D.6 Converting the PPF AdhesiveBinding suboperation Lining

PPF Key JDF Representation Comments
ProcessType Name of the JDF process.
TopLiningExcess TopExcess attribute of SpineTapingParams -
LiningExcess HorizontalExcess attribute of SpineTapingParams -
LiningLength StripLength attribute of SpineTapingParams -
LiningMaterial StripMaterial attribute of SpineTapingParams -
LiningBrand StripBrand attribute of SpineTapingParams -

Table D.7 Converting the PPF AdhesiveBinding suboperation CoverApplication

PPF Key JDF Representation Comments
ProcessType - There is an extra element for each type of

AdhesiveBinding suboperation.
CoverOffset CoverOffset attribute of

CoverApplication
-

ScoringOffsets and
ScoringSide

Several Score elements inside of
CoverApplication

The Score element is much more structured than
these two single entries.

D.2.10 Trimming
Convert the entries of CIP3ProductParams structure directly to the TrimmingParams resource. Add this resource
as an input resource link to the originated Trimming process. See Section 6.6.46.9 Trimming for more information.

D.2.11 GluingIn
Because extended features have been added, the PPF GluingIn operation was renamed to the Inserting process.
Consequently, the parameters of this CIP3 operation are transformed into the InsertingParams resource. For
more information see Section 7.2.79 InsertingParams.

Table D.8 Converting the PPF GluingIn operation to JDF

PPF Key JDF Representation Comments
SheetOffset SheetOffset attribute of

InsertingParams
-

- Location attribute of InsertingParams Must be Front
GlueLines Several GlueLine elements in

InsertingParams
See Section 7.2.79 InsertingParams for information
on how to convert the GlueLine structure.

Sample Comment of the corresponding
Component

Converted to an input Component of Type
PartialProduct

Most of the entries of the PPF GlueLine structure can be directly mapped to the GlueLine element. Note that the
GluingPattern attribute cannot have an empty array to describe a solid glue line. For this purpose, use an array of “1 0”.

Page 541

Page 541

D.2.12 Folding
Like all formats, JDF follows a structured approach in the description of the folding process. That is why every
suboperation has its own element type and has no need of the function entry. Normally, the names of the CIP3 fold
functions was taken for the name of the respective corresponding process names. One of the specialized processes:
• Folding,
• Creasing
• Cutting,
• Perforating
• Gluing.
is created for each folding sub-operation.
Because of inherent naming obscurities, the CIP3 functions Groove and Lime were renamed to Crease and Gluing
in JDF. The following tables give advice on how to convert the PPF structures to JDF elements.

Table D.9 Converting the PPF Folding operation to JDF

PPF Key JDF Representation Comments
CIP3FoldDescription - If required, it can be expressed by the

FoldCatalog attribute or by the fold operations.
CIP3FoldSheetIn - In CIP3 the parameters of the folding procedure

will be scaled, if the value of the
CIP3FoldSheetIn array is different from the
dimension of the input component. In JDF a
scaling mechanism is not supported.

CIP3FoldProc
- Fold
- Lime
- Cut
- Groove
- Perforate

Several processes
Folding
Gluing
Cutting
Creasing
Perforating

See previous description

The PPF Folding suboperation is translated to a Folding process. The parameters of the PPF command are copied
into a Fold element inside the FoldingParams resource. The table below shows how to assign the parameters of
the PPF Fold command to the equivalent attributes inside the Fold element.

Table D.10 Converting the PPF Folding suboperation of type Fold

PPF Key JDF Representation Comments
travel Travel attribute of Fold -
from From attribute of Fold -
to To attribute of Fold -
function - -

For every lime operation, a Gluing process is generated. Create a GluingParams resource and add a Glue
element. Insert the value of the working-direction attribute into the WorkingDirection attribute. Attach a
GlueApplication element. To this element add a GlueLine element. The attributes start-position and working-path
can put into the equivalent attributes StartPosition and WorkingPath inside the GlueLine.

Page 542

Page 542

Table D.11 Converting the PPF Folding suboperation of type Lime

PPF Key JDF Representation Comments
start-position StartPosition attribute of the

GlueLine element of the Gluing
element

JDF uses the GlueLine element because of the
advantage of more optional attributes of this type
of element.

working-path WorkingPath attribute of the
GlueLine element of the Gluing
element

JDF uses the GlueLine element because of the
advantage of more optional attributes of this type
of element.

working-direction WorkingDirection attribute of the
Gluing element

-

function - -

The remaining operation types can converted to one of the following processes:

- Cutting. Create a CuttingParams resource and link it to the process. Transfer the parameters of the PPF
Cut command into equivalent attributes of a Cut element and insert this into the CuttingParams
resource.

- Creasing. The same as above except that there is a CreasingParams resource with a Crease element
inside which will fill with the converted parameters of the PPF Groove command.

- Perforate. The same as above except that there is a PerforatingParams resource with a Perforate
element inside which will fill with the converted parameters of the PPF Perforate command.

Table D.12 Converting the PPF Folding suboperation of all other types

PPF Key JDF Representation Comments
start-position StartPosition attribute of the

respective Cut / Crease / Perforate
element

-

working-path WorkingPath attribute of the
respective Cut / Crease / Perforate
element

-

working-direction WorkingDirection attribute of the
respective Cut / Crease / Perforate
element

-

function - There is an extra element for each type of a
Folding suboperation. The extra elements are:
Cut, Crease, and Perforate

D.3 PPF Sheet Structure
The conversion of the PPF sheet structures is much more complex than the conversion of the product operations. A
JDF layout structure, which is not directly specified in PPF, must be built up in order to place the mark objects such
as register mark or density measuring field. All other sheet information is stored in specialized resources. These
resources are often partitionable to specify the sheet, surface and separation to which they belong (see Section 3.9.2
Description of Partitionable Resources). The result is an inheritance of attributes comparable to the inheritance
process in CIP3.

To build the layout structure, create a Layout resource that includes one Signature element with a unique
Name. For each PPF Sheet, add one Sheet resource to the Signature. Set the Name of the corresponding Sheet
to the value of CIP3AdmSheetName. For each surface (front or back) initiate a Surface resource with one
PlacedObjects element. In order to define a mark object, i.e., CutMark, CIELABMeasuringField,
DensityMeasuringField, ColorControlStrip, or RegisterMark, build a MarkObject element inside
PlacedObjects. In that element, define CTM and an appropriate LayoutElement. The CIP3 information is added
to the MarkObject by including the mark-specific element, e.g., RegisterMark for a register mark. Note: The

Page 543

Page 543

coordinate system of the JDF Sheet is specified by the SurfaceContentsBox, which defaults to the page
coordinates and the coordinate system of the CIP3 Sheet is the PSExtent coordinates.

One for each
PPF Sheet

One for each
PPF Surface

One for each
PPF Mark

Layout

Signature

Sheet

PlacedObjects

MarkObject

Sheet Sheet

SurfaceSurface

MarkObject MarkObject

...

...

Figure D.8.2 JDF representation of sheets

If there are no product definitions in the PPF file, create JDF product nodes which are the results of all cutting and
folding information in the sheet structure.

D.3.1 Administration Data
The following table defines how to convert the administration data of CIP3. In some situations, it may not be clear
whether or not conversion is necessary. Processes such as CIP3AdmFilmType, for example, contain limited
information, making it difficult to tell.

Table D.13 Converting administration data

PPF Key JDF Representation Comments
CIP3AdmSheetName Name attribute of the

corresponding Sheet
If there is no CIP3AdmSheetName, define a
unique new one.

CIP3AdmJobName Comment of the corresponding
product node

-

CIP3AdmJobCode JobPart of the corresponding
product node

May conflict with CIP3ProductJobCode.

CIP3AdmMake - Not supported.
CIP3AdmModel - Not supported.
CIP3AdmSoftware - Not supported.
CIP3AdmCreationTime - Not supported.

Page 544

Page 544

PPF Key JDF Representation Comments
CIP3AdmArtist Comment of the corresponding

product node
-

CIP3AdmCopyright Comment of the corresponding
product node

-

CIP3AdmCustomer CustomerInfo element of the
corresponding product node

May conflict with CIP3ProductCustomer.
Note: The CustomerInfo element is
structured while the CIP3AdmCustomer is
not.

CIP3AdmPSExtent indirect -
CIP3AdmTypeOfScreen see description Not possible to convert appropriately.
CIP3AdmFilmType Brand attribute of the

corresponding Media resource
MediaType of the Media is Film.

CIP3AdmFilmExtent Dimension attribute of the
corresponding Media resource

-

CIP3AdmFilmTrf TransferCurveSet:CTM TransferCurveSet:Name = “Film”
CIP3AdmPlateType Brand attribute of the

corresponding Media resource
MediaType of the Media is Plate.

CIP3AdmPlateExtent Dimension attribute of the
corresponding Media resource

-

CIP3AdmPlateTrf TransferCurveSet:CTM TransferCurveSet:Name = “Plate”
CIP3AdmPaperGrade Grade attribute of the

corresponding Media resource
MediaType of the Media is Paper

CIP3AdmPaperGrammage Weight attribute of the
corresponding Media resource

See CIP3AdmPaperGrade.

CIP3AdmPaperThickness Thickness attribute of the
corresponding Media resource

See CIP3AdmPaperGrade.

CIP3AdmPaperColor Lab attribute of the Color element
of the corresponding Media
resource

See CIP3AdmPaperGrade.

CIP3AdmPaperExtent Dimension attribute of the
corresponding Media resource

-

CIP3AdmPaperTrf TransferCurveSet:CTM TransferCurveSet:Name = “Paper”
CIP3AdmSeparationNames see description Create a ConventionalPrinting process

(see Section 6.5.1) and a corresponding
ColorantControl resource. Fill the
ColorantOrder parameter.

CIP3AdmSheetLay SheetLay attribute of the
corresponding
ConventionalPrintingParams
or FoldingParams resource

-

CIP3AdmPrintVolume Amount attribute of the output
Component resource link of the
printing process

-

CIP3AdmPressTrf TransferCurveSet:CTM TransferCurveSet:Name = “Press”
CIP3AdmPressExtent indirect -

Page 545

Page 545

PPF Key JDF Representation Comments
CIP3AdmInkInfo Name attribute of the Color

element of the corresponding Ink
resource

Create a partitioned Ink matching the side
and separation. Add the Ink to the
ConventionalPrinting process of
CIP3AdmSeparationNames

CIP3AdmInkColors LabColor attribute of the Color
element defined by the ColorName
of the Ink resource.

see CIP3AdmInkInfo

D.3.2 Preview Images
In PPF, preview images are coded as an in-line image. This is not possible in version 1.0 of XML, so JDF uses the
URL attribute within the Preview resource (see Section 7.2.111 Preview), which points to an external PNG file.
The following table shows how to translate the PPF preview structure to the PNG header. Use the partition feature
to assign a preview image to a specific separation and surface.

Table D.14 PPF preview representation as PNG

PPF Key JDF Representation Comments
CIP3PreviewImageWidth “Width” of the “IHDR” chunk

of the PNG file
-

CIP3PreviewImageHeight “Height” of the “IHDR” chunk
of the PNG file

-

CIP3PreviewImageBitsPerComp “Bit depth” of the “IHDR”
chunk of the PNG file

-

CIP3PreviewImageComponents - Because of a lack of CMYK composite
support by PNG, PPF previews of this type
must be separated.

CIP3PreviewImageImageMatrix - Not needed. Convert image data to the PNG
native sequence.

CIP3PreviewImageResolution “pHYs” chunk of the PNG file Use the meter unit and convert DPI to DPM.
CIP3PreviewImageEncoding - Not needed.
CIP3PreviewImageCompression - Not needed. Use PNG’s own compression.
CIP3PreviewImageFilterDict - Not needed.
CIP3PreviewImageByteAlign - Not needed.
CIP3PreviewImageDataSize - Not needed.

To calculate ink zones, JDF uses a process chain of PreviewGeneration and InkZoneCalculation processes.
Add the converted CIP3 previews as an input resource to InkZoneCalculation. The ProfileOffset attribute of
InkZoneCalculationParams can be calculated out of the different CIP3 coordinate systems.

D.3.3 Transfer Curves
Simply convert all CIP3 transfer curves to elements of a partitioned TransferCurvePool (see Section 7.2.144
Tile). Add this TransferCurvePool as an input resource to a corresponding InkZoneCalculation process.

D.3.4 Register Marks
The table provides information about how to create a JDF RegisterMark and place this element inside the
respective MarkObject.

Page 546

Page 546

Table D.15 Converting the parameter of the CIP3PlaceRegisterMark command

PPF Key JDF Representation Comments
translate-x and translate-y Center attribute of

RegisterMark
Apply all transformations of the CIP3 coordinate
systems to get from the PS system to the Layout
system.

rotation Rotation attribute of
RegisterMark

-

type MarkType attribute of
RegisterMark

-

Current CIP3SetRegisterMark-
Separations context

Several SeparationSpec
elements inside the
RegisterMark

-

D.3.5 Color and Ink Control
In CIP3, the two types of measuring fields are specified by an entry of the data dictionary in the
CIP3PlaceMeasuringField command. In JDF, this approach is replaced by two different types of JDF elements:
CIELABMeasuringField and DensityMeasuringField. All parameters of the CIP3PlaceMeasuringField
command are merged into these elements. See the following tables as well as Section 7.2.16
CIELABMeasuringField and Section 7.2.43 DensityMeasuringField for further information. All PPF entries that
are not explicitly listed in the following tables can be directly converted. Place the originated element inside the
appropriate MarkObject.

Table D.16 Converting PPF color-measuring data

PPF Key JDF Representation Comments
position-x and position-y of the
respective CIP3-
PlaceMeasuringField command

Center attribute of
CIELABMeasuringField

Apply all transformations of the CIP3 coordinate
systems to get from the PS system to the Layout
system.

Type - There is an extra resource for each type of CIP3
measuring field.

CIE-L*, CIE-a* and CIE-b* CIELab attribute of
CIELABMeasuringField

-

Table D.17 Converting PPF density-measuring data

PPF Key JDF Representation Comments
position-x and position-y of the
respective CIP3-
PlaceMeasuringField command

Center attribute of
DensityMeasuringField

Apply all transformations of the CIP3 coordinate
systems to get from the PS system to the Layout
system.

Type - There is an extra resource for each type of CIP3
measuring field.

DensityCyan, DensityMagenta,
DensityYellow and
DensityBlack

Density attribute of
DensityMeasuringField

-

Like the measuring fields, the CIP3PlaceColorControlStrip command is translated to a structured element. All
parameters of this command can be converted to the ColorControlStrip element (see Section 7.2.21) by following
the instructions in table D.18, below.

Page 547

Page 547

Table D.18 Converting the parameter of the CIP3PlaceColorControlStrip command

PPF Key JDF Representation Comments
position-x and position-y Center attribute of

ColorControlStrip
Apply all transformations of the CIP3 coordinate
systems to get from the PS system to the Layout
system.

rotation Rotation attribute of
ColorControlStrip

-

width and height Size attribute of
ColorControlStrip

-

data Sequence of
DensityMeasuringField
elements within the
ColorControlStrip

The entries of the data parameter have to be
converted to DensityMeasuringField
elements.

name StripType attribute of
ColorControlStrip

-

D.3.6 Cutting Data
CIP3’s cut block structure is translated to JDF by defining Cutting processes. Since CIP3 has the ability to create
nested cut blocks, one separate Cutting process is needed for each nested block set. Simply follow the instructions
in the following table, and add all originated CutBlock resources as input the corresponding Cutting process. The
CIP3CutModel entry is not used in JDF.

Table D.19 Converting the Cutting Data structure

PPF Key JDF Representation Comments
CIP3BlockTrf BlockTrf attribute of

CutBlock
If the CutBlock is at the uppermost level, apply
all transformations of the CIP3 coordinate
systems to get from the PS system to the
Layout system.

CIP3BlockSize BlockSize attribute of
CutBlock

-

CIP3BlockElementSize BlockElementSize attribute
of CutBlock

-

CIP3BlockSubdivision BlockSubdivision attribute
of CutBlock

Determines how many Components are
produced.

CIP3BlockType BlockType attribute of
CutBlock

-

CIP3BlockElementType BlockElementType
attribute of CutBlock

-

CIP3BlockName This is expressed by resource
links

Not needed in JDF.

CIP3BlockFoldingProcedure A Folding process See Folding

For cut marks, follow the instructions in the table below. Place the originated element inside the appropriate
MarkObject.

Table D.20 Converting the parameter of the CIP3PlaceCutMark command

PPF Key JDF Representation Comments
position-x and position-y Center attribute of

CutMark
Apply all transformations of the CIP3 coordinate
systems to get from the PS system to the Layout
system.

Page 548

Page 548

mark-type MarkType attribute of
CutMark

-

D.3.7 Folding Data
When a CIP3 cut block has a folding operation defined (CIP3BlockFoldingProcedure), append a JDF Folding
process which uses the respective output Component of the respective Cutting process as an input Component.
See Folding for more information on how to translate the CIP3 folding procedure, which is used to fold the cut
block.

D.3.8 Comments and Annotations
PPF comments can either be converted to an XML comment or to a human-readable form by transforming them into
a Comment telem of the next element. In most cases, PPF comments can simply be ignored. Annotations are not
supported by JDF.

D.3.9 Private Data and Content
For your private data, you should first examine if one of the new JDF elements or attributes fits your requirements. If not,
please use the extension capabilities of JDF to express your needs. They are described in Section 3.11.

Page 549

Page 549

Appendix E Modeling IfraTrack in JDF

Introduction
Job tracking and production control are integral parts of a workflow system. IFRA, described in this section, has
defined a job tracking system called IfraTrack that fulfills a large number of the job tracking requirements of a
production scenario and is especially effective in newspaper production. The JDF messaging system generalizes
the IfraTrack approach, expanding its focus from a newspaper workflow to one that encompasses the entire graphic
arts industry. This appendix provides further detail about the way in which JDF expands upon the existing IfraTrack
technology.

E.1 IFRA Objects and JDF Nodes
IfraTrack traces the status of objects, and these objects are modified by processes that are only generic. JDF, on the
other hand, precisely defines process nodes that create output resources. These JDF output resources are equivalent
to IfraTrack objects, so tracking the state of a JDF node conveys a superset of the information communicated by
tracking the state of an IfraTrack. The sections that follow define the mapping of IFRA concepts to JDF concepts in
greater detail.

E.1.1 Object Identification
IfraTrack defines objects with an object path. The object path, in turn, may be a unique identifier, or UID. JDF also
supports UIDs for internal linking of objects, although these UIDs should not be exported beyond the scope of a JDF
document. External references to JDF nodes should be made the JobID/JobPartID pair. These values may be
defined by an external system, such as MIS, and can be used to uniquely track JDF nodes.

E.1.2 IFRA Object Hierarchy
IfraTrack defines an explicit hierarchy to define a newspaper, from Issue through Edition, EditionVersion, and so
on. JDF, on the other hand, defines a generic hierarchy of products containing a description attribute that allows the
products to be named. An IfraTrack-conforming JDF job consequently includes a product hierarchy with product
nodes that contain the appropriate description fields. Furthermore, the abstract IFRA Element type is mapped to the
JDF LayoutElement type.

E.1.3 Object States

IFRA defines object states that define the status of a resource, although they also define the status of the process that
defines a resource. JDF defines explicit states for both processes and resources. In addition, JDF defines a
descriptive string to denote the details of each status. The mapping is defined in the following table.

Table E.1 IFRA object states

IFRA Object
Status

JDF Node Status JDF Resource
Status

Description

Waiting Unavailable Status prior to InProgress. Not Started
Ready Unavailable JDF defines a test-run mode that allows generalized

preflighting. Ready is the status after TestRun.
Setup Unavailable A process is InProgress but not yet producing any

output.
InProgress Unavailable A process is InProgress.

In Progress

Cleanup Available A process is running after all output has been produced.
On Hold Stopped Unavailable A process is active but not currently producing, as when

maintenance is run during a job.
Completed Completed Available Completed
Aborted Aborted Unavailable1 Fatal Error

1 Unless aborted during cleanup

Page 550

Page 550

E.1.4 Deadlines and Scheduling
In IfraTrack, activities may be linked to deadlines. JDF defines deadlines in the NodeInfo element of every node.
The definition of deadline values is identical.

IFRA defines an integer value for deadline level. JDF defines four explicit enumerations for DueLevel in order
to assure that devices in a heterogeneous system have the same concept of deadline level.

E.2 JMF Messages that Translate IfraTrack Messages
The messages explained in Section 5.5.2 Device/Operator Status and Job Progress Messages can be used to emulate
IfraTrack functionality. Specifically the messages:
• 5.5.2.3 Status
• 5.5.2.4 Track

Page 551

Page 551

Appendix F Mapping between JDF and IPP

The mapping between JDF and IPP is specified in Appendix F in JDF/1.0 using the IDPrinting process. However,
for JDF/1.1, the IDPrinting process is deprecated. Thus for JDF/1.1, mapping between JDF/1.1 and IPP should be
done with the DigitalPrinting process and many other JDF/1.1 processes as a combined process node.

F.1 IPP References
The documents below give detailed information about IPP attributes.

• IPP Model and Semantics, RFC 2911, September 2000

• Collection attribute syntax, <draft-ietf-ipp-collection-05.txt>, July 17, 2001

• Production Printing Attributes - Set1, IEEE-ISTO 5100.3-2001,
ftp://ftp.pwg.org/pub/pwg/standards/pwg5100.3.pdf, .doc, .rtf, February 17, 2001

• Override Attributes for Documents and Pages, IEEE-ISTO 5100.4-2001,
ftp://ftp.pwg.org/pub/pwg/standards/pwg5100.4.pdf, .doc, .rtf, February 7, 2001

• IPP/1.0 & 1.1: “Output-bin” attribute extension, IEEE-ISTO 5100.2-2001,
ftp://ftp.pwg.org/pub/pwg/standards/pwg5100.2.pdf, .doc, .rtf, February 7, 2001

• IPP/1.1: finishings attribute values extension, IEEE-ISTO 5100.1-2001,
ftp://ftp.pwg.org/pub/pwg/standards/pwg5100.1.pdf, .doc, .rtf, February 5, 2001

• Job Progress Attributes, <draft-ietf-ipp-job-prog-03.txt>, July 17, 2001.

Page 552

Page 552

Appendix G StatusDetails Supported Strings
The StatusDetails attribute refines the concept of a job status to be job specific or a device status to be device
specific. The following tables define individual StatusDetail values and map them to the appropriate job specific
state Status or device specific state DeviceStatus.

Table G.1 StatusDetails and Status mapping for generic devices

StatusDetails Status DeviceStatus Description
Control[RP609]Deferr
ed

- Stopped The device is controlled by a master device and cannot
be accessed.

Table G.2 StatusDetails and Status mapping for conventional printing devices[RP610]

StatusDetails Status DeviceStatus Description
Good InProgress Running Production of sheets in progress, good copy counter is on.
Waste InProgress Running Production of sheets in progress, good copy counter is off.
FormChange Setup Setup In conventional printing. changing of plates or in digital

printing changing of images.
SizeChange Setup Setup Changing setup for media size.
WashUp Cleanup Cleanup Machine is washed before, during or after production.

WashUp is a super-term for BlanketWash, CylinderWash,
CleaningInkingUnit, or CleaningInkFountain.
WashUp is the default which is assumed if StatusDetails
is not specified.

InkingRollerWash Cleanup Cleanup Washing of the inking roller, subterm of WashUp.
PlateWash Cleanup Cleanup Washing of the plate, subterm of WashUp.
DampeningRoller-
Wash

Cleanup Cleanup Washing of the dampening roller, subterm of WashUp.

BlanketWash Cleanup Cleanup Washing of the blanket, subterm of WashUp.
CylinderWash Cleanup Cleanup Washing of impression cylinders, subterm of WashUp.
CleaningInkFountain Cleanup Cleanup Cleaning of the ink fountain, subterm of WashUp.
Pause Stopped Stopped Machine paused, restart is possible.
MissResources Stopped Stopped Production has been stopped because resources are

missed. For example, if the machine has consumed paper,
ink, plates, etc., and waits for new resources, subterm of
Pause.

WaitForApproval Stopped Stopped Production has been stopped because a required approval
is still missing, subterm of Pause.

ShutDown Stopped Down Machine stopped (may be switched off), restart requires a
run up.

BreakDown Stopped Down Breakdown of the device, repair required.
Repair Stopped Down After a breakdown the device is being repaired.
Failure Stopped Stopped Failure of the device. Requires some maintenance in

order to restart the device.
PaperJam Stopped Stopped Paper jam in the device, subterm of Failure.
Maintenance Stopped Stopped Maintenance of the device.
BlanketChange Stopped Stopped Changing of blankets, subterm for Maintenance.

Page 553

Page 553

StatusDetails Status DeviceStatus Description
SleeveChange Stopped Stopped Changing of sleeves, subterm for Maintenance.

Page 554

Page 554

Appendix H ModuleType Supported Strings
Both the ModuleStatus element (see Table 5-46 Contents of the ModuleStatus element) and the ModulePhase
element (see Table 3-35 Contents of the ModulePhase element) contain a ModuleType attribute that defines
individual modules within a machine. The following table defines individual ModuleType values.

Table H.1 ModuleType definition for conventional printing devices

ModuleType Description
Feeder Feeder module, feeds the device with paper.
PrintModule Unit for printing a color.
CoatingModule Unit for coatings, for example, full coating of varnish.
Drier Module for drying the previously printed color or varnish.
PerfectingModule Unit for perfecting, reversing device.
ExtensionModule Unit for extending the distance between modules, for example to increase the distance

between the last printing module and the delivery module.
Delivery Delivery module, unit for gathering the printed sheets.
Imaging Imaging Module in a direct to plate machine.
Numbering Numbering unit.

Page 555

Page 555

Appendix I Supported Error Codes in JMF
The following list defines the standard ReturnCode for messaging. The ID numbers are decimal. Error messages
below 100 are reserved for protocol errors. Error messages above 100 are used for device and controller errors and
error messages above 200 for job and pipe specific errors.

Table J.1 Return codes for JMF

ReturnCode Description
0 Success
1 – 99 Protocol errors
1 General error
2 Internal error
3 XML parser error, e.g., if a MIME file is sent to an XML controller.
4 XML validation error
5 Query/command not implemented
6 Invalid parameters
7 Insufficient parameters
8 Device not available (controller exists but not the device or queue)
9 Message incomplete. Message Service is busy
100 – 199 Device and controller errors
100 Device not running
101 Device incapable of fulfilling request, e.g., a RIP that has been asked to cut a sheet.
102 No executable node exists in the JDF
103 Job ID not known by controller
104 JobPartID not known by controller
105 Queue entry not in queue
106 Queue request failed because queue entry is already executing
107 Queue entry is already executing. Late change is not accepted
108 Selection or applied filter results in an empty list
109 Selection or applied filter results in an incomplete list. A buffer cannot provide the complete list

queried for.
110 Queue request of a job submission failed because the requested completion time of the job cannot

be fulfilled.
111 Subscription request denied.
112 Queue request failed because the Queue is closed and does not accept new entries.

New in JDF 1.1
200 – … Job and pipe specific errors
200 Invalid resource parameters
201 Insufficient resource parameters
202 PipeID unknown
203 Unlinked resource link

Page 556

Page 556

Appendix J NotificationDetails
The Notification element is used for messaging and logging of events. It is defined in Section 3.10.1.2 Notification.
Notifications are grouped into five classes: event, information, warning, error, and fatal. For notification classes see
Section 4.6.1 Classification of Notifications. In addition to the classes, the Type attribute and abstract
NotificationDetails element provide a container for detailed information about the notification.

Elements derived from the abstract NotificationDetails element represent a structured and extensible data type.
It is defined in section 3.10.1.2.1 NotificationDetails. The structure of various predefined NotificationDetails-types
and their descriptions are listed in the following sections.

J.1 Predefined NotificationDetails
This section defines elements that are derived from the abstract element.

J.1.1 Barcode
A bar code has been scanned.

Table J. 1 Contents of the Barcode element

Name Data Type Description
Code string Contains the scanned bar code.

J.1.2 FCNKey
A function key has been activated at a console.

Table J. 2 Contents of the FCNKey element

Name Data Type Description
Key integer Contains the number of that function key.

J.1.3 SystemTimeSet
The system time of a device/controller/agent has been set, e.g., readjusted, changed to daylight saving time, etc.

Table J. 3 Contents of the SystemTimeSet element

Name Data Type Description
NewTime dateTime Contains the new time.
OldTime ? dateTime Contains the old time.

J.1.4 CounterReset
The production counter of a device has been reset.

Table J. 4 Contents of the CounterReset element

Name Data Type Description
CounterID ? string Identification of the counter that has been set.
LastCount ? integer Last counter value before reset.

J.1.5 Error
This element provides additional information for common errors.

Table J. 5 Contents of the Error element, derived from NotificationDetails

Name Data Type Description
ErrorID string Internal Error ID of the application that declares the error.

J.1.6 Event
This element provides additional information for common events.

Page 557

Page 557

Table J. 6 Contents of the Event element, derived from NotificationDetails

Name Data Type Description
EventID string Internal Event ID of the application that emits the event.
EventValue ? string Additional user defined value related to this event.

Page 558

Page 558

Appendix K Examples
Note that these examples were generated using prototype tools and should be used for general overview only. The
emphasis is not on the individual bytes, e.g., capitalization or exact keywords. Normative examples will be
provided at http://www.CIP4.org when available.

K.1 Brief Example
K.1.1 Before Processing
This is a simple example of a JDF that describes color conversion for one file.
<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="ColorTest" Type="ColorSpaceConversion" JobID="ColorJob" Status="Waiting" Version="1.1"
xmlns="http://www.CIP4.org/JDFSchema_1_1">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->
 <NodeInfo/>
 <ResourcePool>
 <RunList ID="Link0003" Class="Parameter" Status="Available" Pages="0~-1">
 <LayoutElement>
 <FileSpec URL=“File://in/colortest.pdf"/>
 </LayoutElement>
 </RunList>
 <ColorSpaceConversionParams ID="Link0004" Class="Parameter" Status="Available">
 <FileSpec ResourceUsage=”FinalTargetDevice” URL=”File://SMProcessCMYK.icc”/>
 <ColorSpaceConversionOp SourceCS="RGB" Operation="Convert" SourceObjects="ImagePhotographic
ImageScreenShot SmoothShades" SourceProfile="File:://image.icc" RenderingIntent="Perceptual"/>
 <ColorSpaceConversionOp SourceCS="RGB" Operation="Convert" SourceObjects="Text LineArt"
SourceProfile="File://text.icc" RenderingIntent="Perceptual"/>
 </ColorSpaceConversionParams>
 <ColorPool ID="Link0005" Class="Parameter" Status="Available">
 <Color CMYK="1 0 0 0" Name="Cyan"/>
 <Color CMYK="0 1 0 0" Name="Magenta"/>
 <Color CMYK="0 0 1 0" Name="Yellow"/>
 <Color CMYK="0 0 0 1" Name="Black"/>
 <Color CMYK="0.8 0.8 0 0" Name="Blue"/>
 </ColorPool>
 <ColorantControl ID="Link0006" Class="Parameter" rRefs="Link0005" Status="Available"
ProcessColorModel="DeviceCMYK">
 <ColorPoolRef rRef="Link0005"/>
 </ColorantControl>
 <RunList ID="Link0007" Class="Parameter" Status=“Unavailable" Pages="0~-1">
 <LayoutElement>
 <FileSpec URL=“File://out/colortest.pdf"/>
 </LayoutElement>
 </RunList>
 </ResourcePool>
 <ResourceLinkPool>
 <RunListLink rRef="Link0003" Usage=“Input"/>
 <ColorSpaceConversionParamsLink rRef="Link0004" Usage=“Input"/>
 <ColorPoolLink rRef="Link0005" Usage=“Input"/>
 <ColorantControlLink rRef="Link0006" Usage=“Input"/>
 <RunListLink rRef="Link0007" Usage=“Output"/>
 </ResourceLinkPool>
 <AuditPool>
 <Created Author="Rainer's JDFWriter 0.2000" TimeStamp="2000-11-01T10:26:11+01:00"/>
 </AuditPool>
</JDF>

K.1.2 After Processing
This is a simple example of a JDF that describes color conversion for one file after the color conversion process has
been executed.
<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="ColorTest " Type="ColorSpaceConversion" JobID=”ColorJob" Status="Completed"
Version="1.1" xmlns="http://www.CIP4.org/JDFSchema_1_1">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->
 <ResourcePool>
 <RunList ID="Link0003" Class="Parameter" Status="Available" Pages="0~-1">
 <LayoutElement>

Page 559

Page 559

 <FileSpec URL=“File://in/colortest.pdf"/>
 </LayoutElement>
 </RunList>
 <ColorSpaceConversionParams ID="Link0004" Class="Parameter" Status="Available">
 <FileSpec ResourceUsage=”FinalTargetDevice” URL=”File://SMProcessCMYK.icc”/>
 <ColorSpaceConversionOp SourceCS="RGB" Operation="Convert" SourceObjects="ImagePhotographic
ImageScreenShot SmoothShades" SourceProfile="File://image.icc" RenderingIntent="Perceptual"/>
 <ColorSpaceConversionOp SourceCS="RGB" Operation="Convert" SourceObjects="Text LineArt"
SourceProfile="File://text.icc" RenderingIntent="Perceptual"/>
 </ColorSpaceConversionParams>
 <ColorPool ID="Link0005" Class="Parameter" Status="Available">
 <Color CMYK="1 0 0 0" Name="Cyan"/>
 <Color CMYK="0 1 0 0" Name="Magenta"/>
 <Color CMYK="0 0 1 0" Name="Yellow"/>
 <Color CMYK="0 0 0 1" Name="Black"/>
 <Color CMYK="0.8 0.8 0 0" Name="Blue"/>
 </ColorPool>
 <ColorantControl ID="Link0006" Class="Parameter" rRefs="Link0005" Status="Available"
ProcessColorModel="DeviceCMYK">
 <ColorPoolRef rRef="Link0005"/>
 </ColorantControl>
 <RunList ID="Link0007" Class="Parameter" Status="Available" Pages="0~-1">
 <LayoutElement>
 <FileSpec URL=“File://out/colortest.pdf"/>
 </LayoutElement>
 </RunList>
 </ResourcePool>
 <ResourceLinkPool>
 <RunListLink rRef="Link0003" Usage=“Input"/>
 <ColorSpaceConversionParamsLink rRef="Link0004" Usage=“Input"/>
 <ColorPoolLink rRef="Link0005" Usage=“Input"/>
 <ColorantControlLink rRef="Link0006" Usage=“Input"/>
 <RunListLink rRef="Link0007" Usage=“Output"/>
 </ResourceLinkPool>
 <AuditPool>
 <Created Author="Rainer's JDFWriter 0.2000" TimeStamp="2000-11-01T10:26:11+01:00"/>
 <Modified Author="EatJDF Complete: task=*" TimeStamp="2000-11-01T10:26:57+01:00"/>
 <PhaseTime End="2000-11-01T10:26:57+01:00" Start="2000-11-01T10:26:57+01:00" Status="Setup"
TimeStamp="2000-11-01T10:26:57+01:00"/>
 <PhaseTime End="2000-11-01T10:26:57+01:00" Start="2000-11-01T10:26:57+01:00"
Status="InProgress" TimeStamp="2000-11-01T10:26:57+01:00"/>
 <PhaseTime End="2000-11-01T10:26:57+01:00" Start="2000-11-01T10:26:57+01:00" Status="Cleanup"
TimeStamp="2000-11-01T10:26:57+01:00"/>
 <ProcessRun End="2000-11-01T10:26:57+01:00" Start="2000-11-01T10:26:57+01:00"
EndStatus="Completed" TimeStamp="2000-11-01T10:26:57+01:00"/>
 </AuditPool>
</JDF>

K.2 Product JDF
The following example describe a pair of college textbooks, one teachers edition and one students edition as product
intent. Most intent resources are intentionally left empty.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="bookTest" Type="Product" JobID="bookJob" Status="Waiting" Version="1.1"
xmlns="http://www.CIP4.org/JDFSchema_1_1">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->
 <ResourcePool>
 <Component ID="Link0003" Class="Quantity" Amount="100" Status=“Unavailable"
DescriptiveName="Teacher's Book"/>
 <Component ID="Link0005" Class="Quantity" Amount="2000" Status=“Unavailable"
DescriptiveName="Cover">
 <!--This cover is reused by both-->
 </Component>
 <LayoutIntent ID="Link0006" Class="Intent" Status="Available">
 <Dimensions Range="576 756~648 828" DataType="NumberSpan" Preferred="612 792"/>
 </LayoutIntent>
 <LayoutIntent ID="Link0008" Class="Intent" Status="Available">
 <Dimensions Range="576 756~648 828" DataType="NumberSpan" Preferred="612 792"/>
 <Pages DataType="IntegerSpan" Preferred="240"/>

Page 560

Page 560

 </LayoutIntent>
 <Component ID="Link0011" Class="Quantity" Amount="1000" Status=“Unavailable"
DescriptiveName="Student's Book">
 <!--Students Book Intent-->
 </Component>
 <LayoutIntent ID="Link0014" Class="Intent" Status="Available">
 <Dimensions Range="576 756~648 828" DataType="NumberSpan" Preferred="612 792"/>
 <Pages DataType="IntegerSpan" Preferred="198"/>
 </LayoutIntent>
 </ResourcePool>
 <AuditPool>
 <Created Author="Rainer's JDFWriter 0.2000" TimeStamp="2000-11-01T12:46:56+01:00"/>
 </AuditPool>
 <JDF ID="Link0002" Type="Product" Status="waiting" JobPartID="0" DescriptiveName="Teacher's
Edition">
 <ResourcePool>
 <Component ID="Link0009" Class="Quantity" Amount="100" Status=“Unavailable"
DescriptiveName="Insert"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ComponentLink rRef="Link0003" Usage=“Output" Amount="100"/>
 <ComponentLink rRef="Link0009" Usage=“Input" Amount="100"/>
 <ComponentLink rRef="Link0005" Usage=“Input" Amount="100"/>
 </ResourceLinkPool>
 <JDF ID="Link0007" Type="Product" Status="waiting" JobPartID="2" DescriptiveName="Teacher's
Insert">
 <ResourceLinkPool>
 <LayoutIntentLink rRef="Link0008" Usage=“Input"/>
 <ComponentLink rRef="Link0009" Usage=“Output" Amount="100"/>
 </ResourceLinkPool>
 </JDF>
 </JDF>
 <JDF ID="Link0004" Type="Product" Status="waiting" JobPartID="1" DescriptiveName="Cover">
 <ResourceLinkPool>
 <ComponentLink rRef="Link0005" Usage=“Output" Amount="2000"/>
 <LayoutIntentLink rRef="Link0006" Usage=“Input"/>
 </ResourceLinkPool>
 </JDF>
 <JDF ID="Link0010" Type="Product" Status="waiting" JobPartID="3" DescriptiveName="Student's
Edition">
 <ResourcePool>
 <Component ID="Link0013" Class="Quantity" Amount="1000" Status=“Unavailable"
DescriptiveName="Insert"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ComponentLink rRef="Link0011" Usage=“Output" Amount="1000"/>
 <ComponentLink rRef="Link0013" Usage=“Input" Amount="1000"/>
 <ComponentLink rRef="Link0005" Usage=“Input" Amount="1000"/>
 </ResourceLinkPool>
 <JDF ID="Link0012" Type="Product" Status="waiting" JobPartID="4" DescriptiveName="Student's
Insert">
 <ResourceLinkPool>
 <ComponentLink rRef="Link0013" Usage=“Output" Amount="1000"/>
 <LayoutIntentLink rRef="Link0014" Usage=“Input"/>
 </ResourceLinkPool>
 </JDF>
 </JDF>
</JDF>

K.3 Spawning and Merging
The following set of examples show a JDF job in the relevant stages of spawning and merging. One example
defines a simple brochure with a cover and an insert. The red node, which defines the cover, is spawned, modified,
and subsequently merged. Blue elements represent metadata that apply to spawning and merging.

K.3.1 Example 2 Component JDF before Spawning
The following JDF file describes a two-component brochure. The resources are not fleshed out.

Page 561

Page 561

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="SpawnTest" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting"
Version="1.1" JobPartID="Part1">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->
 <AuditPool>
 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-05T15:27:58+02:00"/>
 </AuditPool>
 <ResourcePool>
 <Component ID="r0043" Class="Quantity" Amount="10000" Status="Unavailable"/>
 <BindingIntent ID="r0044" Class="Intent" Status="Available"/>
 <ProductionIntent ID="r0045" Class="Intent" Status="Available">
 <PrintProcess Range="Gravure" DataType="EnumerationSpan"/>
 </ProductionIntent>
 <Component ID="r0047" Class="Quantity" Status="Unavailable"/>
 <Component ID="r0051" Class="Quantity" Status="Unavailable"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ComponentLink rRef="r0043" Usage="Output"/>
 <BindingIntentLink rRef="r0044" Usage="Input"/>
 <ProductionIntentLink rRef="r0045" Usage="Input"/>
 <ComponentLink rRef="r0047" Usage="Input"/>
 <ComponentLink rRef="r0051" Usage="Input"/>
 </ResourceLinkPool>
 <JDF ID="n0046" Type="Product" Status="Waiting" JobPartID="Part2" DescriptiveName="Cover">
 <ResourceLinkPool>
 <ComponentLink rRef="r0047" Usage="Output"/>
 <LayoutIntentLink rRef="r0048" Usage="Input"/>
 <ColorIntentLink rRef="r0049" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <LayoutIntent ID="r0048" Class="Intent" Status="Available"/>
 <ColorIntent ID="r0049" Class="Intent" Status="Available"/>
 </ResourcePool>
 </JDF>
 <JDF ID="n0050" Type="Product" Status="Waiting" JobPartID="Part3" DescriptiveName="Insert">
 <ResourceLinkPool>
 <ComponentLink rRef="r0051" Usage="Output"/>
 <LayoutIntentLink rRef="r0052" Usage="Input"/>
 <ColorIntentLink rRef="r0053" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <LayoutIntent ID="r0052" Class="Intent" Status="Available"/>
 <ColorIntent ID="r0053" Class="Intent" Status="Available"/>
 </ResourcePool>
 </JDF>
</JDF>

K.3.2 Example 2 Component JDF Parent after spawning the cover node
The following JDF is the parent JDF after spawning. The Component that describes the cover is marked as
SpawnedRW, since it was copied into the spawned node and may be modified. A Spawned audit was inserted into
the Cover nodes parent’s AuditPool, and the Spawned node itself has a Status of Spawned.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="SpawnTest" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting"
Version="1.1" JobPartID="Part1">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->
 <AuditPool>
 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-05T15:27:58+02:00"/>
 <Spawned URL="File://spawn.jdf" jRef="n0046" TimeStamp="2002-04-05T15:34:43+02:00"
NewSpawnID="Sp0057" rRefsRWCopied="r0047"/>
 </AuditPool>
 <ResourcePool>
 <Component ID="r0043" Class="Quantity" Amount="10000" Status="Unavailable"/>
 <BindingIntent ID="r0044" Class="Intent" Status="Available"/>
 <ProductionIntent ID="r0045" Class="Intent" Status="Available">
 <PrintProcess Range="Gravure" DataType="EnumerationSpan"/>
 </ProductionIntent>
 <Component ID="r0047" Class="Quantity" Status="Unavailable" SpawnIDs="Sp0057"
SpawnStatus="SpawnedRW"/>

Page 562

Page 562

 <Component ID="r0051" Class="Quantity" Status="Unavailable"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ComponentLink rRef="r0043" Usage="Output"/>
 <BindingIntentLink rRef="r0044" Usage="Input"/>
 <ProductionIntentLink rRef="r0045" Usage="Input"/>
 <ComponentLink rRef="r0047" Usage="Input"/>
 <ComponentLink rRef="r0051" Usage="Input"/>
 </ResourceLinkPool>
 <JDF ID="n0046" Type="Product" Status="Spawned" JobPartID="Part2" DescriptiveName="Cover">
 <ResourceLinkPool>
 <ComponentLink rRef="r0047" Usage="Output"/>
 <LayoutIntentLink rRef="r0048" Usage="Input"/>
 <ColorIntentLink rRef="r0049" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <LayoutIntent ID="r0048" Class="Intent" Status="Available" SpawnIDs="Sp0057"
SpawnStatus="SpawnedRO"/>
 <ColorIntent ID="r0049" Class="Intent" Status="Available" SpawnIDs="Sp0057"
SpawnStatus="SpawnedRO"/>
 </ResourcePool>
 </JDF>
 <JDF ID="n0050" Type="Product" Status="Waiting" JobPartID="Part3" DescriptiveName="Insert">
 <ResourceLinkPool>
 <ComponentLink rRef="r0051" Usage="Output"/>
 <LayoutIntentLink rRef="r0052" Usage="Input"/>
 <ColorIntentLink rRef="r0053" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <LayoutIntent ID="r0052" Class="Intent" Status="Available"/>
 <ColorIntent ID="r0053" Class="Intent" Status="Available"/>
 </ResourcePool>
 </JDF>
 <AncestorPool/>
</JDF>

K.3.3 Example 2 Component JDF spawned node
The Component that represents the cover was copied into the spawned node, since it is the output resource. It is not
locked, since it was spawned in RW mode. The existence of an AncestorPool denotes the node as spawned and
defines the parent node.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="n0046" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting"
SpawnID="Sp0057" Version="1.1" JobPartID="Part2" DescriptiveName="Cover">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->
 <AuditPool>
 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-05T15:34:43+02:00"/>
 </AuditPool>
 <ResourceLinkPool>
 <ComponentLink rRef="r0047" Usage="Output"/>
 <LayoutIntentLink rRef="r0048" Usage="Input"/>
 <ColorIntentLink rRef="r0049" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <LayoutIntent ID="r0048" Class="Intent" Status="Available"/>
 <ColorIntent ID="r0049" Class="Intent" Status="Available"/>
 <Component ID="r0047" Class="Quantity" Status="Available" SpawnIDs="Sp0057"/>
 </ResourcePool>
 <AncestorPool>
 <Ancestor NodeID="SpawnTest" FileName="testjdf4.jdf"/>
 </AncestorPool>
</JDF>

K.3.4 Example 2 Component JDF after merging
In this example, it is assumed that the cover output component was created by some processor that processed the
spawned node. This resulted in the Component becoming available. The Component was also removed from the
copy of the spawned node, since it would otherwise exist twice.

Page 563

Page 563

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="SpawnTest" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting"
Version="1.1" JobPartID="Part1">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->
 <AuditPool>
 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-05T15:27:58+02:00"/>
 <Spawned URL="File://spawn.jdf" jRef="n0046" TimeStamp="2002-04-05T15:34:43+02:00"
NewSpawnID="Sp0057" rRefsRWCopied="r0047"/>
 <Merged URL="File://spawn.jdf" jRef="n0046" MergeID="Sp0057" TimeStamp="2002-04-
05T15:40:20+02:00" rRefsOverwritten="r0047"/>
 </AuditPool>
 <ResourcePool>
 <Component ID="r0043" Class="Quantity" Amount="10000" Status="Unavailable"/>
 <BindingIntent ID="r0044" Class="Intent" Status="Available"/>
 <ProductionIntent ID="r0045" Class="Intent" Status="Available">
 <PrintProcess Range="Gravure" DataType="EnumerationSpan"/>
 </ProductionIntent>
 <Component ID="r0047" Class="Quantity" Status="Available"/>
 <Component ID="r0051" Class="Quantity" Status="Unavailable"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ComponentLink rRef="r0043" Usage="Output"/>
 <BindingIntentLink rRef="r0044" Usage="Input"/>
 <ProductionIntentLink rRef="r0045" Usage="Input"/>
 <ComponentLink rRef="r0047" Usage="Input"/>
 <ComponentLink rRef="r0051" Usage="Input"/>
 </ResourceLinkPool>
 <JDF ID="n0046" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting"
Version="1.1" JobPartID="Part2" DescriptiveName="Cover">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->
 <AuditPool>
 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-05T15:34:43+02:00"/>
 </AuditPool>
 <ResourceLinkPool>
 <ComponentLink rRef="r0047" Usage="Output"/>
 <LayoutIntentLink rRef="r0048" Usage="Input"/>
 <ColorIntentLink rRef="r0049" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <LayoutIntent ID="r0048" Class="Intent" Status="Available"/>
 <ColorIntent ID="r0049" Class="Intent" Status="Available"/>
 </ResourcePool>
 </JDF>
 <JDF ID="n0050" Type="Product" Status="Waiting" JobPartID="Part3" DescriptiveName="Insert">
 <ResourceLinkPool>
 <ComponentLink rRef="r0051" Usage="Output"/>
 <LayoutIntentLink rRef="r0052" Usage="Input"/>
 <ColorIntentLink rRef="r0053" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <LayoutIntent ID="r0052" Class="Intent" Status="Available"/>
 <ColorIntent ID="r0053" Class="Intent" Status="Available"/>
 </ResourcePool>
 </JDF>
 <AncestorPool/>
</JDF>

K.3.5 Example of a Partitioned ImageSetting Node before Spawning
The following example shows a simple ImageSetting node that is partitioned by Separation. The resources are not
filled with data. The input resources are Available.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="n20020701190951" Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Waiting" Version="1.1">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.1.01 beta-->
 <ResourcePool>
 <ImageSetterParams ID="r0052" Class="Parameter" Locked="false" Status="Available"/>

Page 564

Page 564

 <Media ID="r0053" Class="Consumable" Locked="false" Status="Available"
PartIDKeys="Separation">
 <Media Separation="Cyan"/>
 <Media Separation="Magenta"/>
 <Media Separation="Yellow"/>
 <Media Separation="Black"/>
 </Media>
 <ExposedMedia ID="r0054" Class="Handling" Locked="false" Status="Unavailable"
PartIDKeys="Separation">
 <ExposedMedia Separation="Cyan"/>
 <ExposedMedia Separation="Magenta"/>
 <ExposedMedia Separation="Yellow"/>
 <ExposedMedia Separation="Black"/>
 </ExposedMedia>
 <RunList ID="r0055" Class="Parameter" Locked="false" Status="Available"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ImageSetterParamsLink rRef="r0052" Usage="Input"/>
 <MediaLink rRef="r0053" Usage="Input"/>
 <ExposedMediaLink rRef="r0054" Usage="Output"/>
 <RunListLink rRef="r0055" Usage="Input"/>
 </ResourceLinkPool>
</JDF>

K.3.6 The Spawned Cyan Partition of the ImageSetting Node
The following example shows the spawned Cyan partition of the ImageSetting node from the previous example.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="n20020701190951" Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Waiting" SpawnID="Sp0059" Version="1.1">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.1.01 beta-->
 <AuditPool/>
 <ResourcePool>
 <ImageSetterParams ID="r0052" Class="Parameter" Locked="true" Status="Available"/>
 <Media ID="r0053" Class="Consumable" Locked="true" Status="Available"
PartIDKeys="Separation">
 <Media Separation="Cyan"/>
 </Media>
 <ExposedMedia ID="r0054" Class="Handling" Locked="true" Status="Unavailable"
PartIDKeys="Separation">
 <ExposedMedia Separation="Cyan"/>
 </ExposedMedia>
 <RunList ID="r0055" Class="Parameter" Locked="true" Status="Available"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ImageSetterParamsLink rRef="r0052" Usage="Input"/>
 <MediaLink rRef="r0053" Usage="Input">
 <Part Separation="Cyan"/>
 </MediaLink>
 <ExposedMediaLink rRef="r0054" Usage="Output">
 <Part Separation="Cyan"/>
 </ExposedMediaLink>
 <RunListLink rRef="r0055" Usage="Input"/>
 </ResourceLinkPool>
 <AncestorPool>
 <Part Separation="Cyan"/>
 <Ancestor Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1"
NodeID="n20020701190951" Status="Waiting" Version="1.1" FileName="testjdf5.jdf"/>
 </AncestorPool>
</JDF>

K.3.7 The Root Partitioned ImageSetting Node after Spawning
Note …

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="n20020701190951" Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Pool" Version="1.1">

Page 565

Page 565

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.1.01 beta-->
 <AuditPool>
 <Spawned URL="File://spawnIS.jdf" jRef="n20020701190951" Status="Waiting" TimeStamp="2002-07-
01T19:18:03+02:00" NewSpawnID="Sp0059">
 <Part Separation="Cyan"/>
 </Spawned>
 </AuditPool>
 <ResourcePool>
 <ImageSetterParams ID="r0052" Class="Parameter" Locked="false" Status="Available"
SpawnIDs="Sp0059" SpawnStatus="SpawnedRO"/>
 <Media ID="r0053" Class="Consumable" Locked="false" Status="Available" SpawnIDs="Sp0059"
PartIDKeys="Separation">
 <Media Locked="true" Separation="Cyan" SpawnStatus="SpawnedRW"/>
 <Media Separation="Magenta"/>
 <Media Separation="Yellow"/>
 <Media Separation="Black"/>
 </Media>
 <ExposedMedia ID="r0054" Class="Handling" Locked="false" Status="Unavailable"
SpawnIDs="Sp0059" PartIDKeys="Separation">
 <ExposedMedia Locked="true" Separation="Cyan" SpawnStatus="SpawnedRW"/>
 <ExposedMedia Separation="Magenta"/>
 <ExposedMedia Separation="Yellow"/>
 <ExposedMedia Separation="Black"/>
 </ExposedMedia>
 <RunList ID="r0055" Class="Parameter" Locked="false" Status="Available" SpawnIDs="Sp0059"
SpawnStatus="SpawnedRO"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ImageSetterParamsLink rRef="r0052" Usage="Input"/>
 <MediaLink rRef="r0053" Usage="Input"/>
 <ExposedMediaLink rRef="r0054" Usage="Output"/>
 <RunListLink rRef="r0055" Usage="Input"/>
 </ResourceLinkPool>
 <StatusPool Status="Waiting">
 <PartStatus Status="Spawned">
 <Part Separation="Cyan"/>
 </PartStatus>
 </StatusPool>
</JDF>

K.3.8 The Merged ImageSetting Node
The Node has now been executed and merged.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="n20020701190951" Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Pool" Version="1.1">
 <AuditPool>
 <Spawned URL="File://spawnIS.jdf" jRef="n20020701190951" Status="Waiting" TimeStamp="2002-07-
01T20:25:03+02:00" NewSpawnID="Sp0059">
 <Part Separation="Cyan"/>
 </Spawned>
 <Merged URL="File://spawnIS2.jdf" jRef="n20020701190951" MergeID="Sp0059" TimeStamp="2002-07-
01T20:27:51+02:00">
 <Part Separation="Cyan"/>
 </Merged>
 </AuditPool>
 <ResourcePool>
 <ImageSetterParams ID="r0052" Class="Parameter" Status="Available"/>
 <Media ID="r0053" Class="Consumable" Status="Available" PartIDKeys="Separation">
 <Media Separation="Cyan" Status="Unavailable"/>
 <Media Separation="Magenta"/>
 <Media Separation="Yellow"/>
 <Media Separation="Black"/>
 </Media>
 <ExposedMedia ID="r0054" Class="Handling" Status="Unavailable" PartIDKeys="Separation">
 <ExposedMedia Status="Available" Separation="Cyan"/>
 <ExposedMedia Separation="Magenta"/>
 <ExposedMedia Separation="Yellow"/>
 <ExposedMedia Separation="Black"/>
 </ExposedMedia>

Page 566

Page 566

 <RunList ID="r0055" Class="Parameter" Status="Available"/>
 </ResourcePool>
 <ResourceLinkPool>
 <ImageSetterParamsLink rRef="r0052" Usage="Input"/>
 <MediaLink rRef="r0053" Usage="Input"/>
 <ExposedMediaLink rRef="r0054" Usage="Output"/>
 <RunListLink rRef="r0055" Usage="Input"/>
 </ResourceLinkPool>
 <StatusPool Status="Waiting">
 <PartStatus Status="Completed">
 <Part Separation="Cyan"/>
 </PartStatus>
 </StatusPool>
</JDF>

K.4 Conversion of PJTF to JDF
K.4.1 PJTF input
The following code defines 4-up duplex impositioning of a 17 page pdf document in Adobe PJTF format:

%JTF-1.2
1 0 obj
<<
/A [3 0 R]
/V 1.1
/Cn [2 0 R]
>>
endobj
2 0 obj
<<
/Type /JobTicketContents
/D [6 0 R]
/PL 8 0 R
>>
endobj
3 0 obj
<<
/D (D:19991111173640)
/JTM (Default JT Creator)
/C (JT created)
>>
endobj
4 0 obj
<<
/Type /Catalog
/JT 1 0 R
>>
endobj
5 0 obj
<<
/Producer (HD PDFWrite vs. 0.1)
>>
endobj
6 0 obj
<<
/Fi [7 0 R]
>>
endobj
7 0 obj
<<
/Fi (panrt17a.pdf)
>>
endobj
8 0 obj
<<
/Si 9 0 R

Page 567

Page 567

>>
endobj
9 0 obj
<<
/S 10 0 R
>>
endobj
10 0 obj
[11 0 R]
endobj
11 0 obj
<<
/MS
<<
/Cl (sheet of paper)
/Me 12 0 R
>>
/Fr 13 0 R
/B 18 0 R
>>
endobj
12 0 obj
<<
/Dm [842 1191 842 1191]
>>
endobj
13 0 obj
<<
/PO [14 0 R 15 0 R 16 0 R 17 0 R]
>>
endobj
14 0 obj
<<
/CTM [0.45 0 0 0.45 21 624]
/O 0
/Cl [21 624 399 1159]
>>
endobj
15 0 obj
<<
/CTM [0.45 0 0 0.45 442 624]
/O 1
/Cl [442 624 820 1159]
>>
endobj
16 0 obj
<<
/CTM [0.45 0 0 0.45 21 29]
/O 2
/Cl [21 29 399 564]
>>
endobj
17 0 obj
<<
/CTM [0.45 0 0 0.45 442 29]
/O 3
/Cl [442 29 820 564]
>>
endobj
18 0 obj
<<
/PO [19 0 R 20 0 R 21 0 R 22 0 R]
>>
endobj
19 0 obj
<<
/CTM [0.45 0 0 0.45 21 624]
/O 4
/Cl [21 624 399 1159]
>>
endobj

Page 568

Page 568

20 0 obj
<<
/CTM [0.45 0 0 0.45 442 624]
/O 5
/Cl [442 624 820 1159]
>>
endobj
21 0 obj
<<
/CTM [0.45 0 0 0.45 21 29]
/O 6
/Cl [21 29 399 564]
>>
endobj
22 0 obj
<<
/CTM [0.45 0 0 0.45 442 29]
/O 7
/Cl [442 29 820 564]
>>
endobj
xref
0 23
0000000000 65535 f
0000000009 00000 n
0000000071 00000 n
0000000146 00000 n
0000000233 00000 n
0000000283 00000 n
0000000338 00000 n
0000000377 00000 n
0000000419 00000 n
0000000453 00000 n
0000000487 00000 n
0000000516 00000 n
0000000608 00000 n
0000000660 00000 n
0000000722 00000 n
0000000810 00000 n
0000000900 00000 n
0000000985 00000 n
0000001072 00000 n
0000001134 00000 n
0000001222 00000 n
0000001312 00000 n
0000001397 00000 n
trailer
<<
/Root 4 0 R
/Info 5 0 R
/Size 23
>>
startxref
1484
%%EOF

K.4.2 JDF output
This JDF file describes the Imposition process defined by the PJTF file.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="PJTFJob" Type="Impositioning" JobID="Job" Status="Waiting"
xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->
 <NodeInfo/>
 <ResourcePool>
 <Layout ID="Link0002" Class="Parameter" Status=”Available">
 <Signature ID="Cos9">
 <SheetRef rRef="Cos11"/>
 </Signature>
 </Layout>

Page 569

Page 569

 <Surface ID="Cos13" Side="Front">
 <ContentObject ID="Cos14" CTM="0.45 0 0 0.45 21 624" Ord="0" ClipBox="21 624 399 1159"/>
 <ContentObject ID="Cos15" CTM="0.45 0 0 0.45 442 624" Ord="1" ClipBox="442 624 820 1159"/>
 <ContentObject ID="Cos16" CTM="0.45 0 0 0.45 21 29" Ord="2" ClipBox="21 29 399 564"/>
 <ContentObject ID="Cos17" CTM="0.45 0 0 0.45 442 29" Ord="3" ClipBox="442 29 820 564"/>
 </Surface>
 <Surface ID="Cos18" Side="Back">
 <ContentObject ID="Cos19" CTM="0.45 0 0 0.45 21 624" Ord="4" ClipBox="21 624 399 1159"/>
 <ContentObject ID="Cos20" CTM="0.45 0 0 0.45 442 624" Ord="5" ClipBox="442 624 820 1159"/>
 <ContentObject ID="Cos21" CTM="0.45 0 0 0.45 21 29" Ord="6" ClipBox="21 29 399 564"/>
 <ContentObject ID="Cos22" CTM="0.45 0 0 0.45 442 29" Ord="7" ClipBox="442 29 820 564"/>
 </Surface>
 <Sheet ID="Cos11" rRefs="Cos18 Cos13">
 <SurfaceRef rRef="Cos18"/>
 <SurfaceRef rRef="Cos13"/>
 </Sheet>
 <Media ID="Cos12" Dimensions="842 1191 842 1191"/>
 <RunList ID="Link0003" Class="Parameter" NPage="17" Status=”Available" Pages="0~16">
 <LayoutElement>
 <FileSpec URL=“File://panrt17a.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList ID="Link0004" Class="Parameter" Status=“Unavailable"/>
 </ResourcePool>
 <ResourceLinkPool>
 <RunListLink rRef="Link0003" Usage=“Input"/>
 <LayoutLink rRef="Link0002" Usage=“Input"/>
 <RunListLink rRef="Link0004" Usage=“Output"/>
 </ResourceLinkPool>
 <AuditPool>
 <Created Author="PJTF2JDF" TimeStamp="2000-11-07T17:42:15+01:00"/>
 </AuditPool>
</JDF>

K.5 Conversion of PPF to JDF
Simple example of a PPF.

%!PS-Adobe-3.0
%%CIP3-File Version 2.0

CIP3BeginSheet
(This example was manually created by Stefan Daun) CIP3Comment
/CIP3AdmJobName (8 pages with workturn and 5 color separations) def
/CIP3AdmSoftware (Text editor) def
/CIP3AdmCreationTime (Wed Feb 19 12:00:00 1997) def
/CIP3AdmArtist (Joerg Zedler) def
/CIP3AdmCopyright (Copyright by Fraunhofer-IGD, 1997) def
/CIP3AdmSheetName (E08P5C) def
/CIP3AdmSheetLay /Left def
/CIP3AdmPSExtent [40 inch 27 inch] def
/CIP3TransferFilmCurveData [0.0 0.0 1.0 1.0] def
/CIP3TransferPlateCurveData [0.0 0.0 1.0 1.0] def
/CIP3AdmFilmTrf [0 1 -1 0 1944 0] def
/CIP3AdmPlateTrf [0 -1 1 0 0 2880] def
CIP3BeginFront
/CIP3AdmSeparationNames [(Cyan) (Magenta) (Yellow) (Black) (PANTONE Green CV)] def

CIP3BeginPreviewImage

CIP3BeginSeparation
(First separation of Front) CIP3Comment
/CIP3PreviewImageWidth 2030 def
/CIP3PreviewImageHeight 1370 def
/CIP3PreviewImageBitsPerComp 8 def
/CIP3PreviewImageComponents 1 def
/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def
/CIP3PreviewImageResolution [50.75 50.75] def
/CIP3PreviewImageEncoding /Binary def
/CIP3PreviewImageCompression /RunLengthDecode def
/CIP3PreviewImageByteAlign 4 def

Page 570

Page 570

CIP3PreviewImage
... <image data>
CIP3EndSeparation

CIP3BeginSeparation
(Second separation of Front) CIP3Comment
/CIP3PreviewImageWidth 2030 def
/CIP3PreviewImageHeight 1370 def
/CIP3PreviewImageBitsPerComp 8 def
/CIP3PreviewImageComponents 1 def
/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def
/CIP3PreviewImageResolution [50.75 50.75] def
/CIP3PreviewImageEncoding /Binary def
/CIP3PreviewImageCompression /RunLengthDecode def
/CIP3PreviewImageByteAlign 4 def
CIP3PreviewImage
... <image data>
CIP3EndSeparation

CIP3BeginSeparation
(Fourth separation of Front) CIP3Comment
/CIP3PreviewImageWidth 2030 def
/CIP3PreviewImageHeight 1370 def
/CIP3PreviewImageBitsPerComp 8 def
/CIP3PreviewImageComponents 1 def
/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def
/CIP3PreviewImageResolution [50.75 50.75] def
/CIP3PreviewImageEncoding /Binary def
/CIP3PreviewImageCompression /RunLengthDecode def
/CIP3PreviewImageByteAlign 4 def
CIP3PreviewImage
... <image data>
CIP3EndSeparation

CIP3BeginSeparation
(Fifth separation of Front) CIP3Comment
/CIP3PreviewImageWidth 2030 def
/CIP3PreviewImageHeight 1370 def
/CIP3PreviewImageBitsPerComp 8 def
/CIP3PreviewImageComponents 1 def
/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def
/CIP3PreviewImageResolution [50.75 50.75] def
/CIP3PreviewImageEncoding /Binary def
/CIP3PreviewImageCompression /RunLengthDecode def
/CIP3PreviewImageByteAlign 4 def
CIP3PreviewImage

CIP3BeginSeparation
(Second separation of Front) CIP3Comment
/CIP3PreviewImageWidth 2030 def
/CIP3PreviewImageHeight 1370 def
/CIP3PreviewImageBitsPerComp 8 def
/CIP3PreviewImageComponents 1 def
/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def
/CIP3PreviewImageResolution [50.75 50.75] def
/CIP3PreviewImageEncoding /Binary def
/CIP3PreviewImageCompression /RunLengthDecode def
/CIP3PreviewImageByteAlign 4 def
CIP3PreviewImage
... <image data>
CIP3EndSeparation
CIP3EndSeparation
CIP3EndPreviewImage

CIP3BeginRegisterMarks
20 inch 0 0 /cross&circle CIP3PlaceRegisterMark
CIP3EndRegisterMarks

CIP3BeginColorControl
/C100 << /CIE-L* 62 /CIE-a* -31 /CIE-b* -48 /Diameter 4.7 mm /Light /D65 /Observer 2
/Tolerance 5 /Type /CIELAB >> def

Page 571

Page 571

/M100 << /CIE-L* 48 /CIE-a* 83 /CIE-b* -3 /Diameter 4.7 mm /Light /D65 /Observer 2
/Tolerance 5 /Type /CIELAB >> def
/Y100 << /CIE-L* 94 /CIE-a* -14 /CIE-b* 100 /Diameter 4.7 mm /Light /D65 /Observer 2
/Tolerance 5 /Type /CIELAB >> def
/K100 << /CIE-L* 0 /CIE-a* 0 /CIE-b* 0 /Diameter 4.7 mm /Light /D65 /Observer 2
/Tolerance 5 /Type /CIELAB >> def
0 0 0 360 18
[
 [14.77 0 C100]
 [41.85 0 Y100]
 [68.92 0 M100]
 [177.23 0 K100]

] /PrepsColorBar CIP3PlaceColorControlStrip
CIP3EndColorControl

CIP3BeginCutData
CIP3BeginCutBlock
/CIP3BlockTrf [1 0 0 1 44 mm 45.9 mm] def
/CIP3BlockSize [420 mm 594 mm] def
/CIP3BlockType /CutBlock def
/CIP3BlockName (Front Sides) def
/CIP3BlockFoldingProcedure /F08-07_li_2x2_1 def
CIP3EndCutBlock

CIP3BeginCutBlock
/CIP3BlockTrf [1 0 0 1 552 mm 45.9 mm] def
/CIP3BlockSize [420 mm 594 mm] def
/CIP3BlockType /CutBlock def
/CIP3BlockName (Back Sides) def
/CIP3BlockFoldingProcedure /F08-07_li_2x2_1 def
400 400 /RightHorizontalCutMark CIP3PlaceCutMark
CIP3EndCutBlock
100 200 /TopVerticalCutMark CIP3PlaceCutMark
CIP3EndCutData
CIP3BeginFoldProcedures
/F08-07_li_2x2_1 <<
 /CIP3FoldDescription (F8-7)
 /CIP3FoldSheetIn [210 mm 297 mm]
 /CIP3FoldProc
 [
 297.638 /Front /Up Fold
 420.945 /Left /Up Fold
]
 >> def
CIP3EndFoldProcedures
CIP3EndFront
CIP3EndSheet
%%CIP3EndOfFile

The translated JDF:
<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="PPFJDF" Type="Product" JobID="MyJob" xmlns="http://www.CIP4.org/JDFSchema_1_1"
Status="Waiting" Version="1.1">
 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->
 <JDF ID="n1152" Type="InkZoneCalculation" Status="Waiting">
 <ResourceLinkPool>
 <LayoutLink rRef="r1106" Usage="Input"/>
 <PreviewLink rRef="r1116" Usage="Input"/>
 <TransferCurvePoolLink rRef="r1111" Usage="Input"/>
 <InkZoneCalculationParamsLink rRef="r1118" Usage="Input"/>
 <InkZoneProfileLink rRef="r1119" Usage="Output"/>
 </ResourceLinkPool>
 <ResourcePool>
 <Layout ID="r1106" Class="Parameter" rRefs="r1107" Status="Available">
 <Signature Name="HDM">
 <SheetRef rRef="r1107"/>
 </Signature>
 </Layout>

Page 572

Page 572

 <Sheet ID="r1107" Name="E08P5C" Class="Parameter" rRefs="r1112" Status="Unavailable"
SurfaceContentsBox="0 0 2880 1944">
 <SurfaceRef rRef="r1112"/>
 </Sheet>
 <Surface ID="r1112" Side="Front" Class="Parameter" rRefs="r1114 r1115 r1130 r1134"
Status="Unavailable">
 <MarkObject CTM="1 0 0 1 0 0" Type="Mark">
 <ColorControlStripRef rRef="r1114"/>
 </MarkObject>
 <MarkObject CTM="1 0 0 1 0 0">
 <RegisterMarkRef rRef="r1115"/>
 </MarkObject>
 <MarkObject CTM="1 0 0 1 0 0" Type="Mark">
 <CutMarkRef rRef="r1130"/>
 </MarkObject>
 <MarkObject CTM="1 0 0 1 0 0" Type="Mark">
 <CutMarkRef rRef="r1134"/>
 </MarkObject>
 </Surface>
 <ColorControlStrip ID="r1114" Size="360 18" Class="Parameter" Center="0 0"
Status="Unavailable" Rotation="0">
 <CIELABMeasuringField rRefs=”RCMC” Center="14.77 0" CIE_Lab="62 -31 -48"
Diameter="13.3228346457" Observer="2" Tolerance="5">
 <ColorMeasurementConditionsRef rRef=”RCMC”/>
 <CIELABMeasuringField(>
 <CIELABMeasuringField rRefs=”RCMC” Center="41.85 0" CIE_Lab="94 -14 100"
Diameter="13.3228346457" Tolerance="5">
 <ColorMeasurementConditionsRef rRef=”RCMC”/>
 <CIELABMeasuringField(>
 <CIELABMeasuringField rRefs=”RCMC” Center="68.92 0" CIE_Lab="48 83 -3"
Diameter="13.3228346457" Tolerance="5">
 <ColorMeasurementConditionsRef rRef=”RCMC”/>
 <CIELABMeasuringField(>
 <CIELABMeasuringField rRefs=”RCMC” Center="177.23 0" CIE_Lab="0 0 0"
Diameter="13.3228346457" Tolerance="5">
 <ColorMeasurementConditionsRef rRef=”RCMC”/>
 <CIELABMeasuringField(>
 </ColorControlStrip>
 <ColorMeasurementConditions ID=”RCMC” Illumination="D65" Observer="2"/>
 <RegisterMark ID="r1115" Class="Parameter" Center="1440 0" Status="Unavailable"
MarkType="cross&circle" Rotation="0"/>
 <CutMark ID="r1130" Class="Parameter" Status="Available" MarkType="TopVerticalCutMark"
Position="100 200"/>
 <CutMark ID="r1134" Class="Parameter" Blocks="Back_Sides" Status="Available"
MarkType="RightHorizontalCutMark" Position="400 400"/>
 <Preview ID="r1116" Class="Parameter" Status="Available" PartIDKeys="SheetName Side
Separation" PreviewType="Separation">
 <Preview SheetName="E08P5C">
 <Preview Side="Front">
 <Preview URL="file://Bild0000.png" Separation="Cyan"/>
 <Preview URL="file://Bild0001.png" Separation="Magenta"/>
 <Preview URL="file://Bild0002.png" Separation="Yellow"/>
 <Preview URL="file://Bild0003.png" Separation="Black"/>
 <Preview URL="file://Bild0004.png" Separation="PANTONE Green CV"/>
 </Preview>
 </Preview>
 </Preview>
 <TransferCurvePool ID="r1111" Class="Parameter" Status="Available">
 <TransferCurveSet CTM="0 1 -1 0 1944 0" Name="Film">
 <TransferCurve Curve="0 0 1 1"/>
 </TransferCurveSet>
 <TransferCurveSet CTM="1 0 0 1 0 0" Name="Press">
 <TransferCurve Curve="0 0 1 1"/>
 </TransferCurveSet>
 <TransferCurveSet CTM="0 -1 1 0 0 2880" Name="Plate"/>
 <TransferCurveSet CTM="1 0 0 1 0 0" Name="Paper"/>
 </TransferCurvePool>
 <InkZoneCalculationParams ID="r1118" Class="Parameter" Status="Available"/>
 <InkZoneProfile ID="r1119" Class="Parameter" Status="Unavailable"/>
 </ResourcePool>
 </JDF>

Page 573

Page 573

 <JDF ID="n1153" Type="ConventionalPrinting" Status="Waiting">
 <ResourceLinkPool>
 <LayoutLink rRef="r1106" Usage="Input"/>
 <ColorantControlLink rRef="r1113" Usage="Input"/>
 <InkZoneProfileLink rRef="r1119" Usage="Input"/>
 <ComponentLink rRef="r1125" Usage="Output" ProcessUsage="Good"/>
 <MediaLink rRef="r1108" Usage="Input"/>
 <ConventionalPrintingParamsLink rRef="r1126" Usage="Input"/>
 <InkLink rRef="r1127" Usage="Input"/>
 <ExposedMediaLink rRef="r1123" Usage="Input"/>
 </ResourceLinkPool>
 <ResourcePool>
 <ColorantControl ID="r1113" Class="Parameter" Status="Available" PartIDKeys="SheetName
Side" ProcessColorModel=”DeviceCMYK”>
 <ColorantControl SheetName="E08P5C">
 <ColorantControl Side="Front">
 <ColorantParams>
 <SeparationSpec Name="PANTONE Green CV"/>
 </ColorantParams>
 <ColorantOrder>
 <SeparationSpec Name="Cyan"/>
 <SeparationSpec Name="Magenta"/>
 <SeparationSpec Name="Yellow"/>
 <SeparationSpec Name="Black"/>
 <SeparationSpec Name="PANTONE Green CV"/>
 </ColorantOrder>
 </ColorantControl>
 </ColorantControl>
 </ColorantControl>
 <Component ID="r1125" Class="Quantity" rRefs="r1107" Status="Unavailable"
PartIDKeys="SheetName">
 <Component SheetName="E08P5C" ComponentType="Sheet">
 <SheetRef rRef="r1107"/>
 </Component>
 </Component>
 <Media ID="r1108" Class="Consumable" Status="Available" MediaType="Paper"
PartIDKeys="SheetName Side">
 <Media Dimension="2880 1944" SheetName="E08P5C">
 <Media Side="Front" Dimension="2880 1944"/>
 </Media>
 </Media>
 <ConventionalPrintingParams ID="r1126" Class="Parameter" Status="Available"
PartIDKeys="SheetName Side">
 <ConventionalPrintingParams SheetLay="Left" SheetName="E08P5C">
 <ConventionalPrintingParams Side="Front"/>
 </ConventionalPrintingParams>
 </ConventionalPrintingParams>
 <Ink ID="r1127" Class="Consumable" Status="Draft"/>
 <ExposedMedia ID="r1123" Class="Handling" rRefs="r1110" Status="Unavailable">
 <MediaRef rRef="r1110"/>
 </ExposedMedia>
 <Media ID="r1110" Class="Consumable" Status="Available" MediaType="Plate"
PartIDKeys="SheetName Side">
 <Media Dimension="2880 1944" SheetName="E08P5C">
 <Media Side="Front" Dimension="2880 1944"/>
 </Media>
 </Media>
 </ResourcePool>
 </JDF>
 <JDF ID="n1154" Type="Cutting" Status="Waiting">
 <ResourceLinkPool>
 <ComponentLink rRef="r1125" Usage="Input">
 <Part SheetName="E08P5C"/>
 </ComponentLink>
 <CuttingParamsLink rRef="r1129" Usage="Input"/>
 <ComponentLink rRef="r1131" Usage="Output"/>
 </ResourceLinkPool>
 <ResourcePool>
 <CuttingParams ID="r1129" Class="Parameter" rRefs="r1130 r1132 r1133 r1134"
Status="Available">
 <CutMarkRef rRef="r1130"/>

Page 574

Page 574

 <CutBlockRef rRef="r1132"/>
 <CutBlockRef rRef="r1133"/>
 <CutMarkRef rRef="r1134"/>
 </CuttingParams>
 <CutBlock ID="r1132" Class="Parameter" Status="Available" BlockTrf="1 0 0 1 124.724409449
130.110236221" BlockName="Front_Sides" BlockSize="1190.55118111 1683.77952756"
BlockType="CutBlock"/>
 <CutBlock ID="r1133" Class="Parameter" Status="Available" BlockTrf="1 0 0 1 1564.72440945
130.110236221" BlockName="Back_Sides" BlockSize="1190.55118111 1683.77952756"
BlockType="CutBlock"/>
 <Component ID="r1131" Class="Quantity" rRefs="r1107" Status="Unavailable"
PartIDKeys="BlockName">
 <Component BlockName="Front_Sides" SourceSheet="E08P5C" ComponentType="Block">
 <SheetRef rRef="r1107"/>
 </Component>
 <Component BlockName="Back_Sides" SourceSheet="E08P5C" ComponentType="Block">
 <SheetRef rRef="r1107"/>
 </Component>
 </Component>
 </ResourcePool>
 </JDF>
 <JDF ID="n1155" Type="ImageSetting" Status="Waiting">
 <ResourceLinkPool>
 <ImageSetterParamsLink rRef="r1121" Usage="Input"/>
 <MediaLink rRef="r1110" Usage="Input"/>
 <RunListLink rRef="r1122" Usage="Input"/>
 <ExposedMediaLink rRef="r1123" Usage="Output"/>
 </ResourceLinkPool>
 <ResourcePool>
 <ImageSetterParams ID="r1121" Class="Parameter" Status="Available"/>
 <RunList ID="r1122" Class="Parameter" Status="Available"/>
 </ResourcePool>
 </JDF>
 <JDF ID="n1158" Type="Folding" Status="Waiting">
 <ResourceLinkPool>
 <FoldingParamsLink rRef="r1136" Usage="Input"/>
 <ComponentLink rRef="r1131" Usage="Input">
 <Part BlockName="Front_Sides"/>
 </ComponentLink>
 <ComponentLink rRef="r1138" Usage="Output"/>
 </ResourceLinkPool>
 <ResourcePool>
 <FoldingParams ID="r1136" Class="Parameter" Status="Available" DescriptionType="FoldProc">
 <Fold To="Up" From="Front" Travel="297.638"/>
 <Fold To="Up" From="Left" Travel="420.945"/>
 </FoldingParams>
 <Component ID="r1138" Class="Quantity" Status="Unavailable" ComponentType="Block"
DescriptiveName="Front_Sides"/>
 </ResourcePool>
 </JDF>
 <JDF ID="n1159" Type="Folding" Status="Waiting">
 <ResourceLinkPool>
 <FoldingParamsLink rRef="r1140" Usage="Input"/>
 <ComponentLink rRef="r1131" Usage="Input">
 <Part BlockName="Back_Sides"/>
 </ComponentLink>
 <ComponentLink rRef="r1142" Usage="Output"/>
 </ResourceLinkPool>
 <ResourcePool>
 <FoldingParams ID="r1140" Class="Parameter" Status="Available" DescriptionType="FoldProc">
 <Fold To="Up" From="Front" Travel="297.638"/>
 <Fold To="Up" From="Left" Travel="420.945"/>
 </FoldingParams>
 <Component ID="r1142" Class="Quantity" Status="Unavailable" ComponentType="Block"
DescriptiveName="Back_Sides"/>
 </ResourcePool>
 </JDF>
</JDF>

K.6 Runlist

Page 575

Page 575

The following example shows the various separation types, all mixed into one big RunList. Both in-line and
ResourceRef versions of LayoutElement are used.

<ResourcePool>
 <Runlist ID="Link0003" Class="Parameter" NPage="10" rRefs="Link0004 Link0005"
Status=“Available" PartIDKeys=“Run Separation“>
 <Comment>Preseparated Runs in multiple files
 All LayoutElements are inline resources
 </Comment>
 <RunList Run=“1“ NPage="1" FirstPage="0">
 <RunList Separation="Cyan">
 <LayoutElement Status=“Unavailable">
 <FileSpec URL=“File://Cyan.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Separation="Magenta">
 <LayoutElement Status=“Unavailable">
 <FileSpec URL=“File://Magenta.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Separation="Yellow">
 <LayoutElement Status=“Unavailable">
 <FileSpec URL=“File://Yellow.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Separation="Black">
 <LayoutElement Status=“Unavailable">
 <FileSpec URL=“File://Black.pdf"/>
 </LayoutElement>
 </RunList>
 <RunList Separation="SpotGreen">
 <LayoutElement Status=“Unavailable">
 <FileSpec URL=“File://Green.pdf"/>
 </LayoutElement>
 </RunList>
 </RunList>
 <RunList Run=“2“ NPage="2" SkipPage="4">
 <Comment>
 Preseparated Runs in one file CMYKGCMYKG
 LayoutElements are inter-resource links
 </Comment>
 <RunList FirstPage="0" Separation="Cyan">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="1" Separation="Magenta">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="2" Separation="Yellow">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="3" Separation="Black">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="4" Separation="SpotGreen">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 </RunList>
 <RunList Run=“3“ NPage="1" SkipPage="3">
 <Comment>
 No Magenta, the missing sep does not exist as a page
 </Comment>
 <RunList FirstPage="10" Separation="Cyan">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="11" Separation="Yellow">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="12" Separation="Black">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>

Page 576

Page 576

 <RunList FirstPage="13" Separation="Green">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 </RunList>
 <RunList Run=“4“ NPage="2" SkipPage="4">
 <Comment>
 Continuation of Preseparated Runs in one file CMYKGCMYKG –
 the missing sep of the previous page does not exist as a page
 </Comment>
 <RunList FirstPage="14" Separation="Cyan">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="15" Separation="Magenta">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="16" Separation="Yellow">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="17" Separation="Black">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 <RunList FirstPage="18" Separation="SpotGreen">
 <LayoutElementRef rRef="Link0004"/>
 </RunList>
 </RunList>
 <RunList Run=“5“ NPage="2">
 <Comment>
 Preseparated Runs in one file CCMMYYKKGG
 </Comment>
 <RunList FirstPage="0" Separation="Cyan">
 <LayoutElementRef rRef="Link0005"/>
 </RunList>
 <RunList FirstPage="2" Separation="Magenta">
 <LayoutElementRef rRef="Link0005"/>
 </RunList>
 <RunList FirstPage="4" Separation="Yellow">
 <LayoutElementRef rRef="Link0005"/>
 </RunList>
 <RunList FirstPage="6" Separation="Black">
 <LayoutElementRef rRef="Link0005"/>
 </RunList>
 <RunList FirstPage="8" Separation="SpotGreen">
 <LayoutElementRef rRef="Link0005"/>
 </RunList>
 </RunList>
 <RunList Run=“6“ NPage="2">
 <Comment>
 Combined Runs in one file
 </Comment>
 <LayoutElement ElementType="document">
 <FileSpec URL=“File://Combined.pdf"/>
 </LayoutElement>
 </RunList>
 </Runlist>
 <LayoutElement ID="Link0004" Class="Parameter" Status=“Available">
 <FileSpec URL=“File://PreSepCMYKG.pdf"/>
 </LayoutElement>
 <LayoutElement ID="Link0005" Class="Parameter" Status=“Available">
 <FileSpec URL=“File://PreSepCCMMYYKKGG.pdf"/>
 </LayoutElement>
</ResourcePool>

K.7 Messages
K.7.1 Simple KnownMessages
The following simple example shows a KnownMessages Query and the Response sent by a fairly dumb controller:

Query:
<?xml version='1.0' encoding='utf-8' ?>

Page 577

Page 577

<JMF SenderID="JMFClient" TimeStamp="2000-11-07T13:15:56+01:00"
xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1">
 <Query ID="Q0001" Type="KnownMessages">
 <KnownMsgQuParams ListQueries="true" ListSignals="false" ListCommands="true"/>
 </Query>
</JMF>

Response:
<?xml version='1.0' encoding='utf-8' ?>
<JMF SenderID="JMFClient #2" TimeStamp="2000-11-07T13:15:56+01:00"
xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1">
 <Response ID="R0001" Type="KnownMessages" refID="Q0001">
 <KnownMessages>
 <MessageService Type="KnownMessages" Query="true"/>
 <MessageService Type="Status" Query="true" Persistent="true"/>
 <MessageService Type="StopPersistentChannel" Command="true"/>
 </KnownMessages>
 </Response>
</JMF>

K.7.2 Simple persistent channel
The following query requests a persistent channel for Status messages. An update is requested whenever an attribute
changes.

<?xml version='1.0' encoding='utf-8' ?>
<JMF SenderID="JMFClient" TimeStamp="2000-11-07T16:02:09+01:00"
xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1">
 <Query ID="Q0011" Type="Status">
 <Subscription URL="http:://123.123.123.123/message/recipient">
 <ObservationTarget Attributes="*"/>
 <StatusQuParams JobDetails="brief"/>
 </Query>
</JMF>

The following four examples are a set of typical, simple responses that are emitted whenever DeviceStatus
changes.

This is the Response that is sent immediately within the same HTTP connection as the Query.
<?xml version='1.0' encoding='utf-8' ?>
<JMF SenderID="JMFClient #2" TimeStamp="2000-11-07T16:02:19+01:00"
xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1">
 <Response ID="R0013" Type="Status" refID="Q0011">

 <DeviceInfo DeviceStatus="Idle"/>
 </Response>

</JMF>

Page 578

Page 578

Appendix L JDF/CIP4 Hole Pattern Catalog

The following table defines the specifics of the predefined holes in HoleMakingParams and HoleMakingIntent.
Notes:

1. All patterns are centered on the sheet along the process edge.
2. Process Edge is always defined relative to a portrait orientation of the medium, regardless of the orientation

of the printed image or processing path.
3. Thumbcuts are available in various standard shapes (labeled "No. N" where N is minimally ranging from

2..7). "No. 3" seems to be the most widely used.
4. Single thumbcuts appear always in the center of the process edge.
5. Oval shape holes actually look sometimes more like rectangular holes with rounded corners.

Sources:

1. Printer Finishing MIB, IETF Draft, 2001-10-01 (http://www.ietf.org/internet-drafts/draft-ietf-printmib-
finishing-12.txt)

Naming Scheme:

General <m|i>: m = metric (millimeter is used), i = imperial (inch, where 1 inch = 25.4 mm)

Ring Binding R<#holes><m|i>-<variant>
Example: R2m-DIN = RingBind, 2 hole, metric, DIN

Plastic Comb P<pitch><m|i>-<shape>-<#thumbcuts>t

Example: P16:9m-round-0t = Plastic Comb, 9/16" pitch (16:9), round, no thumbcut

Wire Comb W<pitch><m|i>-<shape>-<#thumbcuts>t

Example: W2:1i-square-1t = Wire Comb, 1/2" pitch (2:1), square, one thumbcut

Coil/Spiral C<pitch><m|i>-<shape>-<#thumbcuts>t

Example: C9.5m-round-0t = Coil, 9.5 mm, round, no thumbcut

Page 579

Page 579

JDF Hole
Pattern Catalog
ID

Description #Holes Hole
Shape

Hole Extent Pattern
Geometry

Pattern Axis Offset
from Process Edge

JDF Default Pattern
Axis Offset from
Process Edge
in pt (!)

Default
Process
Edge1[RP611]

Usage Notes Source
Standard

RING BINDING (R...)
R-generic Generic request of a ring

binding hole pattern.
The number of holes is
site-specific.

- N/A N/A N/A N/A Left N/A N/A[RP612]

2 Holes (R2...)
R2-generic Generic request of a 2-

hole pattern
2 5 - 13 mm

0.2-0.51”
N/A 4.5 – 13 mm

0.18 - 0.51"
34.02 (≅ 12 mm) Left See note (7). N/A

R2m-DIN DIN 2-hole

MIB: 6 = twoHoleDIN
and
10 = twoHoleMetric

2 5.5 ± 0.1 mm 80 ± 0.1 mm 7 or 11 ± 0.3 mm
7 mm for blocks of <=
15 mm thick

31.18 (≅ 11 mm) Left A4 and A5 DIN 5005:1991
DIN 821:1973

R2m-ISO ISO 2-hole

MIB: 6 = twoHoleDIN
and
10 = twoHoleMetric

2 6 ± 0.5 mm 80 ± 0.5 mm 12 ± 1 mm

Australian Standard
AS P5-1969: 10 ± 1
mm

34.02 (≅ 12 mm) Left Also used in
Japan

ISO 838:1974 (E)

R2m-MIB Printer Finishing MIB
twoHoleDIN and
twoHoleMetric

2 5-8 mm 80 ± 0.5 mm 4.5 – 13 mm 31.18 (≅ 11 mm) Left Printer Finishing
MIB

R2i-US-a US 2-hole, Variant A

MIB: 4 =
twoHoldUSTop and
12 = twoHoleUSSide

2 0.2 - 0.32" 2.75" 0.18 - 0.51" 29.25 (≅ 13/32") Left for letter
Top for ledger

 Printer Finishing
MIB

R2i-US-b US 2-hole, Variant B 2 0.2-0.5"
default: 5/16"
typical: 1/4",
9/32", 11/32",
3/8", 13/32",
1/2"

6" 0.25" + ½ diameter

range: 6/16" - 1/2"

29.25 (≅ 13/32") Left

1 Top implies an Orientation of the input Component of Rotate90; Left implies an Orientation of the input Component of Rotate0;

Page 580

Page 580

JDF Hole
Pattern Catalog
ID

Description #Holes Hole
Shape

Hole Extent Pattern
Geometry

Pattern Axis Offset
from Process Edge

JDF Default Pattern
Axis Offset from
Process Edge
in pt (!)

Default
Process
Edge1[RP611]

Usage Notes Source
Standard

3 Holes (R3...)
R3-generic Generic request of a 3-

hole pattern.
3 5 - 13 mm

0.2-0.51”
N/A 4.5 – 13 mm

0.18 - 0.51"
29.25 (≅ 13/32") Left See note (7). N/A

R3i-US US 3-hole

MIB: 5 = threeHoleUS

3 std: 5/16"
rng: 0.2-0.5"
typ: 1/4", 9/32",
11/32", 3/8",
13/32", 1/2"

4.25" 0.25" + ½ diameter

range: 6/16" - 1/2"

29.25 (≅ 13/32") Left Printer Finishing
MIB

4 Holes (R4...)
R4-generic Generic request of a 4-

hole pattern.
4

5 - 13 mm
0.2-0.51”

N/A 4.5 – 13 mm
0.18 - 0.51"

31.18 (≅ 11 mm) Left See note (7). N/A

R4m-DIN-A4 DIN 4-hole for A4 4

5.5 ± 0.1 mm 80 ± 0.1 mm 7 or 11 ± 0.3 mm
7 mm for blocks of 15
mm or less

31.18 (≅ 11 mm) Left A4 DIN 5005:1991
DIN 821:1973

R4m-DIN-A5 DIN 4-Hole for A5 4

5.5 ± 0.1 mm 45-65-45 mm 7 or 11 ± 0.3 mm
7 mm for blocks of 15
mm or less

31.18 (≅ 11 mm) Left A5 DIN 5005:1991

R4m-swedish Swedish 4-hole

MIB: 11 =
swedish4Hole

4

5 - 8 mm 21-70-21 mm 4.5 - 13 mm 31.18 (≅ 11 mm) Left for A4
Top for A3

A4, A3 Printer Finishing
MIB

R4i-US US 4-Hole 4

0.2 - 0.5"
std: 5/16"
typ: 1/4", 9/32",
11/32", 3/8",
13/32", 1/2"

1.375-4.25-
1.375"

0.25" + ½ diameter

range: 6/16" - 1/2"

29.25 (≅ 0.25" + ½ x
5/16" = 13/32")

Left

Page 581

Page 581

JDF Hole
Pattern Catalog
ID

Description #Holes Hole
Shape

Hole Extent Pattern
Geometry

Pattern Axis Offset
from Process Edge

JDF Default Pattern
Axis Offset from
Process Edge
in pt (!)

Default
Process
Edge1[RP611]

Usage Notes Source
Standard

5 Holes (R5...)
R5-generic Generic request of a 5-

hole pattern.
5

5 - 13 mm
0.2-0.51”

N/A 4.5 – 13 mm
0.18 - 0.51"

29.25 (≅ 13/32") Left See note (7). N/A

R5i-US-a US 5-hole, Variant A

MIB: 13 = fiveHoleUS

5

0.2 - 0.32" 2-2.25-2.25-2" 0.18 - 0.51" 29.25 (≅ 13/32") Left for letter
Top for ledger

 Printer Finishing
MIB

R5i-US-b US 5-hole, Variant B 5

0.2 - 0.5"
std: 5/16"
typ: 1/4", 9/32",
11/32", 3/8",
13/32", 1/2"

0.75-3.5-3.5-
0.75"

0.25" + ½ diameter
0.375 - 0.5"

29.25 (≅ 0.25" + ½ x
5/16" = 13/32")

Left

R5i-US-c Combination of
R2i-US-a and R3i-US

5

0.2 - 0.5"
std: 5/16"
typ: 1/4", 9/32",
11/32", 3/8",
13/32", 1/2"

1.25-3-3-1.25" 0.25" + ½ diameter
0.375 - 0.5"

29.25 (≅ 0.25" + ½ x
5/16" = 13/32")

Left

6 Holes (R6...)
R6-generic Generic request of a 6-

hole pattern.
6 5 - 13 mm

0.2-0.51”
N/A 4.5 – 13 mm

0.18 - 0.51"
31.18 (≅ 11 mm) Left for A4/A5

Top for A3
See note (7). N/A

R6m-4h2s Norwegian 4-hole
(round) mixed with 2
slots (rectangular)

MIB: 16 = norweg6Hole

6
H:

S:

Holes: 5 - 8 mm
Slots: 10 x 5.5
mm

4 holes/2 slots
Pattern: H-H-S-
S-H-H
64-18.5-75-
18.5-64 mm

4.5 - 13 mm 31.18 (≅ 11 mm) Left for A4
Top for A3

 Printer Finishing
MIB

R6m-DIN-A5 DIN 6-Hole for A5 6 5.5 ± 0.1 mm 37.5-7.5-65-
7.5-37.5 mm

7 or 11 ± 0.3 mm
7 mm for blocks of <=
15 mm thick

31.18 (≅ 11 mm) Left Only used
with A5

DIN 5005:1991

Page 582

Page 582

JDF Hole
Pattern Catalog
ID

Description #Holes Hole
Shape

Hole Extent Pattern
Geometry

Pattern Axis Offset
from Process Edge

JDF Default Pattern
Axis Offset from
Process Edge
in pt (!)

Default
Process
Edge1[RP611]

Usage Notes Source
Standard

7 Holes (R7...)
R7-generic Generic request of a 7-

hole pattern.
7 5 - 13 mm

0.2-0.51”
N/A 4.5 – 13 mm

0.18 - 0.51"
29.25 (≅ 13/32") Left for letter

Top for ledger
See note (7). N/A

R7i-US-a US 7-hole, Variant A

MIB: 14 =
sevenHoleUS

7

0.2 - 0.32" 1-1-2.25-2.25-
1-1"

0.18 - 0.51" 29.25 (≅ 13/32") Left for letter
Top for ledger

 Printer Finishing
MIB

R7i-US-b US 7-hole, Bell/AT&T
Systems. Combination
of R3i-US, R4i-US,
R5i-US-b

7

0.2 - 0.5"
std: 5/16"
typ: 1/4", 9/32",
11/32", 3/8",
13/32", 1/2"

0.75-1.375-
2.125-2.125-
1.375-0.75"

0.25" + ½ diameter
0.375 - 0.5"

29.25 (≅ 0.25" + ½ x
5/16" = 13/32")

Left for letter
Top for ledger

R7i-US-c US 7-hole, Variant C 7

0.2 - 0.5"
std: 5/16"
typ: 1/4", 9/32",
11/32", 3/8",
13/32", 1/2"

1.25-0.875-
2.125-2.125-
0.875-1.25"

0.25" + ½ diameter
0.375 - 0.5"

29.25 (≅ 13/32") Left for letter
Top for ledger

11 Holes (R11...)
R11m-7h4s 7-hole (round) mixed

with 4 slots
(rectangular)

MIB: 15 = mixed7H4S

11
H:
S:

Holes: 5 - 8 mm
Slots: 12 x 6 mm

7 holes/2slots
Pattern: H-S-
H-H-S-H-S-H-
H-S-H
15-25-23-20-
37-37-20-23-
25-15 mm

4.5 - 13 mm 31.18 (≅ 11 mm) Left for A4
Top for A3

 Printer Finishing
MIB

Page 583

Page 583

JDF Hole
Pattern Catalog
ID

Description #Holes Hole
Shape

Hole Extent Pattern
Geometry

Pattern Axis Offset
from Process Edge

JDF Default Pattern
Axis Offset from
Process Edge
in pt (!)

Default
Process
Edge1[RP611]

Usage Notes Source
Standard

PLASTIC COMB BINDING (P...)
P-generic Generic request of a coil

binding hole pattern.
The number of holes is
site-specific.

- N/A N/A N/A N/A Left N/A N/A[RP613]

P16_9i-rect-0t US spacing, no
thumbcut

MIB: 9 =
nineteenHoleUS

A4: 21
Letter: 19

5/16" x 1/8"
(8 x 3.2 mm)

9/16" 3/16" 13.54 (≅ 0.188") Left Printer Finishing
MIB

P12m-rect-0t European spacing, no
thumbcut

 7 x 3 mm 12 mm 4.5 mm 12.76 (≅ 4.5 mm) Left

WIRE COMB BINDING (W...)
W-generic Generic request of a

wire comb binding hole
pattern. The number of
holes is site-specific.

- / N/A N/A N/A N/A Left N/A N/A[RP614]

W2_1i-round-0t 2:1, round, no thumbcut

MIB: 8 =
twentyTwoHoleUS

A4: 23
Letter: 21

0.2 - 0.32"
std: 1/4"
Europe typ: 6 or
6.4 mm

1/2" 3 mm + ½ diameter
0.318 - 0.438"
Europe: 6 - 6.2 mm

17.50 (≅ 0.243") Left Printer Finishing
MIB

W2_1i-square-0t 2:1, square, no thumbcut A4: 23
Letter: 21

0.2 - 0.32"
std: 1/4"
Europe typ: 6 or
6.4 mm

1/2" 3 mm + ½ diameter
0.318 - 0.438"
Europe: 6 - 6.2 mm

17.50 (≅ 0.243") Left

W3_1i-square-0t 3:1, square, no
thumbcuts

A4: 34
A5: 24
Letter: 32

5/32 x 5/32"
(4x4 mm)

1/3" 0.2" 14.40 (≅ 0.2") Left

COIL/SPIRAL BINDING (C...)
C-generic Generic request of a coil

/ spiral binding hole
pattern. The number of
holes is site-specific.

- N/A N/A N/A N/A Left for A4/JIS
B5
Top for A3/JIS
B4

N/A N/A[RP615]

Page 584

Page 584

JDF Hole
Pattern Catalog
ID

Description #Holes Hole
Shape

Hole Extent Pattern
Geometry

Pattern Axis Offset
from Process Edge

JDF Default Pattern
Axis Offset from
Process Edge
in pt (!)

Default
Process
Edge1[RP611]

Usage Notes Source
Standard

C9.5m-round-0t 9.5 mm, round, no
thumbcut

MIB: 17 - metric26Hole
and
18 - metric30Hole

A4/A3:
30
JIS
B5/B4:
26

5 - 8 mm 9.5 mm 4.5 - 13 mm 31.18 (≅ 11 mm) SPECIAL
(S...)

 Printer Finishing
MIB

SPECIAL (S...)[RP616]
S-generic Generic request of a

hole pattern. The
number,position, size
and shape of holes is
site-specific. May be
used to parametrize a
scattergun.

- / N/A N/A N/A N/A N/A N/A N/A[RP617]

S1-generic Generic request of a 1-
hole pattern.

1 3-6 mm N/A 3.5 – 10 mm

12.76 (≅ 4.5 mm) Top Used for
hanging
calendars
using a
pin/nail
[RP618]

 Reserved for
future extensions

Page 585

Page 585

North American Media Weight
Explained
New in JDF 1.2
In North America, each grade of paper has one basic size used to compute its basis weight. The following table
defines the basic sizes and the ratio of Weight to USWeight:

Media Type Size in Inches Weight / USWeight
bond basic 17" x 22" 3.76
text basic 25" x 38" 1.48
offset basic 25" x 38" 1.48
coated basic 25" x 38" 1.48
cover basic 20" x 26" 2.70[RP619]
Bristol 22½” x 28½” 1.62
Index 25½” x 30½” 1.81

[RP620]

Page 586

Page 586

Appendix M Color Adjustment Attribute Description and
Usage

This Appendix describes several alternative usages of some attributes in the ColorCorrectionOp element (see ref##
ColorCorrectionOp) that are intended to allow simple, late-in-the-workflow, minor adjustments to the overall color
appearance of a job or portions of a job.

Note: These color adjustments are not available in any Product Intent Resource, such as ColorIntent. In order to
request such adjustment in a Product Intent Job Ticket supplied to a Print Provider, attach to a Product Intent Node
an incomplete ColorCorrection Process with a ColorCorrectionParams resource specifying the requested
ColorCorrectionOp element attributes.

M.1 Adjustment using direct attributes

This section describes the following attributes that provide direct adjustments to various aspect of the color space:

AdjustCyanRed -100 to +100
AdjustMagentaGreen -100 to +100
AdjustYellowBlue -100 to +100
AdjustConstrast -100 to +100
AdjustHue -180 to +180
AdjustLightness -100 to +100
AdjustSaturation -100 to +100

These attributes can be applied at a point where an abstract profile would be applied (following any abstract profiles
used) in the order: AdjustLightness, AdjustContrast, AdjustSaturation, AdjustHue,
{ AdjustCyanRed / AdjustMagentaGreen / AdjustYellowBlue }

The operation of each adjust attribute is described in relation to colors expressed in the L*a*b* connection color
space (with L* expressed on a scale of 0 to 100).

AdjustLightness offsets the L channel.

L* += AdjustLightness

AdjustContrast scales the L* channel about mid-scale (L* = 50).
 L*’ = 50 + (L*– 50) * (AdjustContrast / 100 + 1)

AdjustSaturation scales the a* and b* channels about zero.

a* *= (AdjustSaturation / 100 + 1)
b* *= (AdjustSaturation / 100 + 1)

AdjustCyanRed, AdjustMagentaGreen, and AdjustYellowBlue offset the colors in the a*,b*plane along the
respective color vector. Lightness (L*) is not changed. Positive values offset towards Red, Green, or Blue and
negative values offset towards Cyan, Magenta, or Yellow. The adjustment vectors are aligned with the standard
SWOP inks. When adjusting device-colors, these adjustments may be approximated by offsets along the vectors of
the actual ink colors being used.

The angles and unit vectors for SWOP inks (from the CGATS ICC profile) are:

red-cyan green-magenta blue-yellow
angle -129.9 -5.3 94.5
a* 0.641 -0.996 0.078

 b* 0.767 0.092 -0.997

So a* += 0.641 * AdjustCyanRed

Page 587

Page 587

 - 0.996 * AdjustMagentaGreen
 + 0.078 * AdjustYellowBlue

b* += 0.767 * AdjustCyanRed
 + 0.092 * AdjustMagentaGreen
 - 0.997 * AdjustYellowBlue

AdjustHue offsets the Hue Angle value when the colors have been transformed to the CIE- L* C* H* (Luminance,
Chroma, Hue) color space from the L*a*b* connection color space. The AdjustHue angle is expressed in degrees.

 a*’ = a* * cos(AdjustHue) - b* * sin(AdjustHue)
 b*’ = a* * sin(AdjustHue) + b* * cos(AdjustHue)

8.4 N.2 Adjustment using ICC Profile attributes

This section describes two alternatives to the direct AdjustXxx attributes providing adjustments of the same nature
using ICC Profiles. The ICC profile approach provides a standard mechanism for applying a set of multi-
dimensional adjustments with a single operation. The ICC profile approach also has an advantage in that it
minimizes algorithm and interpretation dependency on the receiving end.

8.4.1 N.2.1 Adjustment using an ICC Abstract Profile attribute

A color adjust can be encapsulated in an ICC Abstract profile that is applied in ICC Profile Connection Space. The
FileSpec element of the ColorCorrectionOp with the ResourceUsage attribute set to “AbstractProfile” references an
ICC Profile to be used in this manner.

8.4.2 N.2.2 Adjustment using an ICC DeviceLink Profile attribute

A color adjust can be encapsulated in an ICC DeviceLink profile that is applied in device space. The FileSpec
element of the ColorCorrectionOp with the ResourceUsage attribute set to “DeviceLinkProfile” references an ICC
Profile to be used in this manner.[RP621]

Page 588

Page 588

Appendix N Input Tray and output Bin Names
Location/@LocationName may also be used to specify a location within a device, e.g., a paper input tray name or
an output bin name. [RP622]When specifying input paper trays (indicated with “I”) and/or output bins (indicated
with “O”), the following values for Location/@LocationName locations are predefined. When specifying input
tray names, the following values for Location/@LocationName are suggested. The input tray names that specify a
position (e.g. Top) are identified by an asterisk (*). These positional input tray names should not be used if devices
are clustered because the position of the input tray may not be the same for all of the devices in the cluster.

Table 8-18-2 Locations within Printers

Name Description
AnyLargeFormat (IO) The location that holds larger format media with one dimension larger than 11 inches.. The

media dimensions must be specified. AnyLargeFormat is defined for a PPD. New in JDF 1.2
AnySmallFormat (IO) The location that holds smaller format media. The media dimensions must be specified.

AnySmallFormat is defined for a PPD. New in JDF 1.2
AutoSelect (IO) The location that the device selects based on the Media specification. New in JDF 1.2
Bottom (IO*) The location bin that, when facing the device, can best be identified as ‘bottom’.
BypassTray (I) The input tray used to handle odd or special papers. May be used to specify the input tray

that is used for inserts sheets that are not to be imaged. New in JDF 1.2
BypassTray-N (I) The input tray used to handle odd or special papers. May be used to specify the input tray

that is used for inserts sheets that are not to be imaged. N = '1', '2', … New in JDF 1.2
Center (IO*) The location that, when facing the device, can best be identified as ‘center. Deprecated

in JDF 1.2 Use Middle instead.
Continuous (IO) The location to handle continuous media, i.e., continuously connected sheets. New in

JDF 1.2
Disc (IO) The location to handle CD or DVD discs to be printed on. New in JDF 1.2
Disc-N (IO) The location to handle CD or DVD discs to be printed on. New in JDF 1.2
Envelope (IO) The location that is to contain envelopes. New in JDF 1.2
Envelope-N (IO) The location that is to contain envelopes. N = '1', '2', … New in JDF 1.2
FaceDown (O) The output bin that can best be identified as ‘face down’ with respect to the device.
FaceUp (O) The output bin that can best be identified as ‘face up’ with respect to the device.
FitMedia (O) Requests the device to select a location bin based on the size of the media.
Front (IO*) The location that, when facing the device, can best be identified as ‘front’. New in JDF

1.2
InsertTray (I) The input tray that can best be identified as 'insert tray'. Used to specify the input tray that is

used for inserts sheets (insert sheets are never imaged). New in JDF 1.2
InsertTray-N (I) The input tray that can best be identified as 'insert tray-1', 'insert tray-2', … etc. Used to

specify the input tray that is used for inserts sheets (insert sheets are never imaged). New in
JDF 1.2

LargeCapacity (IO) The bin location that can best be identified as the ‘large capacity’ bin (in terms of the
number of sheets) with respect to the device.

LargeCapacity-N (IO) The location that can best be identified as the ‘large capacity-1', 'large-capacity-2’ … etc.,
input tray (in terms of the number of sheets) with respect to the device. New in JDF 1.2

Left (IO*) The location bin that, when facing the device, can best be identified as ‘left.
Mailbox-N (O) The job will be output to the bin that is best identified as ‘Mailbox-1’, ‘Mailbox-2’…etc.
Middle (IO*) The location bin that, when facing the device, can best be identified as ‘middle’.
Rear (IO*) The location bin that, when facing the device, can best be identified as ‘rear’.

Page 589

Page 589

Name Description
Right (IO*) The location bin that, when facing the device, can best be identified as ‘right.
Roll (IO) The location to handle roll fed media. New in JDF 1.2
Roll-N (IO) The Nth location to handle the Nth roll fed media. New in JDF 1.2
Side (IO*) The location bin that, when facing the device, can best be identified as ‘side’.
Stacker-N (O) The job will be output to the bin that is best identified as ‘Stacker-1’, ‘Stacker-2’ …etc.
Top (IO*) The bin location that, when facing the device, can best be identified as ‘top’.
Tray (IO) The location for a single tray device. New in JDF 1.2
Tray-N (IO) The job will be output to the tray location that is best identified as ‘Tray-1’, ‘Tray-2’ …

etc.

Following is a table that lists some common location names that are analogous to a location name in the above table.
The location names listed in the table above should be used when possible.

Name Location Name to use instead
Back Rear
Cassette Tray-N
Lower Bottom
Main LargeCapcity
Upper Top[RP623]

Page 590

Page 590

Appendix O Media Sizes
The following table defines a set of named media sizes as defined by
http://partners.adobe.com/asn/developer/pdfs/tn/5003.PPD_Spec_v4.3.pdf

Key for Notes
• I—size is defined by ISO standards
• J—size is defined by JIS standards
• E—this is an envelope size

Media Size Size (pts) Size (mm) Size (inches) Notes
A0 2384 x 3370 841 x 1189 33.11 x 46.81 I, J
A1 1684 x 2384 594 x 841 23.39 x 33.11 I, J
A10 73 x 105 26 x 37 1.02 x 1.46 I, J
A2 1191 x 1684 420 x 594 16.54 x 23.39 I, J
A3 842 x 1191 297 x 420 11.69 x 16.54 I, J
A3Extra 913 x 1262 322 x 445 12.67 x 17.52
A4 595 x 842 210 x 297 8.27 x 11.69 I, J
A4Extra 667 x 914 235.5 x 322.3 9.27 x 12.69
A4Plus 595 x 936 210 x 330 8.27 x 13
A5 420 x 595 148 x 210 5.83 x 8.27 I, J
A5Extra 492 x 668 174 x 235 6.85 x 9.25
A6 297 x 420 105 x 148 4.13 x 5.83 I, J
A7 210 x 297 74 x 105 2.91 x 4.13 I, J
A8 148 x 210 52 x 74 2.05 x 2.91 I, J
A9 105 x 148 37 x 52 1.46 x 2.05 I, J
AnsiC 1224 x 1584 431.8 x 558.8 17 x 22
AnsiD 1584 x 2448 558.8 x 863.6 22 x 34
AnsiE 2448 x 3168 863.6 x 1118 34 x 44
ARCHA 648 x 864 228.6 x 304.8 9 x 12
ARCHB 864 x 1296 304.8 x 457.2 12 x 18
ARCHC 1296 x 1728 457.2 x 609.6 18 x 24
ARCHD 1728 x 2592 609.6 x 914.4 24 x 36
ARCHE 2592 x 3456 914.4 x 1219 36 x 48
B0 2920 x 4127 1030 x 1456 40.55 x 57.32 J
B1 2064 x 2920 728 x 1030 28.66 x 40.55 J
B10 91 x 127 32 x 45 1.26 x 1.77 J
B2 1460 x 2064 515 x 728 20.28 x 28.66 J
B3 1032 x 1460 364 x 515 14.33 x 20.28 J
B4 729 x 1032 257 x 364 10.12 x 14.33 J
B5 516 x 729 182 x 257 7.17 x 10.12 J
B6 363 x 516 128 x 182 5.04 x 7.17 J
B7 258 x 363 91 x 128 3.58 x 5.04 J
B8 181 x 258 64 x 91 2.52 x 3.58 J
B9 127 x 181 45 x 64 1.77 x 2.52 J
C4 649 x 918 229 x 324 9.02 x 12.75 I, E
C5 459 x 649 162 x 229 6.38 x 9.02 I, E
C6 323 x 459 114 x 162 4.49 x 6.38 I, E

Page 591

Page 591

Comm10 297 x 684 104.8 x 241.3 4.125 x 9.5 E
DL 312 x 624 110 x 220 4.33 x 8.66 I, E
DoublePostcard 567 x 419 200 x 148 7.87 x 5.83
Env10 297 x 684 104.8 x 241.3 4.125 x 9.5 E
Env11 324 x 747 114.3 x 263.5 4.5 x 10.375 E
Env12 342 x 792 120.7 x 279.4 4.75 x 11 E
Env14 360 x 828 127 x 292.1 5 x 11.5 E
Env9 279 x 639 98.4 x 225.4 3.875 x 8.875 E
EnvC0 2599 x 3676 917 x 1297 36.10 x 51.06 I, E
EnvC1 1837 x 2599 648 x 917 25.51 x 36.10 I, E
EnvC2 1298 x 1837 458 x 648 18.03 x 25.51 I, E
EnvC3 918 x 1296 324 x 458 12.75 x 18.03 I, E
EnvC4 649 x 918 229 x 324 9.02 x 12.75 I, E
EnvC5 459 x 649 162 x 229 6.38 x 9.02 I, E
EnvC6 323 x 459 114 x 162 4.49 x 6.38 I, E
EnvC65 324 x 648 114 x 229 4.5 x 9 E
EnvC7 230 x 323 81 x 114 3.19 x 4.49 I, E
EnvChou3 340 x 666 120 x 235 4.72 x 9.25 E
EnvChou4 255 x 581 90 x 205 3.54 x 8 E
EnvDL 312 x 624 110 x 220 4.33 x 8.66 I, E
EnvInvite 624 x 624 220 x 220 8.66 x 8.66 E
EnvISOB4 708 x 1001 250 x 353 9.84 x 13.9 E
EnvISOB5 499 x 709 176 x 250 6.9 x 9.8 E
EnvISOB6 499 x 354 176 x 125 6.9 x 4.9 E
EnvItalian 312 x 652 110 x 230 4.33 x 9 E
EnvKaku2 680 x 941 240 x 332 9.45 x 13 E
EnvKaku3 612 x 785 216 x 277 8.5 x 10.9 E
EnvMonarch 279 x 540 98.43 x 190.5 3.875 x 7.5 E
EnvPersonal 261 x 468 92.08 x 165.1 3.625 x 6.5 E
EnvPRC1 289 x 468 102 x 165 4 x 6.5 E
EnvPRC10 918 x 1298 324 x 458 12.75 x 18 E
EnvPRC2 289 x 499 102 x 176 4 x 6.9 E
EnvPRC3 354 x 499 125 x 176 4.9 x 6.9 E
EnvPRC4 312 x 590 110 x 208 4.33 x 8.2 E
EnvPRC5 312 x 624 110 x 220 4.33 x 8.66 E
EnvPRC6 340 x 652 120 x 230 4.7 x 9 E
EnvPRC7 454 x 652 160 x 230 6.3 x 9 E
EnvPRC8 340 x 876 120 x 309 4.7 x 12.2 E
EnvPRC9 649 x 918 229 x 324 9 x 12.75 E
EnvYou4 298 x 666 105 x 235 4.13 x 9.25 E
Executive 522 x 756 184.2 x 266.7 7.25 x 10.5
FanFoldGerman 612 x 864 215.9 x 304.8 8.5 x 12
FanFoldGermanLegal 612 x 936 215.9 x 330 8.5 x 13
FanFoldUS 1071 x 792 377.8 x 279.4 14.875 x 11
Folio 595 x 935 210 x 330 8.27 x 13

Page 592

Page 592

ISOB0 2835 x 4008 1000 x 1414 39.37 x 55.67 I
ISOB1 2004 x 2835 707 x 1000 27.83 x 39.37 I
ISOB10 88 x 125 31 x 44 1.22 x 1.73 I
ISOB2 1417 x 2004 500 x 707 19.68 x 27.83 I
ISOB3 1001 x 1417 353 x 500 13.90 x 19.68 I
ISOB4 709 x 1001 250 x 353 9.84 x 13.90 I
ISOB5 499 x 709 176 x 250 6.9 x 9.8 I
ISOB5Extra 569 x 782 201 x 276 7.9 x 10.8
ISOB6 354 x 499 125 x 176 4.92 x 6.93 I
ISOB7 249 x 354 88 x 125 3.46 x 4.92 I
ISOB8 176 x 249 62 x 88 2.44 x 3.46 I
ISOB9 125 x 176 44 x 62 1.73 x 2.44 I
Ledger 1224 x 792 431.8 x 279.4 17 x 11
Legal 612 x 1008 215.9 x 355.6 8.5 x 14
LegalExtra 684 x 1080 241.3 x 381 9.5 x 15
Letter 612 x 792 215.9 x 279.4 8.5 x 11
LetterExtra 684 x 864 241.3 x 304.8 9.5 x 12
LetterPlus 612 x 913 215.9 x 322.3 8.5 x 12.69
Monarch 279 x 540 98.43 x 190.5 3.875 x 7.5 E
Postcard 284 x 419 100 x 148 3.94 x 5.83
PRC16K 414 x 610 146 x 215 5.75 x 8.5 [RP624]

Page 593

Page 593

Page 594

Page 594

Appendix P New, Deprecated, Modified, Illegal, and
Removed Items

P.1 New Items
Location Section Title Comments
Preface User Overview Provides information and guides for understanding the

objectives, value, and purpose of JDF.
Section 1.1 Background on JDF History and benefits of JDF.
Section 1.4.1 Conformance

Terminology
Clarification of language used in this specification.

Section 1.4.2 Conformance
Requirements for JDF
Entities

Definition of general conformance requirement for JDF
entities.

Section 2.5 Coordinate Systems in
JDF

How coordinate systems are defined and used in JDF>

Section 4.9 Dynamic State Machines
Using ResourceUpdate

Section 6.5.45 Postpress Processes
Structure

Revision of Packaging Processes. Merges all the process for
making a book block.

Section 7.1.1.2 Structure of the Duration
Span Subelement

Describes a selection of instances in time.

Section 7.1.1.8 Structure of the
ShapeSpan Subelement

Describes ranges of numerical value pairs.

Section 7.1.6 Embossing Intent Specifies the embossing and/or foil stamping intent.
Section 7.1.13 NumberingIntent Describes the parameters of stamping or applying variable

marks to produce unique components.
Section 7.2.29 ContactCopyParams Describes the parameters of ContactCopying.
Section 7.2.53 FitPolicy Specifies how to fit content into a receiving container.
Section 7.2.54 Fold Describes an individual folding operation of the

Component.
Section 7.2.60 GlueApplication Specifies glue application in hard and soft cover book

production
Section 7.2.63 HeadBandApplicationPar

ams
Specifies how to apply headbands in hard cover book
production.

Section 7.2.64 Hole Describes an individual hole.
Section 7.2.65 HoleLine Specifies parameters for holes series for transporting paper

through continuous-feed printers and finishing devices.
Section 7.2.126 SpinePreparationParams Describes the preparation of the spine of book blocks for hard

and soft cover book production.
Section 7.2.143 StripBindingParams Describes details of the StripBinding process.
Section 7.3 Device Capability

Definitions
Specifies capabilities of devices.

Appendix A.2.2 DurationRange Describes XML attributes of DurationRange.
Appendix A.2.16 ShapeRange Describes XML attributes of ShapeRange.
Appendix A.2.17 ShapeRangeList Describes XML attributes of ShapeRangeList.

P.2 Deprecated Items
Location Table Info Comments
Section 3.4
Customer Information
Table 3.6

Company ?
refelement

Company affiliation of Contacts is specified in
Contact.

Section 3.5
Node Information
Table 3.7

MergeTarget ?
boolean

Avoiding concurrent access to the ancestor node is ill defined
and cannot be implemented in an open system without
proprietary locking mechanisms.

Page 595

Page 595

Location Table Info Comments
Section 3.7.1.6 Selector Resources Resources of class Selector have been removed. Note that

they are not only deprecated but actually removed from
the format including the schema and must not be
supported by a JDF 1.1 conforming agent

Section 3.8
Resource Links
Table 3.17

CombinedProcessType Replaced by CombinedProcessIndex.

Section 6.2.7
Packing

 Replaced by the individual processes defined in Section
6.5.45.5 Packaging Processes

Section .3.7
FilmToPlate Copying

 Replaced by the more generic ContactCopying.

Section 6.3.21
Rendering

Input Resources
Media

Section 6.4.3
IDPrinting

 Controls for IDPrinting are provided in the
IDPrintingParams resource. These controls are
intended to be somewhat limited in their scope. If greater
control over various aspects of the printing process is
required, IDPrinting should not be used.

Section 6.5.1
Adhesive Binding

 The AdhesiveBinding has been split into:
• CoverApplication,
• Gluing
• SpinePreparation,
• SpineTaping.
The parameters of the GlueApplication ABOperations
have been moved into CoverApplicationParams and
SpineTapingParams as GlueApplication refelements.
The generic GlueApplication ABOperation is now
described by the Gluing process.

Section 6.5.12
Dividing

 Dividing has been replaced by Cutting.

Section 6.5.24
Longitudinal Ribbon
Operations

 In-line finishing is described using the “standard”
finishing processes, e.g., Creasing, Cutting, or
Folding in a combined node with
ConventionalPrinting.

Section 6.5.30
Saddle Stitching

 Replaced by Stitching.

Section 6.5.33
SideSewing

 Replaced by ThreadSewing.

Section 7.1.2
ArtDelivery Intent

Resource Structure
Company ?
refelement

 Structure of
ArtDelivery Elements
Company ?
refelement

 Structure of
ArtDelivery Elements
Component ?
refelement

Section 7.1.3
BindingIntent

Resource Structure
BindingType
EnumerationSpan

Replaced with SoftCover or HardCover.

 Resource Structure
AdhesiveBinding ?
element

Page 596

Page 596

Location Table Info Comments
 Resource Structure

BookCase ?
element

 Structure of the
AdhesiveBinding
Subelement

 Structure of the
BookCase
Subelement

 Structure of the
RingBinding
Subelement
RingSystem
NameSpan

2HoleEuro, 3HoleUS, 4HoleEuro have been replaced by
HoleType.

Section 7.1.5
DeliveryIntent

Resource Structure
Pickup ?
boolean

 Resource Structure
Company ?
refelement

 Structure of
DeliveryIntent
Elements: DropIntent
Pickup?
boolean

 Structure of
DeliveryIntent
Elements: DropIntent
Company?
refelement

Section 7.1.7
FoldingIntent

Resource Structure
Folds?
XYPair

Section 7.1.8
HoleMakingIntent

Resource Structure
HoleType
StringSpan

2HoleEuro – Replace by either R2m-DIN or R2m-ISO.
3HoleUS – Replace by R3I-US
4HoleEuro – Replace by R4m-DIN-A4 or R4m-DIN-A5.

Section 7.1.9
InsertingIntent

Structure of Insert
Subelement
SheetOffset?
XYPair

Section .1.10
LaminatingIntent

Resource Structure
Laminated
OptionSpan

Section 7.1.11
LayoutIntent

Resource Structure
FinishedPage
Orientation
enumeration

In JDF 1.1, the page orientation is implied by the value of
Dimensions and FinishedDimensions. If height (X) >
width (Y), the product is portrait.

Section .1.12
MediaIntent

Resource Structure
HoleType ?
StringSpan

2HoleEuro – Replace by either R2m-DIN or R2m-ISO.
3HoleUS – Replace by R3I-US
4HoleEuro – Replace by R4m-DIN-A4 or R4m-DIN-A5.

 Resource Structure
HoleType ?
IntegerSpan

Section 7.1.18
SizeIntent

 All contents have been moved to LayoutIntent.

Page 597

Page 597

Location Table Info Comments
Section 7.2.3
AdhesiveBinding
Params

Section 7.2.15
CIELABMeasuring
Field

Resource Structure
Light
NMTOKEN

 Resource Structure
Observer
integer

 Resource Structure
ScreenRuling ?
DoubleList

 Resource Structure
ScreenShape ?
string

 Resource Structure
Setup ?
string

Section 7.2.21
ColorCorrection
Params

Resource Structure
FileSpec ?
refelement

Section 7.2.24
ColorSpace
ConversionParams

Resource Structure
FileSpec ?
refelement

Section .2.26
Company

Resource Structure
Contact *
refelement

Section 7.2.27
Component

Resource Structure
Transformation ?
matrix

Use ResourceLink::Transformation.

Section 7.2.41
DeliveryParams

Resource Structure
Company ?
refelement

 Structure of the Drop
Subelement
Company ?
refelement

Section 7.2.44
Device

Resource Structure
DeviceFamily ?
string

DeviceFamily is replaced by the appropriate ModelXXX
attributes in this list.

Section 7.2.46
Disjointing

Resource Structure
Overfold ?
double

Moved to Component.

Section 7.2.47
DividingParams

Section 7.2.55
FoldingParams

Resource Structure
FoldSheetIn ?
XYPair

Section .2.66
HoleMakingParams

Resource Structure
HoleType
enumerations

2HoleEuro – Replace by either R2m-DIN or R2m-ISO.
3HoleUS – Replace by R3I-US
4HoleEuro – Replace by R4m-DIN-A4 or R4m-DIN-A5

Section 7.2.68
IDPrintingParams

Structure of the Cover
Subelement

 Properties of the
IDPFinishing
Subelement

Page 598

Page 598

Location Table Info Comments
 Structure of

IDPFolding
Subelement

 Structure of
IDPHoleMaking
Subelement

 Structure of the
IDPLayout
Subelement

 Structure of
IDPStitching
Subelement

 Structure of
IDPTrimming
Subelement

 Structure of the
ImageShift
Subelement

 Structure of the
JobSheet Subelement

Section 7.2.69
ImageCompression
Params

Structure of
ImageCompression
Subelement
EncodeColorImages ?
boolean

Replaced with EncodeImages

Section 7.2.70
ImageReplacement
Params

Resource Structure
MaxResolution ?
double

Replaced with a link to ImageCompressionParams in
the process.

 Resource Structure
ResolutionReduction
Strategy ?
enumeration

Replaced with a link to ImageCompressionParams in
the process.

 Resource Structure
SearchPath +
telem

Section 7.2.75
InsertingParams

Resource Structure
SheetOffset
XYPair

SheetOffset is implied by the Transformation matrix in
ResourceLink:Transformation of the child’s
ComponentLink.

Section 7.2.78
InterpretingParams

Structure of the
InterpretingParams
Resource
FitToPage ?
boolean

Replaced by FitPolicy ? refelement.

Section 7.2.86
LongitudinalRibbon
OperationParams

LROperation

 LongFold
 LongGlue
 LongPerforate
 LongSlit
Section 7.2.88
Media

Resource Structure
HoleCount ?
integer

Section 7.2.89
MediaSource

Page 599

Page 599

Location Table Info Comments
Section 7.2.93
PackingParams

 Replaced by the individual resources used by the processes
defined in Section 6.5.45.5 Packaging Processes

Section 7.2.96
PDFToPSConversion
Params

Resource Structure
IgnoreDeviceExtGState
?
boolean

Section 7.2.102
PlateCopyParams

Section 7.2.113
ResourceDefinition
Params

Resource Structure
DefaultID ?
NMTOKEN

Section 7.2.114
RingBindingParams

Resource Structure
RingSystem ?
enumeration

Section 7.2.116
SaddleStitching
Params

Section 7.2.125
SideSewingParams

Section 7.2.132
Surface

Structure of the
Abstract Placed
Object Subelement
Type
enumeration

 Structure of Dynamic
Field Subelement
InputField ?
string

P.3 Modified Items
Location Table Info Comments
Section 1.4 Glossary of Terminology has been expanded to accommodate

document additions.
Table 3.9 Part

element
Specifies the selected part that the PartStatus is valid for. If a
Part refers to less PartIDKeys than are available in the resource,
the unspecified PartIDKeys are implied to be accepted.

P.4 Illegal Items
Location Table Info Comments
Section 3.7.1.4
Physical Resources
Table 3.13

Weight ?
double

This parameter collides with Media::Weight.

P.5 Removed Items
Location Table Info Comments
Section 3.7.1.6
Selector Resources

 Resources are not only deprecated but actually removed from the
format including the schema and must not be supported by a JDF
1.1 conforming agent

Section 4.1.2.1 Request
for Quote

P.6 New/Modified Attributes and Elements

Page 600

Page 600

P.6.1 Structure of JDF Nodes and Jobs
Location Name Data Type Comment

BestEffortExceptions ? NMTOKENS New
MustHonorExceptions ? NMTOKENS New

Table 3-1 Generic Contents of
elements

OperatorInterventionExc
eptions ?

NMTOKENS New

Table 3-2 Contents of the
Comment element

Attribute ? NMTOKEN New

ProjectID ? string New
SpawnID ? NMTOKEN New
SettingsPolicy ? enumeration New
Template ? boolean New
Version ? string New

Table 3-3 Contents of a JDF
node

xmlns ? URI New
Table 3-4 Contents of the
AncestorPool element

Part * Element New

SpawnID ? NMTOKEN New
CustomerInfo ? element New

Table 3-5 Attributes of the
Ancestor element
 NodeInfo ? element New

Company ? refelement Deprecated. Company affiliation
of Contacts is specified in
Contact.

Table 3-6 Contents of the
CustomerInfo element

Contact * refelement New
CleanupDuration ? duration Data Type modified.
End ? dateTime Data Type modified.
FirstEnd ? dateTime Data Type modified.
FirstStart ? dateTime Data Type modified.
IPPVersion ? dateTime New
JobPriority ? integer New
LastEnd ? dateTime Data Type modified.
LastStart ? dateTime Data Type modified.
NaturalLang ? language New
MergeTarget ? boolean Deprecated. Avoiding concurrent

access to the ancestor node is ill
defined and cannot be implemented
in an open system without
proprietary locking mechanisms.

SetupDuration ? duration Data Type modified.
Start ? dateTime Data Type modified.

Table 3-8 Contents of the
NodeInfo element

TotalDuration ? duration Data Type modified.
Table 3-10 Contents of the
PartStatus element

Part element Modified. The cardinality of Part
in PartStatus has been changed
from * to none.

SettingsPolicy ? enumeration New
SpawnIDs ? NMTOKENS New

Table 3-12 Contents of the
abstract Resource element

Status enumeration modified value list. Added
Complete

Page 601

Page 601

Location Name Data Type Comment
 UpdateID ? NMTOKEN New
Table 3-13 Additional contents
of the abstract parameter
Resource elements

NoOp ? boolean New

ResourceWeight ? double New
Weight ? double Illegal. Collides with

Media::Weight.

Table 3-14 Additional contents
of the abstract physical Resource
elements

IdentificationField * refelement New
Table 3-15 Contents of the
Location element

LocationName ? string New

Table 3-16 Contents of the
abstract ResourceUpdate

UpdateID NMTOKEN New

CombinedProcessIndex
?

IntegerList New

CombinedProcessType
?

NMTOKEN Deprecated. Replaced by
CombinedProcessIndex.

PipeProtocol ? NMTOKEN New

Table 3-18 Contents of the
abstract ResourceLink element

AmountPool ? element New
Table 3-19 Contents of the
AmountPool element

PartAmount * element New

DraftOK ? boolean New
PipeURL ? URL New

Table 3-20 General contents of
the PartAmount element
 Part element New

Duration ? duration New and modified.
Recommendation ? boolean New (PartAmount)
Start ? dateTime New and modified.

Table 3-21 Contents of the
abstract ImplementationLink or
PartAmount element

StartOffset ? duration New and modified.
Amount ? number New (PartAmount and

AmountPool)
Orientation ? enumeration New
PipePause ? number New (PartAmount and

AmountPool)
PipeResume ? number New (PartAmount and

AmountPool)
RemotePipeEndPause
?

number New (PartAmount and
AmountPool)

RemotePipeEndResum
e ?

number New (PartAmount and
AmountPool)

Table 3-22 Additional contents
of the abstract physical
ResourceLink and PartAmount
or AmountPool element

Transformation ? matrix New
Table 3-24 Contents of the
abstract ResourceRef element

Part ? element New

BlockName ? NMTOKEN New
LayerIDs ? IntegerRange

List
New

Table 3-26 Contents of the Part
element

PageNumber ? IntegerRangeL
ist

Data type modified.

Page 602

Page 602

Location Name Data Type Comment
PreviewType ? enumeration New
Run ? string Data type modified.
RunTags ? NMTOKENS New
RunPage ? integer New

SetIndex ? IntegerRangeL
ist

New

 Top, Middle, Bottom, Side, Left, Right,
Center, Rear, FaceUp, FaceDown,
FitMedia, LargeCapacity, Mailbox-N,
Stacker-N, Tray-N, SystemSpecified

New

Contents of the Selector resource Part + element Deleted
SpawnID ? NMTOKEN New Table 3-30 Contents of the

abstract Audit type TimeStamp dateTime Data type modified.
Duration ? duration Data type modified.
End dateTime Data type modified.
Start dateTime Data type modified.

Table 3-31 Contents of the
ProcessRun element

Part * element New
Table 3-32 Contents of the
Notification element

Part * element New

End dateTime Data type modified.
Start dateTime Data type modified.

Table 3-34 Contents of the
PhaseTime element
 ResourceLink * element New

End dateTime Data type modified. Table 3-35 Contents of the
ModulePhase element Start dateTime Data type modified.
Table 3-36 Contents of the
ResourceAudit element

Reason ? enumeration New

NewSpawnID NMTOKEN New
Status ? enumeration New

Table 3-40 Contents of the
Spawned element
 URL ? URL New

MergeID NMTOKEN New Table 3-41 Contents of the
Merged element URL ? URL New

P.6.2 JDF Messaging with the Job Messaging Format
Location Name Data Type Comment

TimeStamp dateTime Data type modified. Table 5-1 Contents of the JMF
root xmlns ? URI New
Table 5-2 Contents of the
abstract Message element

Time ? dateTime Data type modified.

Table 5-10 Contents of the
Command message element

AcknowledgeType ? enumerations New

Table 5-11 Contents of the
Acknowledge message element

AcknowledgeType ? enumerations New

Table 5-22 Contents of the
DeviceFilter element

DeviceDetails ? enumeration New

Table 5-25 Contents of the CombinedMethod ? enumeration New

Page 603

Page 603

Location Name Data Type Comment
 TypeOrder ? enumeration New
Table 5-27 Contents of the
KnownMsgQuParams element

Exact ? boolean New

Acknowledge ? boolean New Table 5-28 Contents of the
MessageService element DevCaps * element New

After ? dateTime Data type modified. Table 5-30 Contents of the
MsgFilter element Before ? dateTime Data type modified.

Activation ? enumeration New Table 5-40 Contents of the
ResourceCmdParams element UpdateIDs ? NMTOKENS New

HourCounter ? duration Data type modified. Table 5-44 Contents of the
DeviceInfo element PowerOnTime ? dateTime Data type modified.

Activation ? enumeration New
RestTime ? duration New
StartTime ? dateTime New
CumulativeAmount ? number New
Waste ? number New

Table 5-45 Contents of the
JobPhase element

Part * element Modified to *.
JobID ? string Modified to optional.
StartTime ? dateTime New

Table 5-86 Contents of the
QueueEntry element

SubmissionTime ? dateTime Data type modified.

P.6.3 Processes
Location Name Comment

BufferParams 6.2.2 Buffer
Resource

Output Resources Resource

New section.

Resource * 6.2.5 ManualLabor: Input
Resources ManualLaborParams
Output Resources Resource

New section.

6.2.6 Ordering: Output
Resources

Resource + Modified name; allow multiple
output resources.

6.2.7 Packing Deprecated. Replaced by the
individual processes defined in
Section 6.5.44.5 Packaging
Processes.

Page 604

Page 604

Location Name Comment
6.2.8 QualityControl
Added in JDF 1.2
This process defines the setup
and frequency of quality
controls for a process.
QualityControl is generally
performed on Components
produced as intermediate or
final output of a process.

Input Resources
Name Description
Resource The Resource to be quality controlled. In general this will be a Component

resource.
QualityControlParams Detailed definition of the QualityControl process.

Output Resources
Name Description
QualityControlResult Details of the process.
Resource The Resource after QualityControl. Note that this resource will generally be

partitioned by Condition to track the amount of accepted and rejected resources.
ResourceDefinition: Input
Resources

Resource * Modified to optional multiple.

Output Resources Resource + Modified to required.
6.4.2 ColorCorrection Input
Resources

ColorCorrectionParams New

6.4.4 ContactCopying: New section.
ScreeningParams ? Modified to optional. 6.4.5 ContoneCalibration:

Input Resources TransferFunctionControl ? Modified to optional.
6.4.8 FilmToPlateCopying Deprecated. Replaced by

ContactCopying
6.4.9 FormatConversion New section.
6.4.10 ImageReplacement:
Input Resources

ImageCompressionParams ? New

DevelopingParams ? New
ImageSetterParams ? Modified to optional.

6.4.11 ImageSetting: Input
Resources

TransferCurvePool ? New
Layout ? New 6.4.13 InkZoneCalculation:

Input Resources Sheet ? Deleted
6.4.14 Interpreting: Input
Resources

ColorantControl ? Modified to optional.

6.4.16 LayoutPreparation New section.
ColorantControl ? New
Preview ? New

6.4.19 PreviewGeneration:
Input Resources

TransferCurvePool ? New
6.4.22 Rendering Input
Resources

Media Deprecated.

6.4.25 Screening: Input
Resources

ScreeningParams ? Modified to optional.

Page 605

Page 605

Location Name Comment
6.4.29 Trapping: Input
Resources

FontPolicy ? New

Ink ? Modified to optional
Layout ? New
Sheet * Deprecated
TransferCurvePool ? New
Layout ? New
Sheet * Deprecated

6.5.1 ConventionalPrinting:
Input Resources

TransferCurvePool ? New
6.5.3 IDPrinting Deprecated section.
Input Resources Ink ? New
6.6.1 AdhesiveBinding Deprecated section. Split into:

CoverApplication, Gluing,
SpinePreparation, SpineTaping.

6.6.2 BlockPreparation New section. Modifies Block
Production.

6.6.3 BoxPacking New section.
6.6.4 CaseMaking New section.
6.6.5 CasingIn New section.
6.6.9 CoverApplication New section
6.6.10 Creasing New section.
6.6.11 Cutting : Input
Resources

CuttingParams ? New. Replaces CutBlock * and
CutMark *.

6.6.12 Dividing Deprecated
6.6.13 Embossing New section.
6.6.15 Folding: Output
Resources

Component Modified from required.

6.6.17 Gluing New section
6.6.18
HeadBandApplication

 New section.

6.6.21 Jacketing New section.
6.6.22 Labeling New section
6.6.23 Laminating New section
6.6.24 LongitudinalRibbon-
Operations

 Deprecated. In-line finishing is
described using the “standard”
finishing processes.

6.6.26 Palletizing New section.
6.6.28 Perforating New section.
6.6.31 SaddleStitching Deprecated. Replaced by Stitching.
6.6.32 ShapeCutting New section.
6.6.33 Shrinking New section.
6.6.34 SideSewing Deprecated. Replaced by

ThreadSewing.
6.6.35 SpinePreparation New section
6.6.36 SpineTaping New section
6.6.37 Stacking New section.

Page 606

Page 606

Location Name Comment
6.6.39 Strapping New section.
6.6.40 StripBinding New section. Renamed from

VeloBinding.
6.6.41 ThreadSealing New section.
6.6.45 Wrapping New section.

P.6.4 Resources
Location Name Data Type Comment
7.1.1.2 Structure of the
DurationSpan Subelement

 element New section.

7.1.1.9 Structure of the
ShapeSpan Subelement

 element New section

Actual ? dateTime Modified data type. 7.1.1.11 Structure of the
TimeSpan Subelement Preferred ? dateTime Modified data type.

ArtDeliveryDate ? TimeSpan New
ArtDeliveryDuration ? DurationSpan New
ArtHandling ? EnumerationS

pan
New

DeliveryCharge ? EnumerationS
pan

New

PreflightStatus ? enumeration New
ReturnList ? NMTOKENS New
ReturnMethod ? NameSpan New
Transfer ? EnumerationS

pan
New

ArtDelivery + element Modified to required (+).
Company ? refelement Deprecated

7.1.2 ArtDeliveryIntent:
Resource Structure

Contact * refelement New
ArtDeliveryDate ? TimeSpan New
ArtDeliveryDuration ? DurationSpan New
ArtDeliveryType NMTOKEN Modified data type.
ArtHandling ? EnumerationS

pan
New

DeliveryCharge ? EnumerationS
pan

New

PreflightOutput ? URL New
PreflightStatus ? enumeration New
ReturnMethod ? NameSpan New
Transfer ? EnumerationS

pan
New

Company ? refelement Deprecated
Component ? refelement Deprecated
Contact * refelement New

Structure of ArtDelivery
Elements

Tool ? refelement New

Page 607

Page 607

Location Name Data Type Comment
BackCoverColor ? EnumerationS

pan
New

BindingOrder ? enumeration New
AdhesiveBinding ? element Deprecated
BindList ? element New
BookCase ? element Deprecated
EdgeGluing ? element New
HardCoverBinding ? element New
SoftCoverBinding ? element New
Tape ? element New
StripBinding ? element New

7.1.3 BindingIntent:
Resource Structure

VeloBinding ? element Renamed to StripBinding.
Structure of BindList
Subelement

 New section.

Structure of BindItem
Subelement

 New section

Structure of the
AdhesiveBinding Subelement

 Deprecated section.

Structure of the BookCase
Subelement

 Deprected section.

Structure of the EdgeGluing
Subelement

 New section.

Structure of the
HardCoverBinding Subelement

 New section.

HoleType EnumerationS
pan

New Structure of the RingBinding
Subelement

RingSystem NameSpan Deprecated
Structure of the PlasticComb
Subelement

PlasticCombType ? NameSpan modified

Structure of the SaddleStitching
Subelement

StitchNumber ? IntegerSpan New

Structure of the
SoftCoverBinding Subelement

 New section.

Structure of the Tape
Subelement

 New section.

Structure of the VeloBinding
Subelement

 Renamed to StripBinding

7.1.4 ColorIntent: Resource
Properties

Partition Modified

Coatings ? StringSpan Modified data type. Resource Structure
ColorPool ? refelement New
DeliveryCharge ? EnumerationS

pan
New

Pickup ? boolean Deprecated
ReturnMethod ? NameSpan New

7.1.5 DeliveryIntent:
Resource Structure

SurplusHandling ? EnumerationS
pan

New

Page 608

Page 608

Location Name Data Type Comment
Transfer ? EnumerationS

pan
New

Company ? refelement Deprecated

Contact * refelement New
Pickup ? boolean Deprecated
ReturnMethod ? NameSpan New
SurplusHandling ? EnumerationS

pan
New

Transfer ? EnumerationS
pan

New

Company ? refelement Deprecated

Structure of DeliveryIntent
Elements: DropIntent

Contact * refelement New
Proof ? string New
Component refelement Deleted. Replaced by

PhysicalResource, which has
Component as an instance.

Structure of the DropItemIntent
Subelement

PhysicalResource ? refelement New
Contents of the CreditCard
Subelement

 New section.

Contents of the Payment
Subelement

 New section

Contents of the Pricing
Subelement

Payment ? element New

7.1.6 EmbossingIntent New section
Folds ? XYPair Deprecated 7.1.7 FoldingIntent:

Resource Structure Fold * element New
HoleReferenceEdge ? enumeration New 7.1.8 HoleMakingIntent:

Resource Structure HoleType StringSpan Modified data type; some values are
deprecated.

Hole * refelement Modified data type. Structure of the HoleList
Subelement HoleLine * refelement New
Structure of the Hole
Subelement

 Deleted section. Moved to Hole
resource.

SheetOffset ? XYPair Deprecated
WrapPages ? IntegerRange

List
New

7.1.9 InsertingIntent:
Structure of Insert Subelement

GlueLine * element New
7.1.10 LaminatingIntent:
Resource Structure

Laminated OptionSpan Deprecated

Dimensions ? XYPairSpan New
FinishedDimensions ? ShapeSpan New
FinishedPageOrientation
?

enumeration Deprecated. Page orientation is
implied by the value of
Dimensions and
FinishedDimensions.

FolioCount ? enumeration New

7.1.11 LayoutIntent:
Resource Structure

Pages ? IntegerSpan New

Page 609

Page 609

Location Name Data Type Comment
PageVariance ? IntegerSpan New
Layout ? refelement New

7.1.12 MediaIntent: Resource
Properties

Resource reference by Modified

HoleType ? StringSpan New.
HoleCount ? IntegerSpan Deprecated

Resource Structure

Thickness ? NumberSpan New
7.1.16 ProofingIntent:
Resource Properties

Partition Modified

ProofItem * element New
PageIndex ? IntegerRange

List
New

ProofName ? string New
SeparationSpec * EnumerationS

pan
New

Amount ? IntegerSpan Moved
BrandName ? StringSpan Moved
ColorType ? EnumerationS

pan
Moved

Contract ? boolean Moved

Structure of the ProofItem
Element

HalfTone ? OptionSpan Moved
CutType ? EnumerationS

pan
Modified data type

ShapeDepth ? NumberSpan New

7.1.17 ShapeCuttingIntent:
Structure of ShapeCut
Subelement

ShapeType EnumerationS
pan

New

7.1.18 SizeIntent deprecated section
7.2.3 AdhesiveBinding-
Params

 Deprecated section. Split into:
CoverApplicationParams,
GlueApplication,
SpinePreparationParams,
SpineTapingParams.

7.2.4 ApprovalParams:
Resource Properties

Output of processes Modified

7.2.5 ApprovalSuccess:
Resource Properties

Partition, Output of
processes

 Modified

7.2.8 BlockPreparation-
Params

 New section.

7.2.9 BoxPackingParams New section.
7.2.10 BufferParams New section.
7.2.11 Bundle New section.
7.2.13 CaseMakingParams New section
7.2.14 CasingInParams New section.
7.2.16
CIELABMeasuringField:
Resource Properties

Resource referenced by,
Output of processes

 Modified

Resource Structure Diameter ? double Modified to optional

Page 610

Page 610

Location Name Data Type Comment
DensityStandard ? enumeration Deprecated
Light NMTOKEN Deprecated
Observer integer Deprecated
Setup ? string Deprecated
Tolerance ? double Modified to optional

ColorMeasurementCond
itions ?

refelement New

ColorName ? NamedColor New
ColorMeasurementCond
itions ?

refelement New
7.2.19 Color: Resource
Structure

TransferCurve * refelement modified data type to refelement,
removed TransferCurve
subelement which is now a
resource.

7.2.20 ColorantControl:
Resource Properties

Resource referenced by,
Partition, Input of
Processes, Output of
processes

 Modified

7.2.21 ColorControlStrip:
Resource Properties

Output of processes Modified

CIELABMeasuringField * refelement New Resource Structure
DensityMeasuringField * refelement New

7.2.22
ColorCorrectionParams:
Resource Properties

Partition Modified

Resource Structure FileSpec ? (assumed
characterization of CMYK,
RGB, and Gray)

refelement Deprecated

7.2.23 ColorMeasurement-
Conditions

 New section.

7.2.25
ColorSpaceConversionPar
ams:: Resource Properties

Partition Modified

FileSpec ? (assumed
characterization of CMYK,
RGB, and Gray)

refelement Deprecated Resource Structure

PreserveBlack ? boolean New
7.2.27 Company: Resource
Properties

Resource referenced by Modified

Resource Structure Contact * refelement Deprecated
Overfold ? double New
OverfoldSide ? enumeration New
ReaderPageCount ? integer New
SurfaceCount ? integer New
Transformation ? matrix Deprecated

7.2.28 Component :
Resource Structure

Bundle ? refelement New
7.2.29 Contact: Resource
Properties

Resource referenced by Modified

Page 611

Page 611

Location Name Data Type Comment
Resource Structure Company ? refelement New
7.2.30 ContactCopyParams New section.
7.2.31 Conventional-
PrintingParams: Resource
Properties

Partition Modified

ModuleAvailableIndex ? IntegerRange
List

New Resource Structure

PerfectingModule ? integer New
7.2.33
CoverApplicationParams:

 New. Replaces CoverApplication.

Resource Structure GlueApplication * refelement New
7.2.34 CreasingParams New section. Replaces Crease

Subelement of FoldingParams.
7.2.35 CutBlock: Resource
Properties

Resource referenced by,
Input of processes, Output
of processes

 Modified

7.2.36 CutMark: Resource
Properties

Resource referenced by,
Input of processes, Output
of processes

 Modified

Resource Structure Blocks ? NMTOKENS Modified to optional
7.2.37 CuttingParams New section. Replaces Cut

Subelement of FoldingParams.
Earliest ? dateTime Modified data type
Required ? dateTime Modified data type
Company ? refelement Deprecated

7.2.42 DeliveryParams:
Resource Structure

Contact * refelement New
Earliest ? dateTime Modified data type
Required ? dateTime Modified data type
Company ? refelement Deprected

Structure of the Drop
Subelement

Contact * refelement New
7.2.43
DensityMeasuringField:
Resource Properties

Output of processes Modified

Resource Structure ColorMeasurementCond
itions ?

refelement New

7.2.44 DevelopingParams New section
DeviceFamily ? string Deprecated. Replaced by the

appropriate ModelXXX attributes
Directory ? URL New
FriendlyName ? string New
JDFVersions ? string New
JMFSenderID ? string New
JMFURL ? URL New
Manufacturer ? string New
ManufacturerURL ? string New
ModelDescription ? string New

7.2.45 Device: Resource
Structure

ModelName ? string New

Page 612

Page 612

Location Name Data Type Comment
ModelNumber ? string New
ModelURL ? string New
SerialNumber ? string New
PresentationURL ? string New
UPC ? string New
DeviceCap * element New

IconList ? element New
Structure of the IconList
Subelement

 New section.

Structure of the Icon
Subelement

 New section.

7.2.46
DigitalPrintingParams
Resource Properties

Partition Modified

Collate ? enumeration New
OutputBin ? MNTOKEN New
ManualFeed ? boolean New
PageDelivery ? enumeration New
PrintQuality ? enumeration Deprecated
PrintingType ? enumeration Modified to optional
Component ? refelement New
Disjointing ? refelement New
Media ? refelement New

Resource Structure

MediaSource ? refelement Deprecated.
7.2.47 Disjointing: Resource
Properties

Resource referenced by Modified

Overfold ? double Deprecated Resource Structure
IdentificationField * element Modified to optional multiple

7.2.48 DividingParams Deprecated section.
Resource Properties Partition Modified
7.2.50 EmbossingParams New section.
7.2.53 ExposedMedia:
Resource Properties

Partition, Input of
processes, Output of
processes

 Modified

CheckSum ? integer New
FileVersion ? string New

7.2.54 FileSpec: Resource
Structure

UID ? string New
7.2.55 FitPolicy New section.
7.2.56 Fold New section. Replaces Fold

Subelement of FoldingParams
7.2.57 FoldingParams:
Resource Properties

Partition, Output of
processes

 Modified. Split into CuttingParams,
CreasingParams, Fold,
GluingParams, PerforatingParams,
ThreadSealingParams.

FoldSheetIn ? XYPair Deprecated Resource Structure
Fold * element Modified to new section.

Page 613

Page 613

Location Name Data Type Comment
 FoldOperation * element Deprecated
7.2.58 FontParams:
Resource Properties

Partition Modified

7.2.59 FontPolicy: Resource
Properties

Partition, Input of
processes

 Modified

7.2.60
FormatConversionParams

 New section.

7.2.62 GlueApplication New section.
7.2.63 GluingParams New section. Replaces Glue

Subelement of FoldingParams.
7.2.64 GlueLine: Resource
Properties

Resource referenced by Modified

Resource Structure AreaGlue ? boolean New
7.2.65 HeadBand-
ApplicationParams

 New section

7.2.66 Hole New section
7.2.67 HoleLine New section
7.2.68 HoleMakingParams:
Resource Properties

Input of processes Modified

Center ? XYPair Modified to optional
CenterReference ? enumeration New
HoleReferenceEdge ? enumeration New
HoleType enumerations New. Some values are deprecated.
Shape ? enumeration Modified to optional.
HoleLine * element New

Resource Structure

RegistrationMark ? refelement New
7.2.71 IdentificationField:
Resource Properties

Resource referenced by,
Output of processes

 Modified

Resource Structure Value ? string New
7.2.72 IDPrintingParams Deprecated section.
Resource Properties Partition Modified
Structure of the Cover
Subelement

 Deprecated section.

Properties of the IDPFinishing
Subelement

 Deprecated section.

Structure of IDPFolding
Subelement

 Deprecated section.

Structure of IDPHoleMaking
Subelement

 Deprecated section

Structure of the IDPLayout
Subelement

 Deprecated section.

Structure of IDPStitching
Subelement

 Deprecated section.

Structure of IDPTrimming
Subelement

 Deprecated section.

Structure of the ImageShift
Subelement

 Deprecated section.

Page 614

Page 614

Location Name Data Type Comment
Structure of the JobSheet
Subelement

 Deprecated section.

7.2.73 ImageCompression-
Params : Resource Properties

Partition, Input of
processes

 Modified

EncodeColorImages ? boolean Deprecated Resource Structure
EncodeImages ? boolean New

7.2.74 ImageReplacement-
Params: Resource Properties

Partition, Input of
processes

 Modified

MaxResolution ? double Deprecated. Replaced with a link to
ImageCompressionParams in
the process.

ResolutionReductionStra
tegy ?

enumberation Deprecated. Replaced with a link to
ImageCompressionParams in
the process.

IgnoreExtensions ? NMTOKENS Modified to optional.
FileSpec + refelement New

Resource Structure

SearchPath + telem Deprecated
BurnOutArea ? XYPair New 7.2.75 ImageSetterParams:

Resource Structure Media ? refelement New
7.2.76 Ink: Resource Structure InkName ? string Modified to optional.
7.2.79 InsertingParams:
Resource Structure

SheetOffset XYPair Deprecated

7.2.80 InsertSheet: Resource
Properties

Resource referenced by Modified

MarkList ? NMTOKENS New
SheetFormat ? NMTOKEN New
SheetType enumeration New
SheetUsage enumeration New

Resource Structure

Usage enumeration Renamed to SheetUsage and
modified.

7.2.82 InterpretingParams:
Resource Properties

Partition Modified

FitToPage ? boolean Deprecated
PrintQuality ? enumeration New
FitPolicy ? refelement New
Media ? refelement New

Resource Structure

PDFInterpretingParams
?

refelement New

7.2.83 JacketingParams New section.
7.2.84 JobField New section.
7.2.85 LabelingParams New section.
7.2.86 LaminatingParams New section.
7.2.87 Layout: Resource
Properties

Input of processes Modified

MaxDocOrd ? integer New Resource Structure
MaxSetOrd ? integer New

Page 615

Page 615

Location Name Data Type Comment
Name ? string New
LayerList ? element New
Media ? refelement New
MediaSource ? refelement Deprecated

TransferCurvePool ? refelement New
Structure of LayerList
Subelement

 New section.

Structure of LayerDetails
Subelement

 New section

Structure of Signature
Subelement

Media ? refelement New

 MediaSource ? refelement Deprecated
7.2.88 LayoutElement:
Resource Properties

Output of processes Modified

IgnorePDLCopies ? boolean New Resource Structure
IgnorePDLImposition ? boolean New

7.2.89 LayoutPreparation-
Params

 New section.

7.2.90 LongitudinalRibbon-
OperationParams

 Deprecated section.

Resource Properties Partition Modified
LROperation Deprecated section.
LongFold Deprecated section.
LongGlue Deprecated section.
LongPerforate Deprecated section.

Structure of
LongitudinalRibbonOperationP
arams Elements

LongSlit Deprecated section.
7.2.91 ManualLaborParams New section.
7.2.92 Media: Resource
Properties

Resource reference by,
Input of processes

 Modified

ColorName ? string New
Dimension ? XYPair Modified to optional
GrainDirection ? enumeration New
HoleCount ? integer Deprecated
HoleType ? enumerations New
MediaColorName ? NamedColor Modified data type.
ShrinkIndex ? XYPair New
StockType ? NMTOKEN New
Texture ? NMTOKEN New
UserMediaType ? NMTOKEN Deprecated

Resource Structure

Color ? refelement Deprecated, replaced by
ColorName.

7.2.93 MediaSource Deprecated section.
SheetLay ? enumeration New Resource Structure
Component ? refelement New

Page 616

Page 616

Location Name Data Type Comment
7.2.95 ObjectResolution:
Resource Properties

Resource referenced by Modified

Company ? refelement Deprecated 7.2.96 OrderingParams:
Resource Structure Contact * refelement New
7.2.97 PackingParams Deprecated section.

Page 617

Page 617

Location Name Data Type Comment

0

8 4 3 P i

 New section.

Page 618

Page 618

Location Name Data Type Comment
7.2.100 Pallet New section.
7.2.101
PDFToPSConversion-
Params: Resource Properties

Partition Modified

IgnoreBG ? boolean New
IgnoreDeviceExtGState
?

boolean Deprecated

IgnoreOverprint ? boolean New
IgnoreTransfers ? boolean New

Resource Structure

IgnoreUCR ? boolean New
7.2.103 PerforatingParams New section. Replaces Perforate

Subelement of FoldingParams.
7.2.106
PlasticCombBindingParam
s

Type ? enumeration Modified list

7.2.107 PlateCopyParams Deprecated section.
PageRefs IntegerRange

List
Modified data type. 7.2.108 PreflightAnalysis:

Structure of PreflightInstance
Subelement PreflightInstanceDetail element Properties renamed to

PreflightInstanceDetail
7.2.111 Preview: Resource
Properties

Resource referenced by,
Partition

 Modified

CTM ? matrix New Resource Structure
Directory ? URL New

7.2.112
PreviewGenerationParams:
Resource Properties

Partition Modified

AspectRatio ? enumeration New
PreviewType enumeration Deleted. Replaced by

PreviewUsage ?
PreviewUsage ? enumeration New

Resource Structure

ImageSetterParams ? refelement New
7.2.113 ProofingParams:
Resource Properties

Partition Modified

ManualFeed? boolean New
ProofRenderingIntent ? enumeration New

Resource Structure

Media ? refelement New
7.2.114
PSToPDFConversionPara
ms: Resource Properties

Partition, Input of
processes

 Modified

InitialPageSize ? XYPair New Resource Structure
IntialResolution ? XYPair New
PreserveHaltoneInfo ? boolean New
PreserveOverprintSettin
gs ?

boolean New

TransferFunctionInfo ? enumeration New

Structure of AdvancedParams
Subelement

UCRandBGInfo ? enumeration New

Page 619

Page 619

Location Name Data Type Comment

7.2.115
QualityControlParams
This set of parameters

Output of processes Modified

Page 620

Page 620

Location Name Data Type Comment
Resource Structure MarkUsage ? enumerations New
7.2.118 RegisterRibbon New section.
7.2.119 RenderingParams:
Resource Properties

Partition, Input of
processes

 Modified

Resource Structure Media ? refelement New
DefaultID ? NMTOKEN Deprecated 7.2.120 Resource-

DefinitionParams: Resource
Structure

ResourceParam + refelement New

Structure of the ResourceParam
Subelement

 New section.

7.2.122
RingBindingParams:
Resource Structure

RingSystem ? enumeration Deprecated

7.2.123 RunList: Resource
Properties

Partition Modified

DocCopies ? integer New
EndOfDocument ? boolean New
EndOfSet ? boolean New
NDoc ? integer New
NSet ? integer New
PageCopies ? integer New
RunTag ? NMTOKEN New
SetCopies ? integer New
SetNames ? NameRangeL

ist
New

Resource Structure

Sets ? IntegerRange
List

New

7.2.124
SaddleStitchingParams

 Deprecated section

7.2.126 ScavengerArea New section.
7.2.127 ScreeningParams:
Resource Properties

Input of processes Modified

Resource Structure ScreenSelector * element Modified to optional multiple
AngleMap ? string New Structure of ScreenSelector

Subelement DotSize ? double New
7.2.130
ShapeCuttingParams

 New section.

7.2.131 Sheet: Resource
Properties

Input of processes Modified

Media ? refelement New Resource Structure
MediaSource ? refelement Deprecated

7.2.132 ShrinkingParams New section.
7.2.133 SideSewingParams Deprecated section
7.2.134
SpinePreparationParams

 New section. Replaces
BackPreparation.

7.2.135
SpineTapingParams

 New. Replaces SpineTaping.

Page 621

Page 621

Location Name Data Type Comment
Resource Structure GlueApplication * refelement New
7.2.136 StackingParams New section.
7.2.137 StitchingParams:
Resource Properties

Resource referenced by Modified

Resource Structure ReferenceEdge ? enumeration New
7.2.138 Strap New section
7.2.139 StrappingParams New section
7.2.140
StripBindingParams

 New section

LayerID ? integer New
OrdID ? integer New
Trim CTM ? matrix New

7.2.141 Surface: Structure of
the Abstract PlacedObject
Subelement

Type enumeration Deprecated
DocOrd ? integer New Structure of ContentObject

Subelement SetOrd ? integer New
LayoutElementPageNu
m ?

integer New

ColorControlStrip * refelement Modified to optional multiple
CutMark * refelement Modified to optional multiple
DensityMeasuringField * refelement Modified to optional multiple
DeviceMark ? refelement New
JobField * refelement New
RegisterMark * refelement Modified to optional multiple

Structure of MarkObject
Elements

ScavengerArea * refelement New
Structure of DeviceMark
Subelement

 New section

InputField ? string Deprecated Structure of DynamicField
Subelement DeviceMark ? refelement New
7.2.142
ThreadSealingParams

 New section. Replaces
ThreadSeal Subelement of
FoldingParams.

7.2.143
ThreadSewingParams:
Resource Structure

Offset ? double New

7.2.145 Tool New section.
 Moved from Structure of

TransferCurvePool Subelement
and made resource

CTM ? matrix New

7.2.146 TransferCurve

Name NMTOKEN Moved from Structure of
TransferCurvePool Subelement

7.2.147 TransferCurvePool:
Structure of TransferCurvePool
Subelement

 Deleted section. Contents moved to
Structure of TransferCurveSet
Subelement.

Structure of TransferCurve
Subelement

Curve TransferFunct
ion

Moved from Structure of
TransferCurveSet Subelement

Page 622

Page 622

Location Name Data Type Comment
 Separation ? string Moved from Structure of

TransferCurveSet Subelement
7.2.148
TransferFunctionControl:
Resource Properties

Resource referenced by,
Input of processes

 Modified

7.2.149 TrappingDetails:
Resource Properties

Resource referenced by,
Partition, Input of
processes

 Modified

Resource Structure ObjectResolution * refelement New
7.2.150 TrappingParams:
Resource Properties

Resource referenced by,
Partition

 Modified

7.2.151 TrapRegion Input of processes Modified
7.2.152 TrimmingParams:
Resource Structure

TrimmingType enumeration New

VeloBindingParams Deleted section. Renamed to
StripBindingParams

7.2.154 WireCombBinding-
Params: Resource Structure

FlipBackCover ? boolean New

7.2.155 WrappingParams New section.
7.3 Device Capability
Definitions

 New section.

Page 623

Page 623

Appendix Q Table of Tables
Table 1-1 Conformance Terminology ...5

Table 1-2 JDF data types..7

Table 1-3 Units used in JDF..9

Table 2-1 Information contained in JDF nodes, arranged numerically ...15

Table 2-2 Information contained in JDF nodes, arranged by group ...16

Table 2-3 Matrices and names used to describe the orientation of a Component23

Table 3-1 Generic Contents of elements ...33

Table 3-2 Contents of the Comment element..34

Table 3-3 Contents of a JDF node...36

Table 3-4 Contents of the AncestorPool element ...45

Table 3-5 Attributes of the Ancestor element..45

Table 3-6 Contents of the CustomerInfo element...46

Table 3-7 Contents of the CustomerMessage element ..46

Table 3-8 Contents of the NodeInfo element ..47

Table 3-9 Contents of the StatusPool element ...49

Table 3-10 Contents of the PartStatus element..50

Table 3-11 Contents of the ResourcePool element..50

Table 3-12 Contents of the abstract Resource element ..50

Table 3-13 Additional contents of the abstract parameter Resource elements..56

Table 3-14 Additional contents of the abstract physical Resource elements ...56

Table 3-15 Contents of the Location element ...58

Table 3-16 Contents of the abstract ResourceUpdate Element ...61

Table 3-17 Contents of the ResourceLinkPool element ...66

Table 3-18 Contents of the abstract ResourceLink element...67

Table 3-19 Contents of the AmountPool element...68

Table 3-20 General contents of the PartAmount element ..68

Table 3-21 Contents of the abstract ImplementationLink or PartAmount element69

Table 3-22 Additional contents of the abstract physical ResourceLink and PartAmount or AmountPool

Page 624

Page 624

element ..70

Table 3-23 Contents of the abstract ResourceElement..72

Table 3-24 Contents of the abstract ResourceRef element..72

Table 3-25 Contents of the partitionable Resource element ..80

Table 3-26 Contents of the Part element ..81

Table 3-28 PartUsage example usages..88

Table 3-29 Contents of the AuditPool element ...93

Table 3-30 Contents of the abstract Audit type...93

Table 3-31 Contents of the ProcessRun element...93

Table 3-32 Contents of the Notification element...94

Table 3-33 Redundant table removed ..95

Table 3-34 Contents of the PhaseTime element ..95

Table 3-35 Contents of the ModulePhase element ..97

Table 3-36 Contents of the ResourceAudit element..98

Table 3-37 Contents of the Created element..99

Table 3-38 Contents of the Deleted element ...99

Table 3-39 Contents of the Modified element..100

Table 3-40 Contents of the Spawned element ..100

Table 3-41 Contents of the Merged element ..101

Table 4-1. Business Objects as defined by PrintTalk ...108

Table 4-2 Examples of resource and process states in the case of simple process routing....................114

Table 5-1 Contents of the JMF root ..133

Table 5-2 Contents of the abstract Message element ..134

Table 5-3 Contents of the Query message element ...136

Table 5-4 Contents of the Response message element...136

Table 5-5 Contents of the Signal message element...137

Table 5-6 Contents of the Trigger element ...138

Table 5-7 Contents of the ChangedAttribute element ..138

Table 5-8 Contents of the Added element ...138

Page 625

Page 625

Table 5-9 Contents of the Removed element ...138

Table 5-10 Contents of the Command message element ..139

Table 5-11 Contents of the Acknowledge message element ...140

Table 5-12 Contents of the Subscription element..141

Table 5-13 Contents of the ObservationTarget element...141

Table 5-14 Messaging table template...143

Table 5-15 Process registration and communication messages ..144

Table 5-16 Contents of the Events message..144

Table 5-17 Contents of the NotificationFilter element...145

Table 5-18 Contents of the NotificationDef element ...145

Table 5-19 Contents of the KnownControllers message ..146

Table 5-20 Contents of the JDFController element ..146

Table 5-21 Contents of the KnownDevices message...146

Table 5-22 Contents of the DeviceFilter element..147

Table 5-23 Contents of the DeviceList element..147

Table 5-24 Contents of the KnownJDFServices message ...148

Table 5-25 Contents of the JDFService element..148

Table 5-26 Contents of the KnownMessages message ..149

Table 5-27 Contents of the KnownMsgQuParams element ..149

Table 5-28 Contents of the MessageService element...149

Table 5-29 Contents of the RepeatMessages message...150

Table 5-30 Contents of the MsgFilter element...150

Table 5-31 Contents of the StopPersistentChannel message..151

Table 5-32 Contents of the StopPersChParams element..152

Table 5-33 Status and progress messages ...152

Table 5-34 Contents of the Occupation message ...152

Table 5-35 Contents of the EmployeeDef element..153

Table 5-36 Contents of the Occupation element ..153

Table 5-37 Contents of the Resource query message ..154

Page 626

Page 626

Table 5-38 Contents of the ResourceQuParams element...154

Table 5-39 Contents of the Resource command message ...155

Table 5-40 Contents of the ResourceCmdParams element ..156

Table 5-41 Contents of the ResourceInfo element ..157

Table 5-42 Contents of the Status message..158

Table 5-43 Contents of the StatusQuParams element ..159

Table 5-44 Contents of the DeviceInfo element ..160

Table 5-45 Contents of the JobPhase element ...161

Table 5-46 Contents of the ModuleStatus element ..163

Table 5-47 Contents of the Track message...163

Table 5-48 Contents of the TrackFilter element...164

Table 5-49 Contents of the TrackResult element ..164

Table 5-50 Dynamic pipe messages..167

Table 5-51 Contents of the PipeClose message ...167

Table 5-52 Contents of the PipePull message...167

Table 5-53 Contents of the PipeParams element...170

Table 5-54 Contents of the PipePause message ...173

Table 5-55 QueueEntry handling messages..174

Table 5-56 Contents of the AbortQueueEntry message..175

Table 5-57 Contents of the HoldQueueEntry message ...175

Table 5-58 Contents of the RepeatQueueEntry message...175

Table 5-59 Contents of the RepeatQueueEntryParams element ..176

Table 5-60 Contents of the RequestQueueEntry message...176

Table 5-61 Contents of the RequestQueueEntryParams element ...177

Table 5-62 Contents of the RemoveQueueEntry message...177

Table 5-63 Contents of the ResubmitQueueEntry message ...177

Table 5-64 Contents of the ResubmissionParams element ...177

Table 5-65 Contents of the ResumeQueueEntry message...178

Table 5-66 Contents of the SetQueueEntry message ...178

Page 627

Page 627

Table 5-67 Contents of the QueueEntryPosParams element..178

Table 5-68 Contents of the SetQueueEntryPriority element..179

Table 5-69 Contents of the QueueEntryPriParams element ...179

Table 5-70 Contents of the SubmitQueueEntry message ...179

Table 5-71 Contents of the QueueSubmissionParams element..180

Table 5-72 Global queue-handling commands..181

Table 5-73 Contents of the CloseQueue message...181

Table 5-74 Contents of the FlushQueue message ..182

Table 5-75 Contents of the HoldQueue message ...182

Table 5-76 Contents of the OpenQueue message ..182

Table 5-77 Contents of the QueueEntryStatus message ..182

Table 5-78 Contents of the QueueEntryDefList element ...183

Table 5-79 Contents of the QueueStatus message...183

Table 5-80 Contents of the ResumeQueue message ..183

Table 5-81 Contents of the SubmissionMethods message ...183

Table 5-82 Contents of the SubmissionMethods element ...184

Table 5-83 Definition of the Queue Status Attribute values...184

Table 5-84 Contents of the QueueStatusParams element ..185

Table 5-85 Contents of the Queue element...186

Table 5-86 Contents of the QueueEntry element ...186

Table 5-87 Contents of the QueueEntryDef element...187

Table 5-88 Contents of the QueueFilter element...187

Table 7-17-2 –Mapping of SourceCS enumeration values to color spaces in the most common input file
formats.Appendix XXX contains a detailed description of the color spaces supported by each one of
these formats. ..319

Table 7-37-4 - Effect of color space conversion operations on color spaces. ...320

Table 7-5 Terms and definitions for components..325

Table 7-6 Predefined variables used in FileTemplate ..356

Table 7-7 Parameters in Stacking...477

Table 7-8 Example 1 of Ord in PlacedObjects..486

Page 628

Page 628

Table 7-9 Example 2 of Ord in PlacedObjects..486

Table 8-18-2 Locations within Printers..596

Page 629

Page 629

Appendix R Terminology Usage
This document contains many terms specific to its interpretation and intent. Many of the terms are described in
relation to various processes, components, and values throughout the document. The more prominent terms are
listed below to make it easier for the casual user to locate precise definitions and usage.

Term

T
er

m
 T

yp
e

G
lo

ss
ar

y
of

T

er
m

in
ol

og
y

(S
ec

t.
1.

4)

D
at

a
St

ru
ct

ur
es

(S

ec
t.

1.
5)

Jo
b

C
om

po
ne

nt
s

(S
ec

t.
2.

1.
1)

W
or

kf
lo

w

C
om

po
ne

nt
s

(S
ec

t.
2.

1.
2

R
el

at
io

n
sh

ip
s

(S
ec

t.
2.

1.
1.

4)

O
th

er

Activation enumeration Table 3.3,
Table 5.38

Agent(s) consumer X Section
2.1.2.3

Ancestor element X
AncestorPool element Sect. 3.3

Table 3.4
Attribute(s) attribute X Section

2.1.1.3
 Sect. 3.1.2

AuditPool elements Sect. 3.10
Big job X
boolean data type X Table A.1
Branch node X
Child element X
Class data type X
CMYK color data type X A.2.1
Command message Section

5.2.1.4
Controllers consumer X Section

2.1.2.4

Coordinate systems Section 2.5
Customer node Section 3.4
Date data type X Table A.1
DateTime data type X Table A.1
Default value X Sect. 1.4.2.1
Deprecated X
Descendent element X
Devices consumer X Section

2.1.2.2

Document set X
Double data type X Table A.1
Duration data type X Table A.1
DurationRange data type X A. 2.2
Element(s) job

component
X X Section

2.1.1.2

Acknowledge message Section
5.2.1.5

Page 630

Page 630

Enumeration(s) data type X
Finished page job

component
X

gYearMonth data type X Table A.1
ID/IDREF(s) X Table A.1
IfraTrack modeling App. E
Instance document job

component
X

Integer data type X Table A.1
IntegerList data type X A.2.3
IntegerRange data type X A.2.4
IntegerRangeList data type X A.2.5
intent resources 3.2.1, 7.1.1.1
IPP mapping App. F
iterative processing 2.3
JDF consumer X
JMF X Chapt. 5
Job(s) job

component
X Section

2.1.1.1

Job part node X
LabColor data type X A.2.6
Language data type X Table A.1
Leaf element X
Links job

components
X Section

2.1.1.5
 A.3.1

Machines job
components

X Section
2.1.2.1

Matrix data type X A.2.7
Merging process Section 4.4
MIME File Packaging A.4.1
MIS X Sesction

2.1.2.5

NamedColor data type X A.2.8
NameRange data type X A.2.9
NameRangeList data type X A.2.10
NMTOKEN(S) data type X Table A.1
Node(s) element X Section

2.1.1.1
 Table 3.3

Number data type X
DoubleList data type X A.2.11
DoubleRange data type X A.2.12
DoubleRangeList data type X A.2.13
Parent element X
Partitioned resource resource X
Path data type X A.2.14
PDL X
PJTF conversion App. C
PNG format A.4.3
PPF conversion App. D
Process consumer X
Process nodes Section 3.2

Chapter 6
Product intent nodes node Section 3.2.1
Query message Section

5.2.1.1
Queue consumer X

Page 631

Page 631

Reader page value X
Rectangle data type X A.2.15
Refelement data type X
Relationships job

components
 Section

2.1.1.4

Resource(s) job
component

X

Response message Section
5.2.1.2

Root element X
Shape data type X
ShapeRange data type X A.2.16
ShapeRangeList data type X A.2.17
Sibling element X
Signal message Section

5.2.1.3
Small job X
Spawning process Section 4.4
sRGBcolor data type X A.2.18
String data type X Table A.1
Support value X
System interaction job

components
 Section

2.1.2.6

Tag value X
Telem data type X
Text data type X
TimeRange data type X A.2.19
TransferFunction data type X A.2.20
URI data type X Table A.1
URL data type X Table A.1
Work center X
Workflow components job

components
 Section

2.1.2

XYPair data type X A.2.21
XYPairRange data type X A.2.22
XYPair/RangeList data type X A.2.23

Page 632

Page 632

Appendix S Errata
The following section summarizes errata that were found after publication of JDF 1.1. Note that trivial changes such
as font changes are not tracked in this table. Although the table may seam quite long, the authors spent a great deal
of effort in ensuring that changes were as transparent as possible to implementations of JDF 1.1. The bulk of
changes consists of clarifications of ambiguities. Modifications that require a change to the XML schema are the
exception and limited to situations where implementation would have otherwise been inhibited.

Location Date Comments
Table 3-20 General
contents of the
PartAmount element

May 2 2002- Table grid formatting

3.9.2 Description of
Partitionable Resources

 Missing quotes in example added

P.1 New Items RunTag has data type NMTOKENS
Table 3-3 Contents of
a JDF node

 Activation, Status. added Modified in JDF 1.1 flag.

3.7 Resources UpdateID has data type NMTOKEN
Table 3-33 Redundant
table removed

May 3 2002- Removed redundant table (it was part of table 3-30) The
heading was kept to avoid renumbering

May 6 2002 Put deprecated Color refelement back. It had accidentally
been removed instead of deprecated.

7.2.92 Media

June 24 2002 Grade: Definition modified to refer to ISO 12647-2 ff
K.5 Conversion of PPF to
JDF

May 8 2002 Modified example ColorantControl to include
ProcessColorModel and ColorantParams

3.9.2 Description of
Partitionable Resources

May 8 2002 Modified example #4 of the ResourceRef to contain
explicit Part elements.
Added clarifying text on how the Part elements are
combined.

3.8.6 Inter-Resource
Linking Using
ResourceRef

May 15 2002 Added a restriction that the Part element in a ResourceRef
must reference a resource leaf.

Table 3-26 Contents of
the Part element

May 16 2002 PreviewType. added New in JDF 1.1 flag.;
Reordered DocCopies and DocIndex

7.2.135
SpineTapingParams

May 16 2002 Added a ? to HorizontalExcess, StripLength,
TopExcess

A.2.22 ShapeRange
A.2.27 XYPairRange

May 21 2002 Clarified definition of reverse order and changed < to <= in
the algorithm definition.

4.4.1 Case 1: Standard
Spawning and Merging

May 22 2002 Clarified the attributes that must be left when removing the
spawned node from the parent node.

Table 3-10 Contents of
the PartStatus element
Table 3-20 General
contents of the
PartAmount element

May 22 2002 Clarified that the Part element in a PartStatus or
PartAmount element must refer to a leaf resource.

7.2.130
ShapeCuttingParams

June 3 2002 Data type of ShapeDepth changed from NumberSpan to
double. (Copy/Paste error from ShapeCut)

7.1.3 BindingIntent June 3 2002 Removed default reference in BindList
June 6 2002 PlacedObject::ClipPath Replaced clip path with clipping

rectangle in the description.
7.2.141 Surface

July 9 2002 PlacedObject::Ord Clarified usage and added example
tables.

Page 633

Page 633

Location Date Comments
August 9 2002 PlacedObject::Ord Clarified zero based.
August 21 2002 Added remark that partitioning is discouraged.
June 11 2002 DevCaps::DevNS. Data type changed to URI.

Added GenericAttributes.
7.3.3 Structure of the
DevCaps Subelement

August 28 2002 GenericAttributes now has a ?
June 11 2002 Removed Restricted, Supported 7.3.4 Structure of the

DevCap Subelement August 28 2002 Added DevNS
June 11 2002 Removed Restricted, Supported

Added Span
August 5 2002 Removed DataType

7.3.5 Structure of the
Abstract State
Subelement

August 28 2002 Added DevNS

7.3.5.1 Structure of the
BooleanState
Subelement

June 11 2002 Added AllowedValueList.

7.3.6 Examples of Device
Capabilities

June 26 2002 Modified example to reflect the modifications in the JDF
device capabilities.

7.2.84 JobField June 11 2002 JobField::ShowList FriendlyName removed blank from
enumeration.

June 13 2002

CreepValue is optional. 7.2.89
LayoutPreparation-
Params June 21 2002 PageCell::TrimSize Clarified default to be

LayoutPreparationParams:SurfaceContentsBox.
June 14 2002 Replace ResponseTypeObj Device * with DeviceList ? 5.5.1.3 KnownDevices
August 14 2002 Replace contents of DeviceList with DeviceInfo.

7.2.112
PreviewGeneration-
Params

June 19 2002 Synchronized PreviewType value list with the
PreviewType partition key.

5.6.3.5 QueueEntryStatus June 21 2002 The QueryTypeObj was changed from QueueEntryDef
to QueueEntryDefList in order to resolve a type collision
in the XML schema.

6.6.26 Palletizing June 21 2002 Fixed copy-paste error in the description of the input
Component.

7.1.12 MediaIntent June 24 2002 Grade: Definition modified to refer to ISO 12647-2 ff
3.8.6.2 Alignment of
ResourceLink and
ResourceRef

June 26 2002 Added Section.

June 26 2002 CheckSum: “RSA MD” now completed to “RSA MD5”
Changed data type to hexBinary.

7.2.54 FileSpec

July 10 2001 Clarified usage of FileTemplate and FileFormat when
UID is present.

Table 1-2 JDF data types June 26 2002 Added data type hexBinary.
A.1 XML Schema Data
Types

June 26 2002 Added data type hexBinary.

7.2.82
InterpretingParams

June 27 2002 Clarified usage of Center and Scaling in conjunction with
FitPolicy.

6.4.18 Preflight June 27 2002 Added warning that Preflight is under construction.

Page 634

Page 634

Location Date Comments
7.2.55 FitPolicy June 27 2002 Added clarification for use of ClipOffset.

Added clarification on aspect ratios for SizePolicy.
Removed ResourceUsage. It had been removed fro 1.1
and reappeared in the editing process. Its functionality is
achieved by evaluating the context of FitPolicy.

7.2.43
DensityMeasuringFiel
d

June 28 2002 Density data type modified to DoubleList.

K.3 Spawning and
Merging

July 1 2002 Added an example of partitioned Spawning and Merging.

7.2.123 RunList July 9 2002 Modified the 2. example to use RunList::Directory
Added a reference to Sets in Pages.
Removed erroneous flag stating that EndOfDocument
was new in JDF 1.1.
Added a clarifying sentence on documents, pages and sets
in the introduction.

6.1 Process Template July 9 2002 Added Preview to the list of optional input resources.
6.6.4 CaseMaking August 5 2002 Removed ? from Media (CoverBoard).
7.2.111 Preview August 9 2002 Clarified usage of RGB PNG files in previews.
A.4.3 PNG Image Format August 9 2002 Clarified usage of RGB PNG files in previews.
5.2.1.5 Acknowledge August 9 2002 Added a ? to Notification.
5.4.1 Pure Event
Messages

August 9 2002 Added section.

6.4.2 ColorCorrection August 9 2002 ColorantControl is now an optional input.
6.4.3
ColorSpaceConversio
n

August 9 2002 ColorantControl is now an optional input.

6.4.20 Proofing August 9 2002 ColorantControl is now an optional input.
6.4.26 Separation August 9 2002 ColorantControl is now an optional input.
6.4.27 SoftProofing August 9 2002 ColorantControl is now an optional input.
6.4.29 Trapping August 9 2002 ColorantControl is now an optional input.

Wording change for the output RunList.
7.2.114
PSToPDFConversion
Params

August 14 2002 Renamed misspelled AutoPostitionEPSInfo to
AutoPositionEPSInfo

7.2.20
ColorantControl

August 16 2002 Clarified usage of ColorantOrder.

7.2.87 Layout August 21 2002 Added remark that partitioning is discouraged.
7.2.131 Sheet August 21 2002 Added remark that partitioning is discouraged.
8.2.3 MIME Types and
File Extensions

August 23 2002 Clarified use of file extensions and renamed MIME type.

3.10 AuditPool August 23 2002 Clarified use of Audits when creating / modifying a JDF.
5.6.4 Queue-Handling
Elements

August 27 2002 Clarified QueueEntry elements for running queues.

5.3 JMF Messaging
Levels

August 27 2002 Added an integer level number to the messaging levels.

3.11.1.1 JDF Namespace August 27 2002 Inserted section header.
3.11.1.2 JDF Extension
Namespace

August 27 2002 Inserted section.

3.10.1 Audit Elements August 27 2002 Inserted extensions for AgentName, AgentVersion

Page 635

Page 635

Location Date Comments
4.4.5 Case 5: Spawning
and Merging of
Independent Jobs

August 30 2002 Added some clarifications and removed ambiguous
naming of nodes and jobs.
Added disclaimer for using case 5.

4.4.3 Case 3: Parallel
Spawning and Merging of
Partitioned Resources

August 30 2002 Added some clarifications.

Page: 1
[RP1]+tbd rename for LayoutObject (LayoutParams -> StrippingParams)
Page: 3
[RP2]+modified
Page: 1
[RP3]+tbd jim remove asterisk from icc reference, typo “Tthis”.
[RP4]+added
Page: 2
[AMC5]+added new reference information for ICC
Page: 2
[RP6]+added tbd jim format as in rest of table
Page: 2
[RP7]+tbd jim find and include reference
Page: 4
[RP8]+modified
Page: 4
[RP9]+modified
Page: 4
[RP10]+added
Page: 4
[RP11]+added
Page: 6
[RP12]+added
Page: 7
[GCM13]+ modified
Page: 7
[GCM14]+ modified
Page: 7
[GCM15]+ modified
Page: 7
[GCM16]+ modified
Page: 7
[RP17]+added
Page: 7
[GCM18]+ modified
Page: 7
[GCM19]+ modified
Page: 7
[GCM20]+ modified
Page: 7
[GCM21]+ modified
Page: 8
[GCM22]+ modified
Page: 8
[GCM23]+ modified
Page: 8
[GCM24]+ modified
Page: 8
[RP25]+added
Page: 8
[RP26]+added
Page: 8
[GCM27]+ modified
Page: 8
[GCM28]+ modified

Page: 8
[GCM29]+ modified
Page: 8
[GCM30]+ modified
Page: 8
[RP31]+tbd jim replace all datatype definitions of number with double
Page: 8
[RP32]+tbd jim Global replace of NumberList to DoubleList
Page: 8
[RP33]+added
Page: 8
[GCM34] +modified
Page: 8
[RP35]+added
Page: 8
[GCM36] +modified
Page: 8
[RP37]+added
Page: 8
[RP38]+tbd jim put in alphabetical order
Page: 8
[RP39]+tbd jim – search for all occurrences of path and replace with PDFPath if it was replaced in this
document- NOT GLOBAL!
Page: 9
[GCM40]+ modified
Page: 9
[GCM41]+ modified
Page: 9
[RP42]+modified
Page: 9
[RP43]+added
Page: 9
[RP44]+added
Page: 9
[GCM45]+ added.
Page: 9
[RP46]+ added
Page: 18
[RP47]+modified
Page: 19
[RP48]modified tbd cs
Page: 19
[RP49]added tbd cs
Page: 20
[RP50]added
Page: 20
[RP51]added
Page: 20
[RP52]removed
Page: 20
[RP53]removed
Page: 20
[RP54]tbd cs wordsmith, remember source + target cs definition
Page: 21
[RP55]tbd cs

Page: 22
[RP56]tbd cs modified
Page: 23
[RP57]+modified
Page: 23
[RP58]+modified
Page: 23
[RP59]+modified
Page: 23
[RP60]+modified
Page: 23
[RP61]+modified
Page: 25
[RP62]+removed
Page: 26
[RP63]tbd cs discuss digital press device coordinate systems starting print opposite the x-axis
Page: 27
[RP64]+modified
Page: 27
[RP65]+added
Page: 27
[RP66]+modified
Page: 27
[RP67]+added
Page: 27
[RP68]+modified
Page: 28
[RP69]+modified
Page: 28
[RP70]+tbd Jim– add red comments in graphic (but not in red).
Page: 34
[RP71]+added
Page: 35
[RP72]tbd verify that tjhis is correct - discuss with koen
Page: 36
[RP73]+added
Page: 37
[RP74]+added
Page: 37
[RP75]+added
Page: 37
[RP76]+added
Page: 37
[RP77]+added
Page: 38
[RP78]+modified
Page: 39
[RP79]+added
Page: 39
[RP80]+added
Page: 39
[RP81]+added/modified
Page: 39
[RP82]+added
Page: 39
[RP83]+added

Page: 39
[RP84]+added
Page: 39
[RP85]+added
Page: 39
[RP86]+added
Page: 40
[RP87]+modified
Page: 42
[RP88]+added
Page: 42
[RP89]+added
Page: 45
[RP90]+added
Page: 45
[RP91]+added
Page: 47
[RP92]+delete this row – it was renamed to MesageEvents
Page: 47
[RP93]+added
Page: 47
[RP94]+added tbd rediscuss w MIS whether queue submission or nodeinfo
Page: 48
[RP95]+modified
Page: 49
[RP96]+added tbd rediscuss w MIS
Page: 50
[RP97]+added
Page: 50
[RP98]+added
Page: 53
[RP99]+added
Page: 53
[RP100]+modified
Page: 57
[RP101]added tbd Amount discussion
Page: 67
[RP102]+added
Page: 68
[RP103]added for and tbd CS
Page: 68
[RP104]+added
Page: 70
[RP105]tbd amount - synch with Resource and Status JMF + Audits
Page: 70
[RP106]added tbd amount
Page: 72
[RP107]+added
Page: 72
[RP108]+added
Page: 72
[RP109]+added
Page: 72
[RP110]+added
Page: 73
[RP111]+added

Page: 73
[RP112]+added
Page: 73
[RP113]+modified tbd rp example w/o rSubRef
Page: 75
[RP114]added tbd amount
Page: 75
[RP115]tbd amount add graphics
Page: 76
[RP116]added – tbd amount discuss who writes what – chapter 8
Page: 76
[RP117]+added
Page: 77
[RP118]+added
Page: 78
[RP119]+added
Page: 79
[RP120]+added
Page: 79
[RP121]+deleted
Page: 79
[RP122]+modified
Page: 80
[RP123]+added
Page: 80
[RP124]+modified
Page: 80
[RP125]+added
Page: 80
[RP126]+added
Page: 80
[RP127]+added
Page: 80
[RP128]+added
Page: 80
[RP129]+added
Page: 80
[RP130]+added
Page: 81
[RP131]+added
Page: 81
[RP132]+added
Page: 81
[RP133]+modified
Page: 81
[RP134]+added
Page: 81
[RP135]+added
Page: 81
[RP136]+modified
Page: 82
[RP137]+removed
Page: 82
[RP138]+added
Page: 82
[RP139]+added

Page: 83
[RP140]+added
Page: 83
[RP141]+added
Page: 83
[RP142]+added
Page: 84
[RP143]+added
Page: 85
[RP144]+added
Page: 85
[RP145]+modified
Page: 86
[RP146]+ moved to appendix
Page: 86
[RP147]+modified
Page: 86
[RP148]+modified
Page: 86
[RP149]+added
Page: 95
[RP150]+added
Page: 96
[RP151]+added
Page: 98
[RP152]tbd rainer update to use cumulativeamount etc.
Page: 102
[RP153]+added
Page: 106
[RP154]+added tbd maxversion discussion
Page: 107
[RP155]+modified
Page: 110
[RP156]+added
Page: 111
[RP157]+added tbd jmf add discussion on JMF submission
Page: 116
[RP158]+added tbd rp discuss automated imposition
Page: 116
[RP159]+added tbd rp continue – picture !!!!
Page: 120
[RP160]+added
Page: 121
[RP161]+modified
Page: 123
[RP162]+added
Page: 125
[RP163]+added
Page: 125
[RP164]+added
Page: 131
[RP165]+deleted
Page: 132
[RP166]+modified
Page: 133
[RP167]+modified

Page: 147
[RP168]+added
Page: 157
[RP169]+added
Page: 157
[RP170]+added
Page: 161
[RP171]+modified
Page: 161
[RP172]+added
Page: 162
[RP173]+added
Page: 180
[RP174]+added
Page: 186
[RP175]+added
Page: 186
[RP176]tbd JMF discuss
Page: 188
[RP177]tbd JMF discuss
Page: 190
[RP178]+added
Page: 191
[RP179]+added
Page: 192
[RP180]+added
Page: 192
[RP181]+modified
Page: 192
[RP182]+modified
Page: 193
[RP183]+added
Page: 194
[RP184]+added
Page: 194
[RP185]+added
Page: 195
[RP186]+added
Page: 195
[RP187]+ tbd jim note that this must not be marked as new, since it is only new in editorial terms, not in
content
Page: 196
[RP188]tbd discuss with O&P – came from Preflight
Page: 196
[amc189]+Color WG Done. added tbd accept pending color wg review. OK – AMC made some minor
changes to the wording – agree that it is good placed in the process description.
Page: 196
[RP190]+added
Page: 197
[RP191]+added
Page: 197
[RP192]+added
Page: 200
[RP193]+modified
Page: 200
[RP194]+added

Page: 207
[RP195]+added
Page: 207
[RP196]+added
Page: 209
[RP197]+modified tbd rp details on RIPping category and RIPping in a processgroup
Page: 209
[RP198]+modified
Page: 209
[RP199]+remove
Page: 209
[RP200]+added
Page: 210
[RP201]+added
Page: 210
[RP202]+added
Page: 213
[RP203]+added
Page: 213
[RP204]+added
Page: 213
[RP205]+added
Page: 214
[RP206]+added
Page: 215
[RP207]+added
Page: 215
[RP208]+modified
Page: 223
[RP209]+added
Page: 239
[RP210]rejected retain for 1.3
Page: 240
[RP211]+added
Page: 240
[RP212]+added
Page: 240
[RP213]+modified
Page: 240
[RP214]+deleted
Page: 240
[RP215]+modified
Page: 241
[RP216]rejected retain for 1.3
Page: 245
[RP217]+added
Page: 247
[RP218]+added
Page: 247
[RP219]+added
Page: 247
[RP220]+added
Page: 248
[RP221]+modified
Page: 249
[RP222]+remove – it is in twice

Page: 250
[RP223]tbd RP add examples
Page: 256
[RP224]+deleted
Page: 256
[RP225]+added
Page: 258
[RP226]+added
Page: 259
[RP227]+modified
Page: 260
[RP228]+removed
Page: 260
[RP229]+added
Page: 260
[RP230]+modified
Page: 260
[RP231]+modified
Page: 260
[RP232]+added
Page: 260
[RP233]+added
Page: 260
[RP234]+added
Page: 261
[RP235]+modified
Page: 265
[RP236]tbd RP add section / example usage
Page: 268
[RP237]+added
Page: 271
[RP238]+moved
Page: 271
[RP239]+added
Page: 271
[RP240]+modified
Page: 272
[RP241]+modified
Page: 272
[RP242]+added
Page: 272
[RP243]+added
Page: 272
[RP244]+added
Page: 272
[RP245]+added
Page: 273
[RP246]+added
Page: 273
[RP247]rejected, retain for JDF 1.3
Page: 274
[RP248]+accept
Page: 274
[RP249]+added
Page: 274
[RP250]rejected for 1.2, retain for future version

Page: 274
[RP251]+modified
Page: 275
[RP252]rejected, retain for JDF 1.3
Page: 275
[RP253]+accept
Page: 275
[RP254]+added
Page: 276
[RP255]+accept
Page: 277
[RP256]rejected for 1.2, retain for future version
Page: 277
[RP257]+accept
Page: 277
[RP258]+modified
Page: 277
[RP259]+accept
Page: 277
[RP260]+added
Page: 277
[RP261]+added
Page: 277
[RP262]+added
Page: 277
[RP263]+accept
Page: 279
[RP264]+accept
Page: 279
[RP265]+accept
Page: 282
[RP266]+added
Page: 282
[RP267]+accept
Page: 282
[RP268]+added
Page: 283
[RP269]+added
Page: 288
[RP270]+added
Page: 288
[RP271]+modified
Page: 288
[RP272]+added
Page: 288
[RP273]+modified
Page: 288
[RP274]+modified
Page: 288
[RP275]+added
Page: 289
[RP276]tbd charles/preflight – fill out – if possible wait for 1.3
Page: 289
[TNH277]+added
Page: 289
[RP278]+modified

Page: 291
[RP279]+modified
Page: 300
[RP280]+added
Page: 300
[RP281]+added
Page: 300
[RP282]+added
Page: 301
[RP283]+added
Page: 301
[RP284]+added
Page: 301
[RP285]+modified
Page: 301
[RP286]+modified
Page: 301
[RP287]+added
Page: 302
[RP288]+added
Page: 303
[RP289]+tbd Jim replace occurrences of Pantone with PANTONE in tables and examples.
Page: 303
[RP290]+added
Page: 303
[RP291]+added
Page: 303
[RP292]+added
Page: 303
[RP293]+modified
Page: 303
[RP294]+added
Page: 303
[RP295]+modified
Page: 304
[RP296]+added
Page: 304
[RP297]DONE by Color WG.tbd Color WG agreed to keep MappingSelection and DEPRECATE
UsePDLAlternateCS. Also make UsePDLValues as the default in MappingSelection. Add note in
MappingSelection: If both MappingSelection and UsePDLAlternateCS are present, ignore
UsePDLAternativeCS.
Page: 304
[TNH298]tbd ann ?? Why CMYK and not ColorBookEntry?
Page: 305
[TNH299]+tbd jim format added, AMC: Added examples for ColorantControl uses in heading of
ColorantControl. These had been discussed and accepted previously located with the DeviceNSpace
definition.
Page: 305
[RP300]+added
Page: 306
[TNH301]+added AMC: changed ColorantAlias to refelement. ColorantAlias is necessary for cleaning up
spot color identifier string anomalies, i.e., incompatibilities, in various source files that will be combined.
LayoutElement resource contains the ColorantAlias information for a single job file or object. The
ColorantControl::ColorantAlias pulls it together for processing.
Page: 306
[RP302]+added

Page: 306
[RP303]+modified
Page: 307
[RP304]+added
Page: 307
[RP305]+added
Page: 307
[TNH306] +added
Page: 308
[RP307]+added
Page: 310
[RP308]+added
Page: 311
[RP309]+added
Page: 311
[TNH310]+added AMC: Added DeviceLinkProfile as preferred non-proprietary method for conveying
device space adjustments. Allows standard open exchange mechanism for conveying proprietary data
Page: 313
[RP311]??? tbd does this imply two colorpools per job? I’m confused ??? TBD Color Partition and deprecate
CP ???
Page: 313
[RP312]+remove
Page: 313
[RP313]+added
Page: 314
[TNH314] Color WG Done – Must be Destination Profile, i.e., Final Target Device (in
ColorSpaceConversionParams).
Page: 314
[TNH315] Color WG Done – Must be Destination Profile, i.e., Final Target Device (in
ColorSpaceConversionParams).
Page: 314
[TNH316] Color WG Done. Add ICCProfileUsage. Note that it is important to have the precedence order
the same for both values.
Page: 314
[RP317]tbd color discuss whether requirements are necessary
Page: 314
[RP318]+modified
Page: 314
[RP319]+added
Page: 315
[RP320]+tbd jim elevate to resource – Color WG TBD. AMC note if Jim elevates then descriptions of use
may need to be wordsmithed. And the Table 7.1: Mapping of SourceCS enumeration values to color
spaces in the most common input file formats. and Table 7.2: Effect of color spoace conversion operations
on color spaces. (see August FrameMaker) and the preceding Note need to be moved from
ColorSpaceConversionParams to be after ColorSpaceConversionOp resource that is being elevated to a
Resource.

Page: 315
[RP321]+added
Page: 315
[RP322]+added
Page: 315
[RP323]+deleted
Page: 315
[RP324]+deleted

Page: 315
[RP325]+added
Page: 315
[RP326]+accepted
Page: 316
[TNH327] Color WG Done. Restore June agreed comment on RenderingIntent that somehow did not get into
the August FrameMaker version.
Page: 316
[TNH328] Color WG Done. Add reference.
Page: 316
[RP329] Color WG Done. modified tbd color wf
Page: 316
[RP330] Color WG Done. modified RGBGray2Black and RGBGray2BlackThreshold.
tbd color wf
Page: 318
[RP331] Color WG Done. accepted tbd color wf
Page: 319
[RP332]+removed after adding! Now in ColorCorrectionOp
Page: 319
[RP333]+added
Page: 319
[RP334]+ modified
Page: 319
[RP335]+added
Page: 319
[RP336]tbd Alberto track down Appendix
Page: 319
[amc337]+amc uploaded latest to color workflow WG 8/25
Page: 320
[RP338]+accepted
Page: 320
[RP339]+modified
Page: 324
[RP340]+added
Page: 326
[RP341]+added
Page: 326
[RP342]+modified
Page: 326
[RP343]+added
Page: 326
[RP344]+added
Page: 326
[RP345]+added
Page: 326
[RP346]+added
Page: 326
[RP347]+added
Page: 328
[RP348]+added
Page: 329
[RP349]+added
Page: 331
[RP350]+modified
Page: 332
[RP351]+added

Page: 332
[RP352]+added
Page: 334
[RP353]+added
Page: 334
[RP354]+added
Page: 334
[RP355]+added
Page: 334
[RP356]+modified
Page: 334
[RP357]+modified
Page: 334
[RP358]tbd discuss – CutBlock is non partitioned and recursive. This needs special treetment, no matter what
and therefore cleaning the partition keys seams mute.
Page: 335
[RP359]tbd deprecate and make Name or ??? -> partition njet.
Page: 337
[RP360]+added
Page: 337
[RP361]+added
Page: 337
[RP362]+modified
Page: 337
[RP363]+modified
Page: 339
[RP364]+added
Page: 340
[RP365]+added
Page: 340
[RP366]+modified
Page: 342
[RP367]added tbd multiple hfs - capabilities
Page: 343
[RP368]added tbd multiple hfs - capabilities
Page: 343
[RP369]+move to alphabetical position
Page: 344
[RP370]+added tbd cs
Page: 345
[RP371]+added
Page: 345
[RP372]+added
Page: 346
[RP373]+modified
Page: 346
[RP374]+modified
Page: 347
[RP375]+added
Page: 348
[RP376]+modified
Page: 348
[RP377]+added
Page: 349
[TNH378] Color WG Done. – typo.

Page: 349
[RP379]+added
Page: 351
[RP380]+modified – it is NMTOKENS, not NMTOKEN
Page: 353
[RP381]+added
Page: 354
[RP382]+added
Page: 354
[RP383]+added
Page: 354
[RP384]+modified
Page: 355
[RP385]+added
Page: 357
[RP386]+modified
Page: 357
[RP387]+modified
Page: 358
[RP388]+added
Page: 359
[RP389]+modified
Page: 359
[RP390]+modified
Page: 359
[RP391]+modified
Page: 361
[RP392]tbd – add f6-6 / p6-6 – same as f6-2 but 50% 25% 25% instead of 1/3 1/3 1/3
Page: 363
[RP393]+remove
Page: 367
[RP394]+added
Page: 367
[RP395]+added
Page: 367
[RP396]+added
Page: 367
[RP397]+added
Page: 367
[RP398]+added
Page: 367
[RP399]+added
Page: 370
[RP400]added tbd cs
Page: 371
[RP401]added tbd cs
Page: 372
[RP402]+added
Page: 387
[GCM403]tbd gm added – Additional PS key –check interaction with ImageFilter
Page: 388
[RP404]+added
Page: 388
[RP405]+added
Page: 388
[RP406]+added, amc fixed typo.

Page: 388
[amc407]+modified for clarification
Page: 388
[RP408]+remove
Page: 388
[GCM409]added – Additional PS key tbd gm move to dctparams
Page: 391
[RP410]+added
Page: 391
[RP411]+added
Page: 391
[RP412]+modified
Page: 391
[RP413]+deleted
Page: 392
[RP414]+modified
Page: 392
[RP415]+modified
Page: 394
[RP416]+added
Page: 394
[RP417]tbd finishing define
Page: 395
[RP418]added tbd digiprint resolve values (what is new, wrt after?) what does ignore mean
Page: 396
[RP419]+added
Page: 396
[RP420]+added
Page: 398
[RP421]rejected adding additional values – retain for 1.3 pending IPP decision. Keep the JDF/1.1 definition
of PrintQuality with just the three values: High, Normal, Draft that agree with IPP [rfc2911], September
2000.
Page: 399
[RP422]+modified
Page: 402
[RP423]+added
Page: 402
[RP424]+deleted
Page: 404
[RP425]+remove
Page: 404
[RP426]+added
Page: 406
[RP427]+added tbd preflight discuss usqage of RunList for fonts etc. (see Asset Transfer)
Page: 406
[RP428]+added
Page: 406
[RP429]+added
Page: 406
[RP430]+added
Page: 407
[RP431]+added
Page: 407
[RP432]+added
Page: 407
[RP433]+added

Page: 407
[RP434]+added
Page: 407
[RP435]+added
Page: 407
[RP436]+added
Page: 407
[RP437]+added
Page: 407
[RP438]+added
Page: 407
[RP439]+added
Page: 407
[RP440]+added ? for reservations
Page: 407
[RP441]+added
Page: 408
[RP442]added
Page: 408
[RP443]added
Page: 408
[RP444]+added
Page: 408
[RP445]+added
Page: 408
[RP446]+added
Page: 408
[amc447]added recommended default
Page: 410
[RP448]+modified
Page: 410
[RP449]+modified
Page: 410
[TNH450]+modified - Fixed to agree with NumberUp. - DigiPrint WG 7/22/03
Page: 410
[RP451]+added
Page: 413
[RP452]+modified
Page: 413
[RP453]+modified
Page: 414
[RP454]+modified Fixed to agree with NumberUp
Page: 414
[RP455]+modified
Page: 414
[TNH456]+ Fixed to agree with NumberUp. - DigiPrint WG 7/22/03
Page: 416
[RP457]+added
Page: 417
[RP458]+added
Page: 419
[amc459]+added added clarification regarding the importance of media color characteristics for color
management.
Page: 419
[RP460]+remove

Page: 419
[RP461]+modified
Page: 419
[amc462]+modified .
Page: 419
[RP463]+modified
Page: 420
[RP464]tbd gm define datatypes and explain notation
Page: 420
[RP465]+added
Page: 421
[RP466]+added
Page: 422
[RP467]+added
Page: 430
[RP468]+added
Page: 431
[RP469]tbd gm add pdf 1.5 support
Page: 435
[RP470]+modified
Page: 435
[RP471]+added
Page: 436
[RP472]+added
Page: 436
[RP473]+added
Page: 436
[RP474]+added
Page: 441
[RP475]+added
Page: 442
[RP476]+added
Page: 442
[RP477]+added
Page: 442
[RP478]+added
Page: 443
[RP479]+added
Page: 443
[RP480]+added
Page: 443
[RP481]+added
Page: 443
[RP482]+added
Page: 443
[RP483]+added
Page: 446
[GCM484]+added – Additional subelelement for PDF/x keys
Page: 446
[GCM485]+ added - Additonal PS key.
Page: 447
[GCM486]+ added – Additional PS key
Page: 447
[GCM487] +added – Additional PS key
Page: 447
[GCM488]+ added – Additional PS key

Page: 449
[GCM489]+ added – Subelement of additional PDFX keys
Page: 449
[GCM490]+ added – Additional PS key
Page: 456
[RP491]+added tbd graham fix notation
Page: 456
[RP492]+added
Page: 457
[RP493]+added
Page: 457
[RP494]+remove – not usefill since docindex is a virtual partition key
Page: 458
[RP495]+added
Page: 458
[RP496]tbd restrict to absolute
Page: 458
[RP497]+added
Page: 458
[RP498]+added – tbd Jim copy paste to EndofBundleItem and modify appropriately.
Page: 459
[RP499]+modified (else add discuss necessity or add FirstSet, SkipSet
Page: 459
[RP500]+modified (else add discuss necessity or add FirstSet, SkipSet
Page: 459
[RP501]+added
Page: 466
[RP502]+added
Page: 466
[RP503]+added
Page: 466
[RP504]+added
Page: 466
[RP505]+added
Page: 467
[RP506]concept rejected for 1.2 . AMC: Done – clarified and made optional.
Page: 467
[RP507]+accepted
Page: 468
[RP508]concept rejected for 1.2 AMC: Done – clarified and stated optional.
Page: 468
[RP509]+modified
Page: 468
[RP510]+modeified
Page: 468
[RP511]tbd ann, rp, cb, ms modeling of screen matching
Page: 468
[amc512]+clarification that the list is extensible
Page: 468
[RP513]+added
Page: 479
[RP514]tbd cs delete and unbulletize
Page: 481
[RP515]tbd cdadded
Page: 481
[RP516]tbd csadded

Page: 482
[RP517]tbd csadded
Page: 482
[RP518]tbd csadded
Page: 484
[RP519]+added
Page: 484
[RP520]+added
Page: 484
[RP521]+added
Page: 485
[RP522]+added
Page: 493
[RP523]+deleted
Page: 494
[RP524]+added
Page: 494
[RP525]+added
Page: 495
[RP526]+remove
Page: 495
[RP527]+add
Page: 497
[GCM528]+ added - Additional PS key.
Page: 498
[RP529]+modified
Page: 498
[RP530]+added
Page: 498
[RP531]+added
Page: 498
[RP532]+modified
Page: 499
[GCM533]+ added - Additonal PS key.
Page: 502
[RP534]+added
Page: 502
[RP535]+added
Page: 502
[RP536]+added
Page: 513
[RP537]tbd JMF discuss disposition of JDF files in hot folders
Page: 513
[RP538]tbd JMF rewrite section
Page: 513
[RP539]+added
Page: 514
[RP540]+removed
Page: 514
[RP541]+added
Page: 514
[RP542]+added
Page: 515
[RP543]tbd JMF flesh out
Page: 515
[RP544]+modified

Page: 515
[RP545]+updated uri
Page: 516
[RP546]added tbd JMF use valid cid
Page: 516
[RP547]moved from Appendix A4 and modified
Page: 516
[RP548]tbd add section
Page: 518
[RP549]+added
Page: 518
[RP550]+added
Page: 518
[GCM551]+ modified
Page: 519
[GCM552]+ modified
Page: 519
[RP553]+added tbd graham inf in datetimes and durations
Page: 519
[RP554]+added
Page: 519
[RP555]+added
Page: 519
[GCM556]+modified
Page: 519
[GCM557]+ modified
Page: 519
[RP558]+added
Page: 519
[RP559]+added
Page: 519
[GCM560]+ deleted – whitespace cannot be used when items are in a list
Page: 519
[RP561]+added
Page: 519
[RP562]+added
Page: 519
[GCM563]+ modified
Page: 519
[GCM564]+ modifed
Page: 520
[GCM565]+ modified
Page: 520
[RP566]+added
Page: 520
[RP567]+added
Page: 520
[GCM568]+ modified
Page: 520
[GCM569]+ modified.
Page: 520
[GCM570]+ modified.
Page: 522
[RP571]+deleted
Page: 522
[GCM572]+modified

Page: 522
[GCM573]+ modified.
Page: 522
[RP574]+modified
Page: 522
[GCM575]+ modified
Page: 522
[GCM576]+ modified
Page: 522
[GCM577] +deleted. whitespace not allowed for lists
Page: 522
[GCM578]+ modified
Page: 522
[RP579]+added
Page: 522
[RP580]+renamed datatype to pdfpath
Page: 523
[GCM581] +modified.
Page: 523
[GCM582] +modified.
Page: 523
[RP583]+modified
Page: 523
[GCM584]+ modified.
Page: 523
[GCM585] +modified
Page: 523
[GCM586] +modified. Removed whitespace from example
Page: 523
[rp587]+added
Page: 523
[GCM588]+ modified
Page: 524
[GCM589] +modified. Removed whitespace
Page: 524
[RP590]+added
Page: 524
[RP591]+added
Page: 524
[RP592]+deleted whitespace
Page: 524
[GCM593]+ modified
Page: 524
[rp594]+remove
Page: 525
[GCM595] +modified
Page: 525
[GCM596] +modified
Page: 525
[GCM597] +modified. Removed whitespace
Page: 525
[GCM598] +modified. Removed whitespace
Page: 525
[GCM599] +deleted. Removed whitespace
Page: 525
[RP600]+added

Page: 525
[RP601]+added
Page: 525
[RP602]+added
Page: 525
[RP603]+modified
Page: 526
[GCM604]+ added.
Page: 527
[rp605]tbd mike, add content-length and ordering constraints
Page: 527
[RP606]+added
Page: 527
[RP607]+modified
Page: 530
[RP608]+added – tbd jim - format
Page: 559
[RP609]+remove l
Page: 559
[RP610]tbd jim cleanup and remove double entries and add generic terms
Page: 587
[RP611]added footnote tbd cs
Page: 587
[RP612]+added
Page: 591
[RP613]+added
Page: 591
[RP614]+added
Page: 591
[RP615]+added
Page: 592
[RP616]+added
Page: 592
[RP617]+added
Page: 592
[RP618]+added
Page: 593
[RP619]+added tbd jim apply factors to long table
Page: 593
[RP620]+modified
Page: 595
[RP621]+replace sentence with table
Page: 596
[RP622]+modified
Page: 597
[RP623]+added
Page: 600
[RP624]+added

